首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Meeting the growing demand for food in the future will require adaptation of water and land management to future conditions. We studied the extent of different adaptation options to future global change in the Mediterranean region, under scenarios of water use and availability. We focused on the most significant adaptation options for semiarid regions: implementing irrigation, changes to cropland intensity, and diversification of cropland activities. We used Conversion of Land Use on Mondial Scale (CLUMondo), a global land system model, to simulate future change to land use and land cover, and land management. To take into account future global change, we followed global outlooks for future population and climate change, and crop and livestock demand. The results indicate that the level of irrigation efficiency improvement is an important determinant of potential changes in the intensity of rain-fed land systems. No or low irrigation efficiency improvements lead to a reduction in irrigated areas, accompanied with intensification and expansion of rain-fed cropping systems. When reducing water withdrawal, total crop production in intensive rain-fed systems would need to increase significantly: by 130% without improving the irrigation efficiency in irrigated systems and by 53% under conditions of the highest possible efficiency improvement. In all scenarios, traditional Mediterranean multifunctional land systems continue to play a significant role in food production, especially in hosting livestock. Our results indicate that significant improvements to irrigation efficiency with simultaneous increase in cropland productivity are needed to satisfy future demands for food in the region. The approach can be transferred to other similar regions with strong resource limitations in terms of land and water.  相似文献   

2.
河北沧州黑龙港地区粮食作物生产潜力估算   总被引:15,自引:0,他引:15  
本文采用屡次分析法,运用1∶10万TM卫星图象对黑龙港类型区(沧州区域为例)农业生产水平类型划分的结果,分析计算了该区各种类型土地(高、中、低产田)的各级生产潜力和粮食作物生产潜力。得出沧州区域提高粮食生产潜力着眼点在高、中产田,主要措施是增加能量投入,合理用水,改良土壤。  相似文献   

3.
This study evaluates the theoretical impact of climate change on yields and water use of two crops with different responses to increased CO2 and which represent contrasting agricultural systems in Spain. In all cases the simulated effects of a CO2-induced climate change depended on the counteracting effects between higher daily ET rates, shortening of crop growth duration and changes in precipitation patterns as well as the simulated effects of CO2 on the water use efficiency of the crops. For summer irrigated crops such as maize, the yield reductions and the exacerbated problems of irrigation water availability simulated with climate change may force the crop out of production in some regions. For winter dryland crops such as wheat, productivity increased significantly in some regions, suggesting a northward shift of area suitable for wheat production in future climates. The study considered strategies for improving the efficiency of water use based on the optimization of crop management decisions in a CO2-driven warmer climate. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
Climate change is affecting the productivity of crops and their regional distribution. Strategies to enhance local adaptation capacity are needed to mitigate climate change impacts and to maintain regional stability of food production. The objectives of this study were to simulate the climate change effects on phenological stages, Leaf Area Index (LAI), biomass and grain yield of maize (Zea mays L.) in the future and to explore the possibilities of employing irrigation water and planting dates as adaptation strategies to decrease the climate change impacts on maize production in Khorasan Razavi province, Iran. For this purpose, we employed two types of General Circulation Models ((United Kingdom Met. Office Hadley Center: HadCM3) and (Institute Pierre Simon Laplace: IPCM4)) and three scenarios (A1B, A2 and B1). Long Ashton Research Station-Weather Generator (LARS-WG) was used to produce daily climatic parameters as one stochastic growing season for each projection period. Also, crop growth under projected climate conditions was simulated based on the Cropping System Model (CSM)-CERES-Maize. The results of model evaluation showed that LARS-WG had appropriate prediction for climatic parameters. Time period from cultivation until anthesis and maturity were reduced in majority of scenarios as affected by climate change. The results indicated that the grain yield of maize may be reduced (11 % to 38 %) as affected by climate change based on common planting date in baseline and changed (?61 % to 48 %) in response to different irrigation regimes in the future climate change, under all scenarios and times. In general, earlier planting date (1 May) and decreasing irrigation intervals in the anthesis stage (11 applications) caused higher yield compared with other planting dates due to adaption to high temperature. Based on our findings, it seems that management of irrigation water and planting dates can be beneficial for adaptation of maize to climate change in this region.  相似文献   

