首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
柚皮的综合利用及色素稳定性研究   总被引:5,自引:0,他引:5  
设计了一套柚皮综合利用的方法,分别用水蒸气地和混合盐析法提取其中的香油、色素、果胶,并对柚皮红棕色素的稳定性作了研究。结果发现该色素在酸性条件下非常稳定,有机酸、糖类及Mg^2 等对该色素影响不大。本研究可为柚皮资源的开发利用提供重要的理论依据和方法。  相似文献   

2.
海洋溢油污染对海洋和沿海滩涂生态环境造成严重威胁,筛选耐盐烃降解菌株和优化烃降解菌培养条件至关重要.以实验室筛选的一株烃降解菌为研究对象,在已有的单因素试验的基础上,采用响应面法对烃降解菌培养基进行优化,结果表明:当酵母粉质量浓度为2.74 g/L,NH4NO3质量浓度为1.47 g/L,磷酸盐质量浓度为1.22 g/L时,烃降解率为65.81%,比单因素优化试验最优水平下的烃降解率增加14.58个百分点.  相似文献   

3.
本文研究了好氧颗粒污泥系统中,温度、pH、曝气强度、邻苯二酸(Phthalic Acid,PA)及氨氮(NH3-N)对邻苯二甲酸二甲酯(Dimethyl Phthahte,DMP)降解效果的影响,结果表明:好氧颗粒污泥降解DMP的最佳温度、最佳PH值范围、最佳曝气强度分别为25℃~45℃、7.0 ~9.0、1.38 cm/s.当PA浓度为100 mg/L、300 mg/L,PA对DMP降解起促进作用;当PA浓度为500 mg/L、800 mg/L,PA对DMP降解起抑制作用.进水中50 mg/L的氨氮浓度对DMP降解的影响不大.本研究中采用的19种运行工况条件中,除曝气强度为0.33 cm/s以外,其他18种运行工况条件下,当运行时间达到300 min时,DMP的浓度都小于1.0 mg/L,因此,当水力停留时间达到5h以上时,温度、pH、PA、氨氮对DMP降解速率的影响基本上可以忽略不计.  相似文献   

4.
甲基橙是一种较难降解的有机苯环偶氮染料之一,研究其降解性能对其他染料废水体系的降解研究具有普遍参考价值。通过研究Fenton试剂降解甲基橙过程中的H202浓度、Fe2+浓度、反应时间和反应体系pH值对甲基橙降解的影响,确定其最佳降解工艺条件为:当甲基橙浓度为20mg/L、pH值为3、Fe2+浓度为1.5mmol/L、H2O2为32mmol/L时,降解率达到最大值(98.95%)。  相似文献   

5.
UV/H2O2联用工艺相对单独UV工艺和单独H2O2工艺对羧酸的降解率更高,主要是由于UV激发H2O2产生了氧化性更强的羟基自由基。通过在不同H2O2浓度下UV/H2O2联用工艺对甲酸、草酸、水杨酸三种小分子羧酸的降解实验发现,不同种类的羧酸存在一个最适H2O2浓度。低于最适浓度,H2O2浓度每增加一定值,羧酸的最大降解率增加量随之增加;高于最适浓度,最大降解率增加量随之减少。UV/H2O2工艺对小分子羧酸的降解率与羧酸分子的结构和相对分子质量有关,结构越复杂,相对分子质量越高,小分子羧酸的降解率越低。  相似文献   

6.
采用树脂负载零价纳米铁(NZVI-resin)作为铁源,活化过硫酸钠,产生硫酸根自由基氧化降解偶氮染料甲基橙。考察了温度、NZVI-resin加入量、pH值及过硫酸钠的浓度等因素对甲基橙降解率的影响,并对其降解动力学规律作了初步探讨。结果表明:降解反应遵循准一级反应动力学,在pH=3.0、Fe0=0.2 g.L-1、Na2S2O8=1.33 g.L-1的条件下,30 mg.L-1的甲基橙溶液降解率为99.7%。  相似文献   

7.
海洋溢油污染对海洋和沿海滩涂生态环境造成严重威胁,筛选耐盐烃降解菌株和优化烃降解茵培养条件至关重要。以实验室筛选的一株烃降解菌为研究对象,在已有的单因素试验的基础上,采用响应面法对烃降解菌培养基进行优化,结果表明:当酵母粉质量浓度为2.74 g/L,NH1NO_3质量浓度为1.47 g/L,磷酸盐质量浓度为1.22 g/L时,烃降解率为65.81%,比单因素优化试验最优水平下的烃降解率增加14.58个百分点。  相似文献   

