首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Habitat translocation is the process of moving soils or substrates with their vegetation and any animals that remain associated with them in order to rescue or salvage habitats that would be lost due to changes in land use, or to restore biodiversity to damaged, degraded or newly created sites. Critical factors are similarity in the environmental context of the donor and receptor sites, the translocation technique, and habitat management of the translocated habitat. These critical factors should be taken into account in such a way that the risk of unwanted changes to a habitat due to translocation is reduced to a level that takes account of its nature conservation value. Long-term habitat management and monitoring schemes need to be implemented fully to obtain the biodiversity benefits of translocation. Evaluation of the degree of success or failure against the original aims of the translocation project over a defined period of time requires objective criteria and repeatable measurements that can be confirmed independently of the project team. Codes of best practice covering guidelines and standards for habitat translocation are required which will benefit both business and industry and the planning and regulatory authorities.  相似文献   

2.
Habitat re-creation is one of the multiple faces of biodiversity restoration and encompasses the attempts to reconstruct an ecosystem on severely disturbed sites with little left to restore. Afforestation of abandoned or marginal agricultural land is an important tool for the re-creation of forest ecosystems and re-establishment of functional habitat networks for the maintenance of biodiversity. This study was performed in the context of the Danish-Lithuanian project ‘Afforestation of abandoned agricultural land based on sustainable land use planning and environmentally sound forest management’. The study assessed how habitat re-creation as designed in alternative afforestation plans for two administrative regions in Lithuania will affect the functionality of the landscapes for bird species of conservation concern. Spatial analysis of the forest cover was performed under existing and proposed conditions using general landscape ecological principles concerning core and edge habitats as well as nearest-neighbour metrics. The results show that the use of general criteria may result in proportionally negative changes in the availability of some forest habitats relative to changes in total forest cover, thus leading to less significant improvements in the habitats of many naturally occurring (and even protected) species compared to what would be expected from changes in forest cover alone. To solve this dilemma it is suggested that the requirements of focal species and quantitative conservation objectives should be considered in a spatially explicit – each main forest type. It is concluded that to ensure functionality of habitat networks, knowledge and experience from the fields of landscape ecology and conservation biology should be more commonly incorporated into afforestation planning.  相似文献   

3.
The use of terrestrial and aquatic invertebrates as a management tool for monitoring change in ecosystems is reviewed and critically evaluated. Their suitability and value for assessing a range of environmental problems from pollution impacts, through habitat evaluation for conservation to the long-term degradation and recovery of ecosystems, is critically discussed. Guidelines are provided for the choice of appropriate bioindicators. Examples of the use of a broad spectrum of invertebrates to assess a variety of environmental problems are summarized. The particular potential of invertebrates for monitoring montane ecosystems is highlighted.  相似文献   

4.
This study assessed the relationship among land use, riparian vegetation, and avian populations at two spatial scales. Our objective was to compare the vegetated habitat in riparian corridors with breeding bird guilds in eight Rhode Island subwatersheds along a range of increasing residential land use. Riparian habitats were characterized with fine-scale techniques (used field transects to measure riparian vegetation structure and plant species richness) at the reach spatial scale, and with coarse-scale landscape techniques (a Geographic Information System to document land-cover attributes) at the subwatershed scale. Bird surveys were conducted in the riparian zone, and the observed bird species were separated into guilds based on tolerance to human disturbance, habitat preference, foraging type, and diet preference. Bird guilds were correlated with riparian vegetation metrics, percent impervious surface, and percent residential land use, revealing patterns of breeding bird distribution. The number of intolerant species predominated below 12% residential development and 3% impervious surface, whereas tolerant species predominated above these levels. Habitat guilds of edge, forest, and wetland bird species correlated with riparian vegetation. This study showed that the application of avian guilds at both stream reach and subwatershed scales offers a comprehensive assessment of effects from disturbed habitat, but that the subwatershed scale is a more efficient method of evaluation for environmental management.  相似文献   