5.
中国灌区粮食生产水足迹及用水评价   总被引:1,自引:0,他引:1  
以1998、2005 及2009 年459 个灌区资料为基础,从区域尺度计算粮食生产水足迹,建立粮食生产用水水平综合评价指标I对灌区粮食生产与水资源利用之间的关系进行评价。结果显示:粮食生产水足迹及其组成的区域间差异均较大,大值省区主要分布于东北、华南,小值省区以黄淮海平原为核心集中分布;全国粮食生产水足迹多年均值为1.336 m3/kg,蓝、绿水比例分别为63.7%和35.8%,有35.1%的水足迹损失于粮食生产过程。空间自相关分析表明,粮食生产用水水平综合评价指标I相似的省区在空间上显著地聚集,局部自相关属性为HH和LL的省区超过了20 个,不同年份总体和局部的空间分异特征随时间变化均不明显;省区间粮食生产综合用水水平差异大,I值介于0.079~0.889 之间,变异系数为0.59,黄河中下游省区用水水平较高而东北及西北大部分省区则相反。结合人均粮食占有量与I值在全国的地位,对各省区粮食生产与农业用水发展方向进行了讨论。  相似文献   

6.
Desertification, climate variability and food security are closely linked through drought, land cover changes, and climate and biological feedbacks. In Ghana, only few studies have documented these linkages. To establish this link the study provides historical and predicted climatic changes for two drought sensitive agro-ecological zones in Ghana and further determines how these changes have influenced crop production within the two zones. This objective was attained via Markov chain and Fuzzy modelling. Results from the Markov chain model point to the fact that the Guinea savanna agro-ecological zone has experienced delayed rains from 1960 to 2008 while the Sudan savanna agro-ecological zone had slightly earlier rains for the same period. Results of Fuzzy Modelling indicate that very suitable and moderately suitable croplands for millet and sorghum production are evenly distributed within the two agro-ecological zones. For Ghana to adapt to climate change and thereby achieve food security, it is important to pursue strategies such as expansion of irrigated agricultural areas, improvement of crop water productivity in rain-fed agriculture, crop improvement and specialisation, and improvement in indigenous technology. It is also important to encourage farmers in the Sudan and Guinea Savanna zones to focus on the production of cereals and legumes (e.g. sorghum, millet and soybeans) as the edaphic and climatic factors favour these crops and will give the farmers a competitive advantage. It may be necessary to consider the development of the study area as the main production and supply source of selected cereals and legumes for the entire country in order to free lands in other regions for the production of crops highly suitable for those regions on the basis of their edaphic and climatic conditions.  相似文献   

7.
Climate change, water availability and future cereal production in China   总被引:3,自引:0,他引:3  
Climate scenarios from a regional climate model are used to drive crop and water simulation models underpinned by the IPCC A2 and B2 socio-economic development pathways to explore water availability for agriculture in China in the 2020s and 2040s. Various measures of water availability are examined at river basin and provincial scale in relation to agricultural and non-agricultural water demand and current and planned expansions to the area under irrigation. The objectives are to understand the influences of different drivers on future water availability to support China's food production. Hydrological simulations produce moderate to large increases in total water availability in response to increases in future precipitation. Total water demand increases nationally and in most basins, but with a decreasing share for agriculture due primarily to competition from industrial, domestic and municipal sectors. Crop simulations exhibit moderate to large increases in irrigation water demand which is found to be highly sensitive to the characteristics of daily precipitation in the climate scenarios. The impacts of climate change on water availability for agriculture are small compared to the role of socio-economic development.The study identifies significant spatial differences in impacts at the river basin and provincial level. In broad terms water availability for agriculture declines in southern China and remains stable in northern China. The combined impacts of climate change and socio-economic development produce decreases in future irrigation areas, especially the area of irrigated paddy rice. Overall, the results suggest that there will be insufficient water for agriculture in China in the coming decades, due primarily to increases in water demand for non-agricultural uses, which will have significant implications for adaptation strategies and policies for agricultural production and water management.  相似文献   

