首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Dissolved iodine in sea water, about 60 μg L?1, usually exists in equal proportions as iodate and iodide ions. For their determination several techniques have been proposed (Riley, 1975); among them the volumetric one which depends upon the release of elementary iodine by the addition of acid and iodide ions to the iodate present in the sample. The liberated iodine is titrated with thiosulphate the equivalence point being detected photometrically (Matthews and Riley, 1970; Wong and Brewer, 1974) or it can also be reduced with an excess of thiosulphate and the residual thiosulphate back-titrated with iodate amperometrically (Barkley and Thompson, 1960; Truesdale and Spencer, 1974; Tsonkova and Kulev, 1981). To titrate total iodine in the sample the iodide must be previously oxidized to iodate with bromine (Barkley and Thompson, 1960; Tsonkova and Kulev, 1981) or permanganate (Schnepfe, 1972). In the amperometric procedure Truesdale and Spencer (1974) observed that platinum electrodes often do not respond reliably.  相似文献   

2.
• UV/VUV/I induces substantial H2O2 and IO3 formation, but UV/I does not. • Increasing DO level in water enhances H2O2 and iodate productions. • Increasing pH decreases H2O2 and iodate formation and also photo-oxidation. • The redox potentials of UV/VUV/I and UV/VUV changes with pH changes. • The treatability of the UV/VUV/I process was stronger than UV/VUV at pH 11.0. Recently, a photochemical process induced by ultraviolet (UV), vacuum UV (VUV), and iodide (I) has gained attention for its robust potential for contaminant degradation. However, the mechanisms behind this process remain unclear because both oxidizing and reducing reactants are likely generated. To better understand this process, this study examined the evolutions of hydrogen peroxide (H2O2) and iodine species (i.e., iodide, iodate, and triiodide) during the UV/VUV/I process under varying pH and dissolved oxygen (DO) conditions. Results show that increasing DO in water enhanced H2O2 and iodate production, suggesting that high DO favors the formation of oxidizing species. In contrast, increasing pH (from 6.0 to 11.0) resulted in lower H2O2 and iodate formation, indicating that there was a decrease of oxidative capacity for the UV/VUV/I process. In addition, difluoroacetic acid (DFAA) was used as an exemplar contaminant to verify above observations. Although its degradation kinetics did not follow a constant trend as pH increases, the relative importance of mineralization appeared declining, suggesting that there was a redox transition from an oxidizing environment to a reducing environment as pH rises. The treatability of the UV/VUV/I process was stronger than UV/VUV under pH of 11.0, while UV/VUV process presented a better performance at pH lower than 11.0.  相似文献   

3.
Water samples were taken from 12 stations at El-Dikheila Harbour, El-Mex Bay, Western Harbour, Qayet Bey outfall, Eastern Harbour, El-Ibrahemiya, Gleem, Sidi Bishr and Mandara, during January, April, August and November 1995. the area lies between latitude 31˚ 8' and 31˚ 17' North and longitude 29˚ 47' and 30˚ East. the annual mean of chlorinity (11.69-20.5%0), pH (7.9-8.3), reactive phosphate (0.31-2.24 μM), nitrite (0.18-1.98 μM), oxidizable organic matter (1.97-8.95 mgO2 1-1), iodide (21.14-46.74 μg 1-1) and iodate (4.61-2.04 μg 1-1) were measured. Iodide content in water is three times higher than iodate. Iodide is positively correlated with chlorinity (r=0.65) and iodate (r=0.45), while it is negatively correlated with nitrite (r= -0.72), oxidizable organic matter (r= -0.55) and pH (r= -0.4).  相似文献   

