共查询到20条相似文献,搜索用时 24 毫秒
1.
为了探究成都市PM2.5水溶性无机离子的污染特征与来源贡献,于2018年1月1日—12月31日利用高分辨率的MARGA对PM2.5组分展开在线监测,结合同一点位的气态污染物、气象参数监测数据进行分析.结果表明,水溶性无机离子与PM2.5具有相同的月变化趋势,水溶性无机离子月均浓度为10.35-39.60μg·m-3,在PM2.5中的占比为31%—51%,水溶性无机离子是PM2.5的重要组成部分.NO3-在水溶性无机离子中月均占比以12月最高,8月最低,SO42-刚好与之相反.大气长期处于富氨状态,二次离子主要以(NH4)2SO4、NH4NO3、NH4Cl的形式存在,SOR在冬季12月与夏季8月分别出现高值0.61与0.5,但NOR只在冬季出... 相似文献
2.
森林被誉为"地球之肺",在防霾治污方面有其独特不可替代的作用,不同树种沉降PM2.5的功能有很大差别.本文选取代表性城市森林——奥林匹克森林公园为研究对象,设置垂直监测塔观测大气PM2.5的浓度垂直分布,以考察不同季节城市森林对PM2.5中各组分的影响.在冬季、春季和夏季各采集PM2.5样品,分析并计算PM2.5中Na+、NH4+、K+、Mg2+、Ca2+、Cl-、NO3-和SO42-等典型水溶性无机离子的浓度.结果表明,PM2.5中水溶性无机离子总浓度呈规律性变化特征:冬季((56.90±27.38)μg·m-3)>春季((46.69±12.24)μg·m-3)>夏季((23.16±8.75)μg·m-3).其中SO42-和NO3-浓度和占PM2.5主要水溶性无机离子总浓度的50%以上.3个季节中,除冬季外,在春季和夏季,8种离子有明显的垂直方向上的沉降,夏季的沉降速率高于春季,但是春季由于大气颗粒物浓度高,沉降通量高于夏季.NO3-和SO42-垂直方向的沉降量在所有可溶性无机离子中最高.植被密度、叶面积指数、气象条件等因素对于PM2.5的沉降特征有明显影响. 相似文献
3.
西安冬、夏季PM2.5中水溶性无机离子的变化特征 总被引:3,自引:0,他引:3
为探讨西安市冬、夏季水溶性无机离子的季节和空间变化特征,2010年1月和7月分别在西安城区4个站点及上风区高陵(GL)和下风区黑河(HH)连续采集2周的PM2.5样品,使用离子色谱仪分析样品中水溶性无机离子成分.结果表明,PM2.5质量浓度冬季明显高于夏季,空间变化表现为:城区站点浓度均值(172.6μg.m-3)>上风区点GL(98.9μg.m-3)>下风区点HH(81.0μg.m-3).水溶性无机离子浓度总和占PM2.5质量浓度的41.8%,其中SO24-、NO3-和NH4+是水溶性离子的主要成分,分别占总离子质量浓度的35.1%、22.6%和12.2%.Na+、Ca2+和Mg2+在冬、夏季浓度相差不大,而SO24-、NO3-、NH4+以及K+、Cl-等均明显表现为冬季浓度高于夏季.SO24-、NO3-和NH4+在冬、夏季空间变化均表现为城区站点>GL>HH,这3种离子夏季在大气中的主要存在方式为NH4HSO4和NH4NO3,而冬季主要以(NH4)2SO4、NH4NO3和NH4Cl形式存在.NO3-/SO24-的比值为0.64,表明西安市固定源仍是主要污染贡献源,但是移动源所占比例较之前研究有所上升,应采取一定措施控制机动车数量并加强排放监控. 相似文献
4.
5.
北京冬季一次重污染过程PM2.5中水溶性无机盐的变化特征 总被引:14,自引:0,他引:14
为了解北京冬季重污染过程大气颗粒物化学特性,利用高时间分辨率实时在线细粒子快速捕集及化学成分分析系统(RCFP-IC)对2011年2月18—24日发生的一次重污染过程PM2.5中水溶性无机离子浓度变化进行了在线观测.结合颗粒物质量浓度、气态污染物浓度及气象资料,对此次污染过程中污染物的化学成分变化特征进行了详细分析.结果表明,此次北京冬季重污染4 d中颗粒物污染严重;总水溶性无机离子平均质量浓度151.31μg·m-3,占PM2.5相对比例54%,其中NO3-、SO24-和NH4+质量浓度占总水溶性无机离子质量浓度91%,二次离子污染非常严重;硝酸根氧化率(NOR)和硫酸根氧化率(SOR)结果显示NO3-与SO24-主要通过非均相反应生成,水溶性无机盐存在形态以NH4HSO4和(NH4)2SO4为主;重污染期K+和Cl-质量浓度显著升高,Mg2+和Ca2+质量浓度下降;阳、阴离子电荷比(C/A)重污染平均值为0.8,细粒子偏酸性. 相似文献
6.