8.
The Paris agreement adopted at the 21st Conference of Parties of the United Nations Framework Convention on Climate Change stipulates 2 and 1.5 °C targets, but their consistency with sustainable development is poorly understood. This study focuses on water stress defined by annual water consumption-to-availability ratio (CAR) and analyzes the CAR changes for 32 global regions during this century for scenarios of the 2 and 1.5 °C targets. It also estimates contributions of major factors behind such change for addressing the adaptation planning. The results show that the CARs in many (i.e., 25) regions remain very small (less than 0.1) regardless of the future temperature level. For the other seven regions, the CARs undergo significant changes, while the changes and contributing factors to them are different by region and the future temperature level. Possible adaptation strategies are given for regions of significantly increasing CARs. For instance, in Afghanistan and Pakistan and South Africa, the CARs increase mainly due to increases in irrigation water associated with socioeconomic development (i.e., food demand growth). Decreases in water availability and increases in irrigation water due to climate change also contribute to the CAR increases after 2030. The contributions of other factors (i.e., demand changes in municipal water, water for electricity generation, other industrial water, and water for livestock) are small. In these regions, securing water resources as well as irrigation water conservation are important to avoid worsening of the CAR. Adaptation strategy recommendations for other regions are also presented.  相似文献   

9.

Rice (Oriza sativa) feeds nearly half of the world’s population. Regional and national studies in Asia suggest that rice production will suffer under climate change, but researchers conducted few studies for other parts of the world. This research identifies suitable areas for cultivating irrigated rice in Colombia under current climates and for the 2050s, according to the Representative Concentration Pathway (RCP) 8.5 scenario. The methodology uses known locations of the crop, environmental variables, and maximum entropy and probabilistic methods to develop niche-based models for estimating the potential geographic distribution of irrigated rice. Results indicate that future climate change in Colombia could reduce the area that is suitable for rice production by 60%, from 4.4 to 1.8 million hectares. Low-lying rice production regions could be the most susceptible to changing environmental conditions, while mid-altitude valleys could see improvements in rice-growing conditions. In contrast to a country like China where rice production can move to higher latitudes, rice adaptation in tropical Colombia will favor higher elevations. These results suggest adaptation strategies for the Colombian rice sector. Farmers can adopt climate-resilient varieties or change water and agronomic management practices, or both. Other farmers may consider abandoning rice production for some other crop or activity.

  相似文献   

10.
基于RS和GIS技术的区域农田灌溉量预报研究及应用   总被引:2,自引:0,他引:2  
区域尺度上开展农田灌溉量预报需要考虑土壤、作物和大气的空间差异性。论文针对农田灌溉现状分别建立了需水量灌溉预报模型和土壤湿润层灌溉预报模型,并在预报模型中引入RS和GIS技术来考虑预报参数的空间差异性,初步实现了区域尺度上250 m分辨率网格化的农田灌溉量预报,并在北京地区冬小麦灌溉量预报中进行了应用。结果表明:北京地区2010年冬小麦6月灌浆期间和11月下旬越冬前冻水的预报灌溉量分别为375 m3/hm2和600 m3/hm2,均较现行农业生产中建议的灌溉量明显偏少,具有节水经济效益潜力。这些结果显示了RS和GIS技术在区域尺度上农田灌溉预报中的良好应用潜力,且预报结论和应用效果能达到较好统一。  相似文献   