5.
Degradation of warmwater streams in agricultural landscapes is a pervasive problem, and reports of restoration effectiveness based on monitoring data are rare. Described is the outcome of rehabilitation of two deeply incised, unstable sand-and-gravel-bed streams. Channel networks of both watersheds were treated using standard erosion control measures, and aquatic habitats within 1-km-long reaches of each stream were further treated by addition of instream structures and planting woody vegetation on banks (“habitat rehabilitation”). Fish and their habitats were sampled semiannually during 1–2 years before rehabilitation, 3–4 years after rehabilitation, and 10–11 years after rehabilitation. Reaches with only erosion control measures located upstream from the habitat measure reaches and in similar streams in adjacent watersheds were sampled concurrently. Sediment concentrations declined steeply throughout both watersheds, with means ≥40% lower during the post-rehabilitation period than before. Physical effects of habitat rehabilitation were persistent through time, with pool habitat availability much higher in rehabilitated reaches than elsewhere. Fish community structure responded with major shifts in relative species abundance: as pool habitats increased after rehabilitation, small-bodied generalists and opportunists declined as certain piscivores and larger-bodied species such as centrarchids and catostomids increased. Reaches without habitat rehabilitation were significantly shallower, and fish populations there were similar to the rehabilitated reaches prior to treatment. These findings are applicable to incised, warmwater streams draining agricultural watersheds similar to those we studied. Rehabilitation of warmwater stream ecosystems is possible with current knowledge, but a major shift in stream corridor management strategies will be needed to reverse ongoing degradation trends. Apparently, conventional channel erosion controls without instream habitat measures are ineffective tools for ecosystem restoration in incised, warmwater streams of the Southeastern U.S., even if applied at the watershed scale and accompanied by significant reductions in suspended sediment concentration.  相似文献   

6.
The New South Wales Government recently introduced the Native Vegetation Conservation Act to protect the native grassland and woodland of the state. The Act protects biodiversity by preventing farmers from clearing such vegetation on their properties but, as a consequence, reduces farm incomes and land values. An economic model of the relationship between land value and percentage of farm in native vegetation is integrated with an ecological model of the relationship between species lost and percentage of the farms in native vegetation. The integrated framework is applied to estimate the opportunity costs of the Act for one important agricultural area of the state, the northern part of the Brigalow Belt South Bio-Region. If all the vegetation were protected, the reduction in land value would be at least 14.3%, which is an opportunity cost of at least 148.5 dollars m for the area. Both the benefits and costs of biodiversity protection must be accounted for, so risk simulations are then combined with benefit-cost analysis to compare the benefits of biodiversity protection to these costs.  相似文献   

7.
Riparian zones are deemed significant due to their interception capability of non-point source impacts and the maintenance of ecosystem integrity region wide. To improve classification and change detection of riparian buffers, this paper developed an evolutionary computational, supervised classification method--the RIparian Classification Algorithm (RICAL)--to conduct the seasonal change detection of riparian zones in a vast semi-arid watershed, South Texas. RICAL uniquely demonstrates an integrative effort to incorporate both vegetation indices and soil moisture images derived from LANDSAT 5 TM and RADARSAT-1 satellite images, respectively. First, an estimation of soil moisture based on RADARSAT-1 Synthetic Aperture Radar (SAR) images was conducted via the first-stage genetic programming (GP) practice. Second, for the statistical analyses and image classification, eight vegetation indices were prepared based on reflectance factors that were calculated as the response of the instrument on LANDSAT. These spectral vegetation indices were then independently used for discriminate analysis along with soil moisture images to classify the riparian zones via the second-stage GP practice. The practical implementation was assessed by a case study in the Choke Canyon Reservoir Watershed (CCRW), South Texas, which is mostly agricultural and range land in a semi-arid coastal environment. To enhance the application potential, a combination of Iterative Self-Organizing Data Analysis Techniques (ISODATA) and maximum likelihood supervised classification was also performed for spectral discrimination and classification of riparian varieties comparatively. Research findings show that the RICAL algorithm may yield around 90% accuracy based on the unseen ground data. But using different vegetation indices would not significantly improve the final quality of the spectral discrimination and classification. Such practices may lead to the formulation of more effective management strategies for the handling of non-point source pollution, bird habitat monitoring, and grazing and live stock management in the future.  相似文献   