7.
江苏沿江城市PM10和PM2.5中水溶性离子特征及来源分析 总被引:1,自引:0,他引:1
2012年3月和6月在江苏沿江七市(镇江、常州、无锡、苏州、扬州、泰州和南通)采集空气中PM10和PM2.5样品,运用离子色谱法,分析无机水溶性离子成分,并对其组成、相关性、结合形式和来源解析等方面进行研究.结果表明,春季苏南四市PM10和PM2.5质量浓度低于苏中三市,夏季反之;水溶性离子在PM2.5中所占的比例一般高于PM10,SO2-4、NO-3、NH+4是颗粒物中水溶性离子的主要成分,占总量的80%左右.PM10和PM2.5中的SO2-4和NO-3、NH+4和SO2-4、NO-3之间均具有较好的相关性;PM10中Ca2+和Mg2+显著相关,细粒子中相关性较小.NH+4和SO2-4、NO-3主要以(NH4)2SO4和NH4NO3存在于可吸入颗粒物中.春夏两季,江苏沿江城市PM10和PM2.5中的SOR均大于NOR,SO2在大气中的转化率比NOx的转化率要高;苏南地区PM10和PM2.5中的SOR和NOR高于苏中地区.运用[NO-3]/[SO2-4]的比值法研究颗粒物污染来源,表明春季的污染源主要为流动源,夏季为固定源.运用因子分析法分析颗粒物来源,燃煤、交通运输、生物质燃烧、土壤和建筑地表扬尘是春夏两季江苏沿江城市可吸入颗粒物的主要污染源. 相似文献
8.
2011年冬季天津PM2.5及其二次组分的污染特征分析 总被引:5,自引:0,他引:5
2011年11月—12月于天津城区和武清采集PM2.5样品,分析其中的二次水溶性无机离子(NH4+、NO3-和SO24-)、有机碳(OC)和元素碳(EC),估算二次成分浓度,并分析采样期间气象因素对一次持续重污染过程的影响.结果表明,天津地区冬季PM2.5污染严重、城区和武清PM2.5质量浓度平均值分别为166.9μg.m-3和180.0μg.m-3;城区样品中SO24-、NO3-和OC在PM2.5的比例依次为19.4%、16.7%和15.4%,武清样品中则为19.2%、15.5%和20.4%;二次组分占PM2.5质量浓度的47%(城区)和46%(武清),雾霾日二次组分含量明显高于非雾霾日;高湿和静小风等不利气象条件是造成PM2.5质量浓度持续增加以及二次组分浓度迅速升高的重要原因. 相似文献
9.
采集了2018年保定市污染天气的PM2.5样品,采用离子色谱法测定了PM2.5样品中的水溶性离子(WSIs),分析了不同季节PM2.5及其水溶性离子的分布特征,并采用PMF模型对PM2.5进行了源解析.结果表明,采样期间保定市的PM2.5浓度为18.4—258.0μg·m-3,年均值为(91.5±62.5)μg·m-3;季节规律是冬季(160.6μg·m-3)>秋季(105.3μg·m-3)>春季(57.6μg·m-3)>夏季(53.2μg·m-3).WSIs年均值为49.20μg·m-3,占PM2.5.的63.95%,WSIs的季节规律和PM2.5的一致.二次离子占水溶性离子的77.12%.湿度和温度与SOR和NOR成正相关.春夏两季水溶性离子主要以Na... 相似文献
10.
11.
闽南重点城市春季PM2.5中水溶性无机离子特征研究 总被引:1,自引:0,他引:1
对闽南地区重点城市春季 PM2.5中水溶性离子的污染状况进行剖析,分析和探讨了闽南地区同城化进程中重点城市PM2.5中水溶性离子污染的共同点和差异点,以期在当前空气污染日益严重的趋势下为闽南地区的大气污染控制提供依据.于2011年春季3月7—16日在福建省闽南地区重点城市厦门城区与郊区、漳州和泉州城区同步用聚丙烯纤维滤膜采集大气PM2.5样品,滤膜经超声萃取后用离子色谱仪分析样品中F-、Cl-、NO3-、SO42-、Na+、K+、NH4+、Ca2+和Mg2+等9种离子组分的质量浓度.结果表明,(1)闽南地区重点城市春季PM2.5的质量浓度变化具有较好的一致性,PM2.5的平均质量浓度为94.14μg·m-3,二次离子SO42-、NO3-和NH4+的质量浓度变化范围为14.66~66.68μg·m-3,平均质量浓度为32.43μg·m-3,占总水溶性离子的83.30%,主要以(NH4)2SO4和NH4NO3形式存在;与国内其他主要城市相比,闽南地区PM2.5中二次离子浓度水平偏高,二次污染严重.(2)NO3-/SO42-和SOR、NOR值均表明闽南地区固定源污染对水溶性离子的贡献大于流动源,但厦门流动源的贡献占了更高的比重;与国内其它地区相比,闽南地区由于春季潮湿多雨,硝酸盐化速率较高,也是导致二次离子污染水平较高的原因之一.(3)作为滨海地区,闽南地区 PM2.5中水溶性离子的主要贡献者主要来自人为源,而非海盐离子. 相似文献
12.