11.
Globally, yam (Dioscorea spp.) is the fifth most important root crop after sweet potatoes (Ipomoea batatas L.) and the second most important crop in Africa in terms of production after cassava (Manihot esculenta L.) and has long been vital to food security in sub-Saharan Africa (SSA). Climate change is expected to have its most severe impact on crops in food insecure regions, yet very little is known about impact of climate change on yam productivity. Therefore, we try estimating the effect of climate change on the yam (variety: Florido) yield and evaluating different adaptation strategies to mitigate its effect. Three regional climate models REgional MOdel (REMO), Swedish Meteorological and Hydrological Institute Regional Climate Model (SMHIRCA), and Hadley Regional Model (HADRM3P) were coupled to a crop growth simulation model namely Environmental Policy Integrated Climate (EPIC) version 3060 to simulate current and future yam yields in the Upper Ouémé basin (Benin Republic). For the future, substantial yield decreases were estimated varying according to the climate scenario. We explored the advantages of specific adaptation strategies suggesting that changing sowing date may be ineffective in counteracting adverse climatic effects. Late maturing cultivars could be effective in offsetting the adverse impacts. Whereas, by coupling irrigation and fertilizer application with late maturing cultivars, highest increase in the yam productivity could be realized which accounted up to 49 % depending upon the projection of the scenarios analyzed.  相似文献   

12.
全球气候变化下中国农业生产潜力的空间演变   总被引:2,自引:0,他引:2  
钟章奇  王铮  夏海斌  孙翊  乐群 《自然资源学报》2015,30(12):2018-2032
农业生产潜力对区域农业发展和农业产业投资与布局等具有重要影响。然而,当前的研究较少探讨1980年代以来我国区域农业生产潜力空间演变特征,以及就未来气候变化对中国区域农业生产潜力所产生的可能影响也还较少关注。为此,论文对1980年代以来中国区域农业生产潜力的空间演变特征进行了分析,并就未来气候变化对中国区域农业生产潜力的可能影响做出了估计,研究发现:1961—2012年中国农业生产潜力的地理分异特征异常显著,其中东南较高,西北相对较低,同时呈现出较为明显的纬度地带性规律。1980年代以来我国农业生产潜力减少的区域主要是集中在胡焕庸线以东的地区,其中四川盆地和华北平原中部等地区的农业生产潜力减少最为明显,约在4%以上,而水分有效系数的下降是其农业生产潜力减少的主要因素,农业生产潜力增加的地区则主要位于长江中下游和华北平原南部等地。在当前的全球变化趋势下,模拟得到,2041—2060年我国农业生产潜力减少的区域可能主要位于长江以南以及青海中部地区,其中四川盆地和湖北中南部等地的农业生产潜力下降趋势最为明显,因而这也可能会给这些地区的平均粮食产量带来一定程度的下降。  相似文献   

13.
A better use of land and water resources will be necessary to meet the increasing demand for food in the Nile basin. Using a hydro-economic model along the storyline of three future political cooperation scenarios, we show that the future of food production in the Basin lies not in the expansion of intensively irrigated areas and the disputed reallocation of water, but in utilizing the vast forgotten potential of rainfed agriculture in the upstream interior, with supplemental irrigation where needed. Our results indicate that rainfed agriculture can cover more than 75% of the needed increase in food production by the year 2025. Many of the most suitable regions for rainfed agriculture in the Nile basin, however, have been destabilized by recent war and civil unrest. Stabilizing those regions and strengthening intra-basin cooperation via food trade seem to be better strategies than unilateral expansion of upstream irrigation, as the latter will reduce hydropower generation and relocate, rather than increase, food production.  相似文献   