8.
We investigated the type and extent of degradation at three sites on the Agulhas Plain, South Africa: an old field dominated by the alien grass Pennisetum clandestinum Pers. (kikuyu), an abandoned Eucalyptus plantation, and a natural fynbos community invaded by nitrogen fixing—Australian Acacia species. These forms of degradation are representative of many areas in the region. By identifying the nature and degree of ecosystem degradation we aimed to determine appropriate strategies for restoration in this biodiversity hotspot. Vegetation surveys were conducted at degraded sites and carefully selected reference sites. Soil-stored propagule seed banks and macro- and micro-soil nutrients were determined. Species richness, diversity and native cover under Eucalyptus were extremely low compared to the reference site and alterations of the soil nutrients were the most severe. The cover of indigenous species under Acacia did not differ significantly from that in reference sites, but species richness was lower under Acacia and soils were considerably enriched. Native species richness was much lower in the kikuyu site, but soil nutrient status was similar to the reference site. Removal of the alien species alone may be sufficient to re-initiate ecosystem recovery at the kikuyu site, whereas active restoration is required to restore functioning ecosystems dominated by native species in the Acacia thicket and the Eucalyptus plantation. To restore native plant communities we suggest burning, mulching with sawdust and sowing of native species.  相似文献   

9.
Corporations own approximately 25% of all private land in the United States and, therefore, play an essential role in protecting biodiversity and maintaining natural habitats. The Wildlife Habitat Council (WHC) is a unique joint venture between conservation organizations and corporations to utilize corporate lands for ensuring biodiversity. The following case studies demonstrate how corporations have helped ensure healthy ecosystems and provided critical leadership in regional efforts. Amoco Chemical Company's Cooper River Plant has been instrumental in developing a cooperative project that involves numerous corporations, plantation owners, private citizens, nonprofit organizations, government agencies, and community groups to develop a comprehensive, ecosystem-based management plan for part of the Cooper River in Charleston, South Carolina, USA. The second case focuses on the Morie Company, a national sand quarry operator headquartered in southern New Jersey, USA. Morie Company is working with WHC, community groups, the Pinelands Commission, and other state regulatory agencies to explore sustainable development opportunities for companies within the Pinelands regulations. The third case takes us to DuPont Company's Asturias, Spain, site. A win—win success story of improved habitat and cost savings is the result of DuPont's concern for the environment, ability to work with a variety of groups, and willingness to consider innovative restoration techniques. The fourth case discusses Consumers Power Company's Campbell Plant in West Olive, Michigan, USA. In addition to implementing projects that contribute to biodiversity, Consumers Power has developed an environmental education field station to teach others about the importance of natural habitats. The final case highlights Baltimore Gas & Electric Company's efforts to maintain habitat for endangered species at their Calvert Cliffs site in Maryland.  相似文献   

10.
The European Habitats Directive 92/43/EEC has defined the need for the conservation of habitats and species with the adoption of appropriate measures. Within the Natura 2000 ecological network of special areas of conservation, natural habitats will be monitored to ensure the maintenance or restoration of their composition, structure and extent. The European Space Agency's GlobWetland project has provided remotely sensed products for several Ramsar wetlands worldwide, such as detailed land cover-land use, water cycle and inundated vegetation maps. This paper presents the development and testing of an operational methodology for updating a wetland's habitat map using the GlobWetland products, and the evaluation of the extent to which GlobWetland products have contributed to the habitat map updating. The developed methodology incorporated both automated and analyst-supervised techniques to photo-interpret, delineate, refine, and evaluate the updated habitat polygons. The developed methodology was proven successful in its application to the wetland complex of the Axios-Loudias-Aliakmon delta (Greece). The resulting habitat map met the European and Greek national requirements. Results revealed that GlobWetland products were a valuable contribution, but source data (enhanced satellite images) were necessary to discriminate spectrally similar habitats. Finally, the developed methodology can be modified for original habitat mapping.  相似文献   