8.
光催化氧化法降解有机磷农药的研究   总被引:7,自引:0,他引:7  
本研究采用负载型TiO2膜作为催化剂降解有机磷农药敌敌畏,探讨了光催化反应时间、溶液的初始浓度对敌敌畏降解率的影响。试验表明,不同初始浓度的敌敌畏在经过90minUV/TiO2处理后,降解率都能达到90%以上,而且降解率随光照时间的增长而增加,随初始浓度的增加而降低。本研究采用毛细管柱气相色谱检测敌敌畏的剩余浓度,检出效果较好,并通过色谱图探讨敌敌畏的降解过程。  相似文献   

9.
电离辐射处理工业废水的研究进展   总被引:1,自引:0,他引:1  
在介绍电离辐射降解污染物机理的基础上,概述了电离辐射在水处理中的应用,重点讲述了影响污染物辐照降解的因素,包括水质(污染物初始浓度、pH值、溶剂性质和自由基清除剂)和辐射源(辐射源种类和辐照剂量率)两方面的影响,并讲述了污染物的辐照降解模型.最后提出电离辐射在水处理中存在的问题,对其研究和发展方向进行了展望.  相似文献   

10.
以长安大学渭水校区未被污染的粉质壤土为研究对象,通过土壤灭菌、添加由石油污染土壤红三叶草(Trifolium Repens Linn)根际修复区分离筛选得到的4株以原油作为惟一碳源和能源的高效石油烃降解菌(动性杆菌、藤黄微球菌、蜡状芽孢杆菌和短小芽孢杆菌),调控反应温度与石油烃初始浓度,研究在土壤中添加优势石油烃降解菌后石油烃降解动力学及其影响因子。结果表明:优势石油烃降解菌对土壤中石油烃降解起主导作用,在40d内,在2 000mg/kg石油烃浓度下添加石油烃降解菌其石油烃降解率是灭菌条件下的2倍左右,土壤中石油烃降解菌降解量为36~271mg/kg,非灭菌处理半衰期时间短于灭菌处理;在设定的实验温度范围内,石油烃降解速率随着温度增加逐渐加快,在(38±1)℃时残留量最小为1 662mg/kg,半衰期最短;土壤中的石油烃在浓度为2 000mg/kg时降解最快,随着初始浓度的增加,石油烃降解速率呈递减趋势,半衰期逐渐增长。  相似文献   

11.
以TiO2为催化剂,对有机颜料艳红RGS母液进行了一系列光催化降解试验.考察了催化剂用量、溶液pH值、初始浓度、不同光源和照射时间对脱色率的影响.结果表明,溶液相对初始浓度为0.2、pH<8、催化剂用量为1g/L时,以紫外灯(254nm)为光源,反应120 min,脱色率可达93%以上.  相似文献   

12.
The scarcity of fossil fuels has urged the economically developed countries to find the resources for an alternative energy sources. In apprehension to this, biofuels, like bioethanol and biobutanol, produced from lignocellulosic biomass were considered as potential alternative. There are several methods for the pretreatment of biomass before it is being used as a feedstock for the production of fermentable sugars. However, one of the crucial concerns here is to enumerate an economic pretreatment scheme that can be implemented in large scale for the production of mostly exposed cellulosic part from biomass. This will ensure an effective hydrolysis of cellulose for the production of fermentable sugars and the production of biobutanol from these derived sugars. Moreover, the keynote understanding of an effective fermentation is the production of less inhibitory compounds like furfural, hydroxymethyl furfural during the hydrolysis of cellulose. Enzymatic hydrolysis of cellulose was reported as the most efficient method is this aspect. Trichoderma sp. was found the mostly used resources for the enzyme called cellulase and Aspergillus sp. for hemicellulase enzymes. The most crucial part here is the isolation of proper enzyme that will increase the rate of hydrolysis. Moreover, selection of proper pretreatment process will be a key benefit to the production of fermentable sugars through enzymatic hydrolysis. Based on the biomass nature, the evaluated hot water pretreatment followed by enzymatic hydrolysis with a provision of enzyme reusability (like encapsulated or enzyme separation with membrane) seems to be promising for enhanced biofuel-production.  相似文献   