14.
华北高产粮区夏玉米生命周期环境影响评价   总被引:7,自引:3,他引:4  
以山东省桓台县夏玉米生产体系为例,应用生命周期评价方法,以单位产量为评价功能单元,把夏玉米生命周期分为原料开采与运输、农资生产与运输、作物种植3个生产阶段,对不同施氮水平下夏玉米生命周期的资源消耗与污染物排放进行了清单分析和影响评价.结果表明,随着施氮量的增加,夏玉米生命周期环境影响呈指数上升趋势,其中,主要影响类型为水资源耗竭,这与农作物需水量较大、水分生产率较低有关.在低氮量条件下,主要污染影响类型是全球变暖,随着施氮量的增加,富营养化上升为主要污染影响类型.提高作物种植阶段水肥利用效率是控制夏玉米生命周期环境影响的关键,它可减少夏玉米对水资源和氮肥的需求,从而直接减少农田氮素损失污染影响,也间接降低了上游生产环节的资源消耗与污染物排放影响,进而有助于降低夏玉米生命周期环境影响总潜力.  相似文献   

15.
黄淮海地区是我国重要的粮食生产基地,分析该区域粮食产量的时空变化特征及其变化机制,对我国粮食安全的评估有重要的现实意义。论文以AVH RR NDVI数据和逐日气象要素驱动土壤-植被-大气系统物质传输和作物生长的耦合模型,模拟分析1981-2000年黄淮海地区冬小麦产量的时空分布及其驱动机制。分析发现,从1981-1997年生物产量基本呈增加趋势,之后有所下降。但由于作物经济系数不断增加,整个时段冬小麦经济产量增加趋势明显,单位面积产量提高了一倍。化肥施用量的增加和优良品种的推广是增产的主要原因,而气候波动导致区域年际产量变化幅度为8.5%。黄淮海地区冬小麦产量的空间分布及其演变呈现显著的地域特性,与当地灌溉条件、土壤条件密切相关。  相似文献   

16.
The negative impact of climate change on crop production is alarming as the demand for food is expected to increase in coming years, at a rate of about 2 percent a year. Wet season rice (Oryza sativa) followed by mustard (Brassica juncea) is one of the prominent cropping sequences in Eastern India. Descreases in their productivity due to climate change will not only hamper the regional food security but also affect the global economy. Considering the fact, the present study aims to assess the impact of climate change on productivity of wet-season rice and mustard and to evaluate the effectiveness of agronomic adjustment as adaptation options. Crop growth simulation model (CGSM) is a very effective tool to predict the growth and yield of a crop. One CGSM, namely InfoCrop (Generic Crop Model), was calibrated and validated for the said crops for West Bengal State, Eastern India. After validation, the model was used to predict the yield under elevated thermal condition (1 and 3 °C rise over normal temperature). Moreover, the future weather situation as predicted by PRECIS (Providing Regional Climates for Impacts Studies) model was used as weather input of the CGSM and the yield was predicted for ten selected locations of West Bengal for the year 2025 and 2050. It was observed that the average yield reduction of the wet-season rice would be in the tune of about 20.0 % for 2025 and 27.8 % for 2050. The mustard yield of West Bengal may be reduced by 20.0 to 33.9 % for the year 2025 and up to 40 % for 2050. It was concluded that the negative impact of climate change on mustard grown in winter season will be more pronounced compared to wet-season rice. Adjustment of sowing time will be the simplest and effective adaptation option for both rice and mustard. Increased rate of nutrient application can sustain the rice yield under future climate. The older seedling at the time of transplanting of wet-season rice and increased seed rate of mustard were proved less effective.  相似文献   