4.
When bromide/iodide is present in source water, hypobromous acid/hypoiodous acid will be formed with addition of chlorine, chloramine, or other disinfectants. Hypobromous acid/hypoiodous acid undergoes reactions with natural organic matter in source water to form numerous brominated/iodinated disinfection byproducts (DBPs). In this study, tap water samples were collected from eight cities in China. With the aid of electrospray ionization-triple quadrupole mass spectrometry by setting precursor ion scans of m/z 35, m/z 81, and m/z 126.9, whole pictures of polar chlorinated, brominated, and iodinated DBPs in the tap water samples were revealed for the first time. Numerous polar halogenated DBPs were detected, including haloacetic acids, newly identified halogenated phenols, and many new/unknown halogenated compounds. Total organic chlorine, total organic bromine, and total organic iodine were also measured to indicate the total levels of all chlorinated, brominated, and iodinated DBPs in the tap water samples. The total organic chlorine concentrations ranged from 26.8 to 194.0 μg·L–1 as Cl, with an average of 109.2 μg·L–1 as Cl; the total organic bromine concentrations ranged from below detection limit to 113.3 μg·L–1 as Br, with an average of 34.7 μg·L–1 as Br; the total organic iodine concentrations ranged from below detection limit to 16.4 μg·L–1 as I, with an average of 9.1 μg·L–1 as I; the total organic halogen concentrations ranged from 31.3 to 220.4 μg·L–1 as Cl, with an average of 127.2 μg·L–1 as Cl.  相似文献   

5.
The occurrence, distribution and nature of ambient thiobacilli along with their ability to oxidize different sulphur species under simulated natural and in vitro culture conditions were studied in the polluted and unpolluted sites of the River Ganga.

Thiobacillus thioparus, T. thiooxidans and T. denitrificans were isolated from the river water. the former two occurred in both polluted and unpolluted sites, while T. denitrificans occurred in polluted areas only. the paper pulp mill effluent discharge area contained the highest population of T. thioparus. the sewage drainage area showed relatively higher populations of T. thiooxidans and T. denitrificans.

The present study revealed that only biological oxidation of either thiosulphate or elemental sulphur occurred in the river water. All the thiobacilli screened oxidized thiosulphate, and three-fourths of them oxidized elemental sulphur. Some strains were found to be very good acidifiers. in spite of such acidification by the ambient thiobacilli, the pH of the river water remained alkaline. the specific rates of thiosulphate (0.18 -0.51 μMmolh-1 mg-1 cell) and sulphur (1.3 - 6.2 Normality day-1 mg-1 biomass) oxidations under simulated natural condition were found to be higher in polluted areas when compared with the unpolluted one (sulphur: 0.8 - 1.0 Normality day-1 mg-1).

Further, addition of thiouslphate or elemental sulphur in the river water in simulated in vitro condition resulted in the increase of respective oxidation rates. the variations in the natae of pollutants discharged into the river water influenced the oxidation rate of thiosulphate or sulphur.  相似文献   

6.
A spectrophotometric procedure for the anionic diazo dye Congo red was proposed based on nanosilver catalyzed oxidation by potassium iodate in a hydrochloric acid medium. The calibration graph is linear for 0.8–240?mg?L?1, and the detection limit is 0.6?mg?L?1. Most foreign ions do not interfere with the determination, except for Cu(II), Fe(III), and Cr(VI). The interferences of Cu(II) and Fe(III) could be eliminated by masking with ethylene diamine tetraacetate, and that of Cr(VI) by reducing to Cr(III) with ascorbic acid. The typical features of this procedure are that it is sensitive for Congo red, and the determination could be carried out at room temperature. It had been used for the determination of Congo red in the Ganjnameh river water sample.  相似文献   