13.
主要研究了以改性环氧树脂和聚乙烯醇缩丁醛为基料的钢铁带锈涂料,通过对成膜物质、转化剂、渗透剂、颜料等的研究,我们得到了集稳定、转化、渗透为一体的多功能涂料。经过实验测试,该涂料的各项性能指标都达到了设计要求,并且本工艺方案简单易行、省时高效,具有较高的实用价值。  相似文献   

14.
Citrus peel waste is a valuable lignocellulosic feedstock for bioethanol production due to its richness in fermentable sugars and low lignin content. Citrus peel contains two major value-added products: d-limonene and pectin. d-Limonene is widely used in food, cosmetics, and pharmaceutical industries. However, it acts as a microbial growth inhibitor for yeast during the fermentation process and hence it has to be removed prior to fermentation. Pectin is used as thickening agent, gelling agent, and stabilizer in the food industry. Since pectin increases the viscosity of the fermentation medium and makes fermentation troublesome, it has to be either extracted or degraded into galacturonic acid using pectinase enzyme. Thus, the removal and recovery of both D-limonene and pectin from citrus peel are essential for better fermentation. For bioethanol production, pretreatment plays a crucial role in the utilization of citrus peels since the reduction of d-limonene concentration to less than 0.05% is necessary. This review solely describes the potential of citrus waste for value added products such as d-limonene and pectin and the production of bioethanol from citrus peel waste is discussed in detail.  相似文献   

15.
火龙果果皮色素的提取及稳定性研究   总被引:11,自引:0,他引:11  
研究了火龙果果皮色素提取的最佳条件、提取液的稳定性和各种添加剂对提取液稳定性的影响。  相似文献   

16.
Continuous industrial development increases energy consumption and, consequently, the consumption of fossil fuels. Coal mineral has been used in Brazil as a solid fuel for thermoelectric generators for several years. However, coal exploitation affects the environment intensely, mainly because Brazilian coal contains excess ash and pyrite (iron disulfide). According to the local coal industry syndicate, the average annual coal run per mine is 6 million ton/year; 3.5 million ton/year are rejected and disposed of in landfills. Besides pyrite, Brazilian coal contains Mn, Fe, Cu, Pb, Zn, Ge, Se, and Co. Additionally, the water used for coal beneficiation causes pyrite oxidation, forming an acid mine drainage (AMD). This drainage solubilizes the metals, transporting them into the environment, making treatment a requirement. This work deals with the use of sedimented residue from treated coal mine drainage sludge to obtain inorganic pigments that could be used in the ceramic industry. The residue was dried, ground and calcined ( approximately 1250 degrees C). The calcined pigment was then micronized (D(50) approximately 2mum). Chemical (XRF), thermal (DTA/TG), particle size (laser), and mineralogical (XRD) analyses were carried out on the residue. After calcination and micronization, mineralogical analyses (XRD) were used to determine the pigment structure at 1250 degrees C. Finally, the pigments were mixed with transparent glaze and fired in a laboratory roller kiln (1130 degrees C, 5min). The results were promising, showing that brown colors can be obtained with pigments made by residues.  相似文献   

17.
Kitchen wastes containing high amounts of carbohydrates have potential as low-cost substrates for fermentable sugar production. In this study, enzymatic saccharification of kitchen waste was carried out. Response surface methodology (RSM) was applied to optimize the enzymatic saccharification conditions of kitchen waste. This paper presents analysis of RSM in a predictive model of the combined effects of independent variables (pH, temperature, glucoamylase activity, kitchen waste loading, and hydrolysis time) as the most significant parameters for fermentable sugar production and degree of saccharification. A 100 mL of kitchen waste was hydrolyzed in 250 mL of shake flasks. Quadratic RSM predicted maximum fermentable sugar production of 62.79 g/L and degree of saccharification (59.90%) at the following optimal conditions: pH 5, temperature 60°C, glucoamylase activity of 85 U/mL, and utilized 60 g/L of kitchen waste as a substrate at 10 h hydrolysis time. The verification experiments successfully produced 62.71 ± 0.7 g/L of fermentable sugar with 54.93 ± 0.4% degree of saccharification within 10 h of incubation, indicating that the developed model was successfully used to predict fermentable sugar production at more than 90% accuracy. The sugars produced after hydrolysis of kitchen waste were mainly attributed to monosaccharide: glucose (80%) and fructose (20%). The fermentable sugars obtained were subsequently used as carbon source for bioethanol production by locally isolated yeasts: Saccharomyces cerevisiae, Candida parasilosis, and Lanchancea fermentati. The yeasts were successfully consumed as sugars hydrolysate, and produced the highest ethanol yield ranging from 0.45 to 0.5 g/g and productivity between 0.44 g L–1 h–1 and 0.47 g L–1 h–1 after 24-h incubation, which was equivalent to 82.06–98.19% of conversion based on theoretical yield.  相似文献   