17.
基于MODIS-OLI遥感数据融合技术的农田生产力估算   总被引:3,自引:0,他引:3  
大范围、高精度的农田生产力遥感监测依赖于高时空分辨率的遥感数据,单纯依靠由单一类型传感器数据获取的高时相或者高空间分辨率的遥感数据都不能满足清晰掌握田块尺度上作物生长动态的需求。全球免费提供的空间分辨率250~1 000 m的MODIS数据和空间分辨率30 m的Landsat数据是植被动态监测普遍应用的数据源,针对应用MODIS数据估算的农田生产力空间分辨率较低而Landsat卫星重访周期长的局限性,研究基于空间分辨率30 m的Landsat 8 OLI数据与空间分辨率500 m的MODIS数据,应用时空数据融合技术,融合OLI数据的高清晰空间表达能力与时间间隔8 d的MODIS数据的植被生长时间序列过程的监测能力,获得空间分辨率30 m、时间步长8 d的时间序列数据,利用VPM (Vegetation Photosynthesis Model)模型以宁夏永宁县部分地区为试验区估算该区域的NPP。研究结果表明,融合后所得30 m分辨率的NPP具有良好的空间细节信息,提高了MODIS数据中混合像元上的估算精度,并保留了MODIS数据原始的时间过程信息,以30 m的空间分辨率刻画出作物的生长动态;较单独应用MODIS数据,使用融合数据估算的NPP可更有效检测出高标准农田建设对农田生产力的提升。  相似文献   

18.
有效田间灌水质量指标体系初探   总被引:1,自引:0,他引:1  
本文根据传统田间灌水质量指标体系存在的不足首次提出了有效田间灌水质量指标体系的概念。作者认为,传统的田间灌水质量指标体系只从灌水结束后通过土壤表面的累计入渗水深来描述灌水质量,缺乏合理的理论根据,不利于直接反映灌水质量与作物生长之间的关系。建议从作物根系吸水机理上研究灌溉入渗水分及其分布状况的有效性,建立有效的田间灌水质量指标体系。文中对有效田间灌水质量指标体系的概念进行了较系统的阐述,最后还初步探讨了田间灌水质量指标体系中的随机性和时空性问题。  相似文献   

19.
The production of tropical agricultural commodities, such as cocoa (Theobroma cacao) and coffee (Coffea spp.), the countries and communities engaged in it, and the industries dependent on these commodities, are vulnerable to climate change. This is especially so where a large percentage of the global supply is grown in a single geographical region. Fortunately, there is often considerable spatial heterogeneity in the vulnerability to climate change within affected regions, implying that local production losses could be compensated through intensification and expansion of production elsewhere. However, this requires that site-level actions are integrated into a regional approach to climate change adaptation. We discuss here such a regional approach for cocoa in West Africa, where 70 % of global cocoa supply originates. On the basis of a statistical model of relative climatic suitability calibrated on West African cocoa farming areas and average climate projections for the 2030s and 2050s of, respectively, 15 and 19 Global Circulation Models, we divide the region into three adaptation zones: (i) a little affected zone permitting intensification and/or expansion of cocoa farming; (ii) a moderately affected zone requiring diversification and agronomic adjustments of farming practices; and (iii) a severely affected zone with need for progressive crop change. We argue that for tropical agricultural commodities, larger-scale adaptation planning that attempts to balance production trends across countries and regions could help reduce negative impacts of climate change on regional economies and global commodity supplies, despite the institutional challenges that this integration may pose.  相似文献   

20.
This study examines energy use patterns and the relationship between energy inputs and yield for canola production in Golestan province of Iran. Data used in this study were obtained from 130 randomly selected canola farms using a face to face survey. The results revealed that total energy of 17,786.36 MJ ha−1 was required for canola production and fertilizer, diesel fuel and electricity were the main energy consuming inputs. Energy use efficiency and energy productivity were 3.02 and 0.12 kg MJ−1, respectively. Moreover, in specifying a functional relationship the Cobb-Douglas production function was applied and the results showed that machinery, fertilizer, diesel fuel and water for irrigation energies significantly contributed to yield. Also, the marginal physical productivity (MPP) technique was applied to analyze the sensitivity of energy inputs. It was found that, canola production had more sensitivity on machinery, fertilizer and water for irrigation energies; so that an additional use of 1 MJ from each of the machinery, total fertilizer and water for irrigation would lead to an increase in production by 0.93, 0.61 and 0.24 kg, respectively. However, electricity and seed energies were contributed negatively to yield, which may result in inverse effect on yield and impose risks to the environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号