7.
● Status of inactivation of pathogenic microorganisms by SO4•− is reviewed. ● Mechanism of SO4•− disinfection is outlined. ● Possible generation of DBPs during disinfection using SO4•− is discussed. ● Possible problems and challenges of using SO4•− for disinfection are presented. Sulfate radicals have been increasingly used for the pathogen inactivation due to their strong redox ability and high selectivity for electron-rich species in the last decade. The application of sulfate radicals in water disinfection has become a very promising technology. However, there is currently a lack of reviews of sulfate radicals inactivated pathogenic microorganisms. At the same time, less attention has been paid to disinfection by-products produced by the use of sulfate radicals to inactivate microorganisms. This paper begins with a brief overview of sulfate radicals’ properties. Then, the progress in water disinfection by sulfate radicals is summarized. The mechanism and inactivation kinetics of inactivating microorganisms are briefly described. After that, the disinfection by-products produced by reactions of sulfate radicals with chlorine, bromine, iodide ions and organic halogens in water are also discussed. In response to these possible challenges, this article concludes with some specific solutions and future research directions.  相似文献   

8.
The Clyde Estuary is recognised as an important area for overwintering flocks of ducks and waders (Smyth et al., 1974. Here we draw attention to some of the spatial and temporal variations in the invertebrate populations on which these birds feed. Smyth et al. (1977) discuss possible relationships between the bird populations and their invertebrate prey. A 12-month survey, 1976-77, provides the main information on numbers of feeding birds (Halliday, 1978), complemented by sampling over the estuarine flats for invertebrate prey species and for chemical environmental factors: salinity, organic carbon, organic nitrogen, dissolved oxygen, as well as sediment grades. Although there is no constant monitoring shceme for the estuarine flats, a series of surveys provide data over the period 1973-1981.  相似文献   

9.
Ultraviolet (UV) spectroscopy is a valid surrogate for monitoring the formation of disinfection by-products (DBPs). Sodium thiosulphate is commonly used to remove disinfectant residual. However, it produces interferences with absorbance in the UV region. Relationship between trihalomethane (THM) formation and differential UV absorbance (−ΔA λ ) was explored in the presence of sodium thiosulphate. Chlorination of two synthetic and five natural waters was carried out. Sodium thiosulphate showed high UV absorption at 254 nm. This effect can be overcome selecting a higher wavelength. Optimum wavelength varied being about 290 nm for fulvic acid and 300 nm for humic acid type natural organic matter. Correlation between THMs formation and −ΔA λ was linear for all the analysed samples. Regression curves do not pass through zero indicating the existence of a threshold absorbance decreasment. Once it is surpassed THM release begins. Chlorination of surface waters showed that the presence of bromide significantly increases THMs vs. −ΔA λ slope. Furthermore, slope decreased with the aromaticity–hydrophobicity of organic matter.  相似文献   

10.
This paper addresses two important issues for large Mediterranean city regions: the differential impact of compact urban ‘growth’ and low-density ‘sprawl’ on land cover changes (LCCs), and their final effect on changing land cover relationships (LCRs). The urban expansion of Rome (Italy) during the last 50 years and the related LCCs were investigated as a paradigmatic example of compact versus dispersed urban development. LCCs were assessed over 5 years (1960, 1974, 1990, 2000, 2006) by analysing diachronically the distribution of 12 land cover categories derived from digital land cover maps covering the entire Nuts-3 prefecture of Rome (5353 km2). LCRs were studied using multi-way data analysis. LCCs were found to have relative differences during ‘growth’ (1960–1990) and ‘sprawl’ (1990–2006) phases. Conversion to urban land uses concentrated in the 1960s and 1970s at the urban fringe, while expanding progressively far from the city in the 1990s and 2000s. During the ‘growth’ phase, the land cover classes with the highest probability of being converted to urban uses were arable lands, annual crops, vineyards and pastures. During the ‘sprawl’ phase, olive groves, orchards and forest surfaces also decreased due to the development of low-density built-up areas and infrastructure. Planning suggestions aimed at mitigating the alteration of the rural landscape through sprawl conditions are discussed.  相似文献   