11.
A habitat monitoring programme, the Northern Ireland Countryside Survey, carried out by the University of Ulster for the Department of the Environment for Northern Ireland, is described. It was based on a random sample of quarter kilometer grid squares, stratified by multivariate land classification. Estimates of change in habitat area between 1987-1992 and 1998 are presented and used to assess policy-related priorities for biodiversity conservation action in widespread habitats in Northern Ireland (NI). The basis of the assessment is Broad Habitats, a classification developed as part of the United Kingdom (UK) Biodiversity Action Plan. Improved Grassland, Neutral Grassland and Bog Broad Habitats occupy the largest area of NI, which holds a large proportion of the UK Neutral Grassland and Fen Marsh and Swamp Broad Habitat resource. The greatest net area increases with time were in Improved Grassland (33%), Coniferous Woodland (12%) and Broadleaved, Mixed and Yew Woodland (9%). The greatest net area decreases were in Neutral Grassland (-32%), Arable and Horticulture (-25%), Fen, Marsh and Swamp (-19%), Bog (-8%) and Calcareous Grassland (-7%). These changes are a function of agriculture, public and private forestry, building construction and peat cutting for fuel. The Key biodiversity issue is seminatural Broad Habitat loss, in particular, Neutral Grassland and Fen, Marsh and Swamp, highlighting the lack of effective action for protecting biodiversity in the countryside as a whole. The extent to which current land use is shown to be driving change, indicates that biodiversity conservation action through implementing landscape-scale agri-environment measures could deliver major biodiversity gains. The reliable information on recent changes, provided by the Northern Ireland Countryside Survey, has been used to guide conservation planning. Future re-survey will allow the effectiveness of the conservation strategy as it applies to the countryside as a whole, to be determined. As decisions on land use increasingly have a strong European dimension, concerted action for protecting biodiversity in the countryside as a whole is needed. This would be promoted by a structured sampling approach, based on standard habitat mapping procedures.  相似文献   

12.
As human influences fragment native communities and ecosystems, remaining land must be better managed to conserve many elements of biodiversity. Much of this land is privately held, yet traditional private land-use management practices often further diminish biodiversity by promoting favored or edge-adapted species. Today, private land stewards are increasingly aware of and concerned about biodiversity, but little guidance exists for them to make land-use decisions incorporating principles and knowledge from conservation biology. Consequently, most management strategies are highly subjective. This article addresses that problem by introducing current conservation wisdom to management and use of private lands. The result is a model program for developing land management plans, with the goal of maintaining viable populations and natural distributions of native species and communities from a landscape perspective. The program establishes a protocol for classifying sites according to the importance of their species, communities, and other elements to global and regional biodiversity. These site classifications are based on the management objectives necessary to maintain important elements. Once managers classify a site, the program provides management standards, general stewardship principles, examples of land management strategies, and basic monitoring and evaluation procedures.  相似文献   

13.
The Southeastern United States is a global center of freshwater biotic diversity, but much of the regions aquatic biodiversity is at risk from stream degradation. Nonpoint pollution sources are responsible for 70% of that degradation, and controlling nonpoint pollution from agriculture, urbanization, and silviculture is considered critical to maintaining water quality and aquatic biodiversity in the Southeast. We used an ecological risk assessment framework to develop vulnerability models that can help policymakers and natural resource managers understand the impact of land cover changes on water quality in North Carolina. Additionally, we determined which landscape characteristics are most closely associated with macroinvertebrate community tolerance of stream degradation, and therefore with lower-quality water. The results will allow managers and policymakers to weigh the risks of management and policy decisions to a given watershed or set of watersheds, including whether streamside buffer protection zones are ecologically effective in achieving water quality standards. Regression analyses revealed that landscape variables explained up to 56.3% of the variability in benthic macroinvertebrate index scores. The resulting vulnerability models indicate that North Carolina watersheds with less forest cover are at most risk for degraded water quality and steam habitat conditions. The importance of forest cover, at both the watershed and riparian zone scale, in predicting macrobenthic invertebrate community assemblage varies by geographic region of the state.  相似文献   

14.
Worldwide there is a declining trend in natural fish catch (FAO, The state of world fisheries and aquaculture. , 2002) and Bangladesh is no exception. The vast inland fisheries of Bangladesh have been declining over the years, largely a result of human alteration of the aquatic habitats arising from human interventions in the floodplain systems such as the establishment of water control structures which favor agricultural production but reduce fish habitats. It can be assumed that conventional management measures are not adequate to conserve natural fisheries and exploring alternative knowledge systems to complement existing management is warranted. This paper focuses on local ecological knowledge and several other local practices held by fishers engaging directly with floodplain ecosystems. These knowledge systems and practices may be valuable tools for understanding ecosystems processes and related changes and developing local level responses to avert negative consequences of such changes. This may help in devising alternatives to ecosystem management and the conservation of floodplain fish habitats of Bangladesh and elsewhere in the world. This study was conducted in a natural depression (locally called beel) and its surrounding floodplain system located in north central Bangladesh which has become highly degraded. The results of the study indicate that the fishers and local users of the floodplain ecosystems are rich in local ecological knowledge concerning the hydrology of the floodplains and small lakes, the habitat preferences of fish, the role of agricultural crops on fish habitats, and the impact of habitat human interventions in aquatic ecosystems. Given the apparent inadequacy of the present management regime, this article argues for an inclusion of local knowledge and practices into habitat management as a more holistic approach to floodplain habitat restoration and conservation that encourages multi-level cooperation and which builds on diversified knowledge systems.  相似文献   