18.
Used paper, a potential resource of alternative energy, can be recycled but mostly it forms a significant component of solid waste. Used office paper, foolscap paper, filter paper and newspaper have been treated with cellulase from Trichoderma reesei and Penicillium funiculosum to bioconvert their cellulose component into sugars. Both non-pretreated and pretreated paper was incubated successively with the two cellulases during four consecutive incubation periods of 1 h each. The amount of sugars released during this sequential treatment was compared with the total sugar produced during a 4 h period of continuous incubation with each enzyme system independently. Pre-treatment milling of paper proved to effectively increase the sugar formation under all incubation conditions. Successive incubation with the two enzyme systems of both non-pretreated and pretreated paper materials was more efficient than the corresponding continuous bioconversion. The highest relative sugar yield was experienced during successive treatment of pretreated materials when T. reesei cellulase initiated the degradation. However, maximum bioconversion of pretreated newspaper was obtained when P. funiculosum initiated degradation. Pretreated foolscap paper was the most susceptible substrate with maximum bioconversion when exposed to both forms of successive cellulase treatment.  相似文献   

19.
The effects of chromate on sulfate uptake and assimilation were investigated in the accumulator Brassica juncea (L.) Czern. Seven-day-old plants were grown for 2 d under the following combination of sulfate and chromate concentration: (i) no sulfate and no chromate (-S), (ii) no sulfate and 0.2 mmol L(-1) chromate (-S +Cr), (iii) 1 mmol L(-1) sulfate and no chromate (+S), or (iv) 1 mmol L(-1) sulfate and 0.2 mmol L(-1) chromate (+S +Cr). Despite the toxic effects exerted by chromate as indicated by altered level of reducing sugars and proteins in leaves, the growth of B. juncea was only weakly reduced by chromate, and no variation in chlorophyll a and b was measured, regardless of S availability. Chromium (Cr) was stored more in roots than in leaves, and the maximum Cr accumulation was measured in -S +Cr plants. The significant decrease of the sulfate uptake rates observed in Cr-treated plants was accompanied by a repression of the root low-affinity sulfate transporter (BjST1), suggesting that the transport of chromate in B. juncea may involve sulfate carriers. Once absorbed, chromate induced genes involved in sulfate assimilation (ATP-sulfurylase: atps6; APS-reductase: apsr2; Glutathione synthethase: gsh2) and accumulation of cysteine and glutathione, which may suggest that these reduced S compounds play a role in Cr tolerance. Together, our findings indicate that when phytoremediation technologies are used to recover Cr-contaminated areas, the concentration of sulfate in the plant growth medium must be considered because it may influence the ability of plants to accumulate and tolerate Cr.  相似文献   

20.
In current work, an optimum solid loading (solid: liquid = 1:20), pH (4.8), temperature (50°C), and enzyme dosing of 20 filter paper unit (amount of enzyme required to release 1 µmol of glucose as reducing sugar from filter paper in per mL per minute) were enumerated for enzymatic hydrolysis of banana stem using cellulase from Trichoderma reesei. Further, inhibition study on enzymatic hydrolysis of banana stem was investigated by the supplementation of monosaccharides (glucose, galactose, mannose, xylose, and arabinose), disaccharide (cellobiose), and inhibitors (acetic acid and furfural obtained from pre-enzymatic hydrolysis steps). Glucose and cellobiose showed inhibitory effect on enzymatic hydrolysis of pretreated banana stem at or above 8 g/L while galactose, mannose, and xylose showed a significant inhibitory effect at or above 4 g/L. Instead of inhibition, arabinose enhanced the enzymatic hydrolysis with increase in total reducing sugars. Acetic acid did not show any significant inhibition while furfural inhibited the system at a comparative low concentration of 2 g/L. Further, scanning electron microscopy analysis was performed to investigate the difference in ultra-structural morphology of raw biomass, pretreated biomass, and biomass obtained after enzymatic hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号