11.
Nitrate and ammonium uptake rates were measured for three year-classes of the perennial macrophyte Laminaria groenlandica Rosenvinge, collected from nitrogen-depleted waters in Barkley Sound, British Columbia, Canada, in summer 1981. A time course of uptake rate revealed that ammonium uptake was high during the first hour and then decreased for all three year-classes; the opposite pattern was exhibited for the time course of nitrate uptake rate. Nitrate uptake rate increased linearly with nitrate concentration up to the highest level tested (60 M). The nitrate uptake rate of first-year plants was three times higher than second- and third-year plants; ammonium uptake rates showed similar patterns to those for nitrate. The interaction between nitrate and ammonium was examined for first-year plants. Nitrate and ammonium were taken up simultaneously and uptake rates were identical and equal to uptake rates when only nitrate or ammonium was present in the medium. Therefore, first-year plants are able to take up twice as much inorganic nitrogen per unit time when both nitrate and ammonium are present. First-year plants showed significant diel periodicity in ammonium uptake rates, whereas second- and third-year plants showed no periodicity in nitrate or ammonium uptake rates.  相似文献   

12.
Radioactive iodide (125I) is used as a tracer to investigate the fate and transport of iodine in soil under various leaching conditions as well as the dynamic transfer in a soil–plant (Chinese cabbage) system. Results show that both soils (the paddy soil and the sandy soil) exhibit strong retention capability, with the paddy soil being slightly stronger. Most iodine is retained by soils, especially in the top 10 cm, and the highest concentration occurs at the top most section of the soil columns. Leaching with 1–2 pore volume water does not change this pattern of vertical distributions. Early breakthrough and long tailing are two features observed in the leaching experiments. Because of the relatively low peak concentration, the early breakthrough is really not an environmental concern of contamination to groundwater. The long tailing implies that the retained iodine is undergoing slow but steady release and the soils can provide a low but stable level of mobile iodine after a short period. The enrichment factors of 125I in different plant tissues are ranked as: root > stem > petiole > leaf, and the 125I distribution in the young leaves is obviously higher than that in the old ones. The concentrations of 125I in soil and Chinese cabbage can be simulated with a dual-chamber model very well. The biogeochemical behaviors of iodine in the soil-cabbage system show that cultivating iodized cabbage is an environmentally friendly and effective technique to eliminate iodine deficiency disorders (IDD). Planting vegetables such as cabbage on the 129I-contaminated soil could be a good remediation technique worthy of consideration.  相似文献   

13.
We developed a cost-effective and sensitive spectrophotometric method for the determination of arsenic at trace level using a new reagent, leuco malachite green. Here we show that, arsenic reacts with potassium iodate in acidic conditions to liberate iodine, and the liberated iodine selectively oxidizes leuco malachite green to malachite green dye. We studied the Beer’s law at 617 nm, which showed linearity over the concentration range 0.09–0.9 μg ml−1 of arsenic. We show that the molar absorptivity, Sandell’s sensitivity and detection limit of the method are 6.1 × 104 l mol−1 cm−1, 0.0012 μg cm−2 and 0.025 μg ml−1, respectively. We applied the developed method for the determination of arsenic in environmental samples.  相似文献   

14.
Fresh straw burning (SB) particles were generated in the laboratory by the combustion of rice straw and corn straw. The chemical composition and mixing state of the fresh SB particles were investigated by an Aerosol Time-of-Flight Mass Spectrometer (ATOFMS). Based on the mass spectral patterns, the SB particles were clustered into four major types: Salt, Organic Carbon (OC), Elemental Carbon (EC), and internally mixed particles of EC and OC (EC-OC). In addition, particles containing ash, polycyclic aromatic hydrocarbons, heavy metals or nicotine were also observed. Physical and chemical changes of the SB particles immediately after the emission were analyzed with highly time-resolved data. During the aging processes, the average particle size increased steadily. Freshly emitted organic compounds were gradually oxidized to more oxygenated compounds in the OC-containing particles. Meanwhile, an important displacement reaction (2KCl+ SO42→ K2SO4 + 2Cl) was observed. The marker ions for SB particles were optimized and applied to identify the SB particles in the ambient atmosphere. The fluctuation of the number fraction of ambient SB particles sorted by ATOFMS agrees well with that of water soluble K+ measured by an online ion chromatography, demonstrating that the optimized marker ions could be good tracers for SB particles in field measurements.  相似文献   