15.
In many semi-arid environments of Mediterranean ecosystems, white poplar (Populus alba L.) is the dominant riparian tree and has been used to recover degraded areas, together with other native species, such as ash (Fraxinus angustifolia Vahl.) and hawthorn (Crataegus monogyna Jacq.). We addressed three main objectives: (1) to gain an improved understanding of some specific relationships between environmental parameters and leaf-level physiological factors in these riparian forest species, (2) to compare the leaf-level physiology of these riparian species to each other, and (3) to compare leaf-level responses within native riparian plots to adjacent restoration plots, in order to evaluate the competence of the plants used for the recovery of those degraded areas. We found significant differences in physiological performance between mature and young white poplars in the natural stand and among planted species. The net assimilation and transpiration rates, diameter, and height of white poplar plants were superior to those of ash and hawthorn. Ash and hawthorn showed higher water use efficiency than white poplar. White poplar also showed higher levels of stomatal conductance, behaving as a fast-growing, water-consuming species with a more active gas exchange and ecophysiological competence than the other species used for restoration purposes. In the restoration zones, the planted white poplars had higher rates of net assimilation and water use efficiency than the mature trees in the natural stand. We propose the use of white poplar for the rapid restoration of riparian vegetation in semi-arid Mediterranean environments. Ash and hawthorn can also play a role as accompanying species for the purpose of biodiversity.  相似文献   

16.
The gopher tortoise (Gopherus polyphemus) is protected by conservation policy throughout its range. Efforts to protect the species from further decline demand detailed understanding of its habitat requirements, which have not yet been rigorously defined. Current methods of identifying gopher tortoise habitat typically rely on coarse soil and vegetation classifications, and are prone to over-prediction of suitable habitat. We used a logistic resource selection probability function in an information-theoretic framework to understand the relative importance of various environmental factors to gopher tortoise habitat selection, drawing on nationwide environmental datasets, and an existing tortoise survey of the Ft. Benning military base. We applied the normalized difference vegetation index (NDVI) as an index of vegetation density, and found that NDVI was strongly negatively associated with active burrow locations. Our results showed that the most parsimonious model included variables from all candidate model types (landscape features, topography, soil, vegetation), and the model groups describing soil or vegetation alone performed poorly. These results demonstrate with a rigorous quantitative approach that although soil and vegetation are important to the gopher tortoise, they are not sufficient to describe suitable habitat. More widely, our results highlight the feasibility of constructing highly accurate habitat suitability models from data that are widely available throughout the species’ range. Our study shows that the widespread availability of national environmental datasets describing important components of gopher tortoise habitat, combined with existing tortoise surveys on public lands, can be leveraged to inform knowledge of habitat suitability and target recovery efforts range-wide.  相似文献   

17.
We explored relationships of water quality parameters with landscape pattern metrics (LPMs), land use-land cover (LULC) proportions, and the advanced very high resolution radiometer (AVHRR) normalized difference vegetation index (NDVI) or NDVI-derived metrics. Stream sites (271) in Nebraska, Kansas, and Missouri were sampled for water quality parameters, the index of biotic integrity, and a habitat index in either 1994 or 1995. Although a combination of LPMs (interspersion and juxtaposition index, patch density, and percent forest) within Ozark Highlands watersheds explained >60% of the variation in levels of nitrite-nitrate nitrogen and conductivity, in most cases the LPMs were not significantly correlated with the stream data. Several problems using landscape pattern metrics were noted: small watersheds having only one or two patches, collinearity with LULC data, and counterintuitive or inconsistent results that resulted from basic differences in land use-land cover patterns among ecoregions or from other factors determining water quality. The amount of variation explained in water quality parameters using multiple regression models that combined LULC and LPMs was generally lower than that from NDVI or vegetation phenology metrics derived from time-series NDVI data. A comparison of LPMs and NDVI indicated that NDVI had greater promise for monitoring landscapes for stream conditions within the study area.  相似文献   

18.
Fragmentation of natural habitats is one of the main causes of the loss of biodiversity. However, all plants do not respond to habitat fragmentation in the same way due to differences in species traits. We studied the effect of patch size and isolation on the biodiversity of vegetation in the mixed-oak forests in the north of the Iberian Peninsula. The aim was to evaluate whether all the growth-forms of vegetation are equally affected by forest fragmentation in order to improve the management strategies to restore this type of vegetation. This study has shown that the effect of the area and spatial isolation of the patches was not the same for the different growth-forms. Fragmentation had a mainly negative effect on the richness and diversity of forest specialist species, especially ferns and herbaceous growth-forms. Moreover, the presence and/or cover of woodland herbaceous species (such as Lamiastrum galeobdolon and Helleborus viridis) and of woodland ferns (namely Asplenium adiantum-nigrum, Asplenium trichomanes, Polystichum setiferum, Dryopteris affinis) were negatively affected by patch size, possibly due to the reduction of habitat quality. These species have been replaced by more generalist species (such as Cardamine pratensis, Cirsium sp., Pulmonaria longifolia or Rumex acetosella) in small patches. Patch isolation had a negative effect on the presence of forest specialist species (namely, L.?galeobdolon, Frangula alnus, Hypericum androsaemum, A.?adiantum-nigrum and Athyrium filix-femina) and favored colonization by more generalist species such as Cirsium sp., Calluna vulgaris, Erica arborea or Ulex sp. Thus, in this region special attention should be paid to the conservation of forest specialist species, especially ferns and herbs. In conservation policy focused on forest specialist species, the most valuable species in forest ecosystems, conservation of large forest areas should be promoted.  相似文献   

19.
Preservation of small natural areas is not in itself a sufficient measure to maintain the integrity of the ecosystems for which they were initially set aside. Intense pressure from recreational use is just one of the many human-caused stresses that may degrade natural areas. Therefore, land-use planning and management from an ecological perspective is necessary to assess, ensure, and in some cases increase, the ecological integrity of protected natural areas. An ecosystem management approach for small protected natural areas with high recreational use is presented, based on three interrelated components: an ecological evaluation procedure of ecosystems, the implementation of management interventions on ecosystems, and the development of a monitoring scheme of ecosystem components. The ecological evaluation procedure combines two concepts: the biotic value of vegetation and wildlife and the abiotic fragility of the soils. This combined evaluation process results in the creation of a sensitivity map that can be used as a management tool for planners and managers. Management interventions, the second component of the management approach, are derived from concepts of ecological succession. Intentional human interventions are used to maintain the ecological integrity of ecosystems or in some cases to restore degraded sites. For the third component, only the basic principles of the monitoring program will be discussed. A pilot project in one of the Montreal urban community protected areas is presented to illustrate aspects of the proposed ecosystem management approach.  相似文献   

20.
Satellite images have been used extensively to study temporal changes in land use and land cover (LULC) in China. However, few studies have been conducted in the karst areas despite the large area and population involved and the fragile ecosystem. In this study, LULC changes were examined in part of Guizhou Province of southern China from 1991 to 2001 based on Landsat Thematic Mapper (TM) images of November 7, 1991, December 5, 1994, and December 19, 2001. Land surface temperature (LST) and normalized difference vegetation index (NDVI) were computed based on LULC types. The results show that agricultural land decreased, while urban areas expanded dramatically, and forest land increased slightly. Barren land increased from 1991 to 1994, and then decreased from 1994 to 2001. These changes in LULC widened the temperature difference between the urban and the rural areas. The change in LST was mainly associated with changes in construction materials in the urban area and in vegetation abundance both in the urban and rural areas. Vegetation had a dual function in the temperatures of different LULC types. While it could ease the warming trend in the urban or built-up areas, it helped to keep other lands warmer in the cold weather. The study also reveals that due to the government's efforts on reforestation, rural ecosystems in some of the study area were being restored. The time required for the karst ecosystem to recover was shorter than previously thought.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号