15.
• Forward osmosis (FO) coupled with chemical softening for CCI ROC minimization • Effective removal of scale precursor ions by lime-soda ash softening • Enhanced water recovery from 54% to 86% by mitigation of FO membrane scaling • High-purity CaCO3 was recovered from the softening sludge • Membrane cleaning efficiency of 88.5% was obtained by EDTA for softened ROC Reverse osmosis (RO) is frequently used for water reclamation from treated wastewater or desalination plants. The RO concentrate (ROC) produced from the coal chemical industry (CCI) generally contains refractory organic pollutants and extremely high-concentration inorganic salts with a dissolved solids content of more than 20 g/L contributed by inorganic ions, such as Na+, Ca2+, Mg2+, Cl, and SO42. To address this issue, in this study, we focused on coupling forward osmosis (FO) with chemical softening (FO-CS) for the volume minimization of CCI ROC and the recovery of valuable resources in the form of CaCO3. In the case of the real raw CCI ROC, softening treatment by lime-soda ash was shown to effectively remove Ca2+/Ba2+ (>98.5%) and Mg2+/Sr2+/Si (>80%), as well as significantly mitigate membrane scaling during FO. The softened ROC and raw ROC corresponded to a maximum water recovery of 86% and 54%, respectively. During cyclic FO tests (4 × 10 h), a 27% decline in the water flux was observed for raw ROC, whereas only 4% was observed for softened ROC. The cleaning efficiency using EDTA was also found to be considerably higher for softened ROC (88.5%) than that for raw ROC (49.0%). In addition, CaCO3 (92.2% purity) was recovered from the softening sludge with an average yield of 5.6 kg/m3 treated ROC. This study provides a proof-of-concept demonstration of the FO-CS coupling process for ROC volume minimization and valuable resources recovery, which makes the treatment of CCI ROC more efficient and more economical.  相似文献   

16.
黄通  杨池  张春燕  章炎麟 《环境化学》2021,40(2):624-631
左旋葡聚糖(LG)被广泛作为生物质燃烧的示踪剂.然而,近年来研究表明左旋葡聚糖在大气中不稳定而会发生光降解.此外,对于大气中含量较高的SO42-、NO3-、NO2-无机离子对LG光解的影响罕有报到.为此,本文模拟了液相中SO42-、NO3-、NO2-对LG光氧化行为的影响.结果表明,Na2SO4、NaNO3、NaNO2条件下LG光解速率常数分别为0.208、0.182、0.165 min-1,均低于对照组(0.266 min-1),这表明无机离子的存在会减缓LG光降解速率.此外,这3种无机离子对LG光解产物中的低分子脂肪酸分布,甲酸/乙酸(C1/C2)比率均有重要的影响.其中,SO42-存在下产物中戊二酸较多、NO3-存在下产物中甲酸较多、NO2-存在下产物中乙酸较多;NO2-存在下产物中的C1/C2比率小于1与一般二次源中的C1/C2比率不一致,这表明由单一反应引起的C1/C2并不总是大于1.这些结果对于我们深刻理解大气液相中的有机物转化具有重要的参考价值.  相似文献   

17.
Batch experiments were conducted to study the short-term biological effects of rare earth ions (La3+, Ce3+) and their mixture on the nitrogen removal in a sequencing batch reactor (SBR). The data showed that higher NH+4―N removal rate, total inorganic nitrogen removal efficiency, and denitrification efficiency were achieved at lower concentrations of rare earth elements (REEs) (<1mg/L). In the first hour of the aeration stage of SBR, the presence of REEs increased the total inorganic nitrogen removal efficiency and NH+4―N removal efficiency by 15.7% and 10%―15%, respectively. When the concentrations of REEs were higher than 1mg/L, the total inorganic nitrogen removal efficiency decreased, and nitrate was found to accumulate in the effluent. When the concentrations of REEs was up to 50.0mg/L, the total inorganic nitrogen removal efficiency was less than 30% of the control efficiency with a high level of nitrate. Lower concentrations of REEs were found to accelerate the nitrogen conversion and removal in SBR.  相似文献   

18.
• Pore structure affects biologically activated carbon performance. • Pore structure determines organic matter (OM) removal mechanism. • Microbial community structure is related to pore structure and OM removal. Optimizing the characteristics of granular activated carbon (GAC) can improve the performance of biologically activated carbon (BAC) filters, and iodine value has always been the principal index for GAC selection. However, in this study, among three types of GAC treating the same humic acid-contaminated water, one had an iodine value 35% lower than the other two, but the dissolved organic carbon removal efficiency of its BAC was less than 5% away from the others. Iodine value was found to influence the removal of different organic fractions instead of the total removal efficiency. Based on the removal and biological characteristics, two possible mechanisms of organic matter removal during steady-state were suggested. For GAC with poor micropore volume and iodine value, high molecular weight substances (3500–9000 Da) were removed mainly through degradation by microorganisms, and the biodegraded organics (soluble microbial by-products,<3500 Da) were released because of the low adsorption capacity of activated carbon. For GAC with higher micropore volume and iodine value, organics with low molecular weight (<3500 Da) were more easily removed, first being adsorbed by micropores and then biodegraded by the biofilm. The biomass was determined by the pore volume with pore diameters greater than 100 μm, but did not correspond to the removal efficiency. Nevertheless, the microbial community structure was coordinate with both the pore structure and the organic removal characteristics. The findings provide a theoretical basis for selecting GAC for the BAC process based on its pore structure.  相似文献   

19.
The competitive adsorption and desorption of Pb(II) and Cu(II) ions in the soil of three sites in North China were investigated using single and binary metal solutions with 0.01 mol·L-1 CaCl2 as background electrolyte. The desorption isotherms of Pb(II) and Cu(II) were similar to the adsorption isotherms, which can be fitted well by Freundlich equation (R2>0.96). The soil in the three sites had greater sorption capacities for Pb(II) than Cu(II), which was affected strongly by the soil characteristics. In the binary metal solution containing 1∶1 molar ratio of Pb(II) and Cu(II), the total amount of Pb(II) and Cu(II) adsorption was affected by the simultaneous presence of the two metal ions, indicating the existence of adsorption competition between the two metal ions. Fourier transform infrared (FT-IR) spectroscopy was used to investigate the interaction between soil and metal ions, and the results revealed that the carboxyl and hydroxyl groups in the soil were the main binding sites of metal ions.  相似文献   

20.
在田间条件下,研究添加硫代硫酸铵对黄平大黄油菜(Brassica juncea var.HPDH)富集土壤汞(总汞含量13.7mg·kg-1)及土壤汞形态转化影响。试验设置2个处理,对照小区(无硫代硫酸铵)和处理小区(每公斤土壤加入8 g硫代硫酸铵),硫代硫酸铵溶液在植物收获前7 d添加到土壤。试验结束后,分析植物生物量和组织内汞含量。结果表明,硫代硫酸铵处理小区植物生物量(干重)要略高于对照区。硫代硫酸铵处理小区植物根系和地上部分汞含量分别是对照区的600和250倍。利用连续化学浸提法分析了修复前后土壤汞形态变化特征,发现硫代硫酸铵辅助植物修复后能显著降低土壤有机结合态汞含量,大幅度提高残渣态汞含量,溶解态与可交换态汞含量略有增加,特殊吸附态和铁锰氧化态汞含量无显著变化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号