13.
石河子市是位于新疆乌昌石区域中部的工业城市,2020年12月和2021年1月在石河子市城区和工业区共布设2个采样点,全天候采集细颗粒物(PM2.5)样品61 d,利用电感耦合等离子质谱仪(ICP-MS)对24种元素含量进行分析,并通过富集因子法(EF)解析PM2.5中无机元素的污染特征及来源.结果表明,冬季采样期间,石河子市重度及以上污染天数占整个采样期的53.2%,以PM2.5为首要污染物的污染天数占整个采样期的98.4%,采样期城区和工业区的PM2.5日均值分别为164.7μg·m-3和113.6μg·m-3,表明石河子市冬季PM2.5污染严重;采样期城区和工业区PM2.5中无机元素浓度分别为4.4μg·m-3和3.6μg·m-3,主要成分均为K、Ca、Na、Mg、Al、Fe,6种元素之和在城区和工业区元素中的占比分别为97.4%和97.5%,表明这6种元素为城区和... 相似文献
15.
为研究绵阳市PM2.5中水溶性离子污染特征及来源,于2018年4月15日-2019年2月28日在绵阳市设置5个采样点位进行样品采集,利用Dionex ICS-2000离子色谱仪分析了9种离子(F-、Cl-、NO3-、SO42-、Na+、NH4+、K+、Mg2+、Ca2+),并通过SPSS进行来源解析.结果 表明,绵阳市ρ(总水溶性离子)年均值为20.8 μg·m-3,在PM2.5中w(总水溶性离子)为46.6%.离子中质量浓度大小顺序依次为:ρ (NO3-)>ρ(SO42-)>ρ(NH4+)> ρ(Ca2+)> ρ(K+)>ρ(Cl-)> ρ(Na+)> ρ(Mg2+)> ρ(F-),其中SNA(二次离子NO3-、SO42-、NH4+)为水溶性离子主要组成部分,水溶性离子中w(SNA)为86.4%.水溶性离子质量浓度季节变化趋势为:冬季>秋季>春季>夏季,除Mg2+外其余离子质量浓度季节变化趋势与总离子浓度趋势一致,ρ(Mg2+)夏季与春季相当.SNA间具有较好的相关性,表明二次离子来源具有高度相似性,NH4+与SO42-摩尔当量浓度线性拟合斜率大于0.75,表明绵阳市大气环境为富氨状态,二次离子主要以(NH4)2SO4和NH4NO3形式存在.污染天NO2、 w(NO3-)和NOR(氮氧化率)均增大,且污染水平越严重w(NO3-)增幅越大,而w(SO42-)和w(NH4+)基本不变,表明NO3-增加导致PM2.5浓度升高.四季SOR(硫氧化率)和NOR均大于0.1,表明NO3-、SO42-主要来源于气态污染物二次转化,受温度和湿度影响,SOR值夏季最高,NOR值夏季最低冬季最高.SPSS来源解析结果显示绵阳市PM2.5中水溶性离子主要受二次转化、生物质燃烧以及扬尘源影响,三者合计贡献率为82.7%. 相似文献
16.
了解北京市城区和郊区大气细颗粒物中的四种水溶性阴离子F-、Cl-、SO42-、NO3-的浓度水平,并分析影响其水平高低的因素。使用聚四氟乙烯滤膜分别采集北京市城区和郊区大气中的PM2.5,用纯水提取后采用离子色谱法测定水溶性阴离子质量浓度。采样期间北京市大气PM2.5、F-、Cl-、SO42-和NO3-质量浓度几何均数分别为55.36、0.02、0.46、6.72和1.09μg·m-3,四种水溶性阴离子质量浓度总和占PM2.5质量浓度的19.14%;同一季节(春季)郊区监测点大气PM2.5、SO42-和NO3-质量浓度显著高于城区监测点;城区大气PM2.5与四种水溶性阴离子质量浓度秋季高于春季,但差异无统计学意义;大气PM2.5与Cl-、SO42-和NO3-质量浓度均高度相关。Cl-、SO42-、NO3-是北京市大气PM2.5的重要组成成分。 相似文献
17.
春节期间西安市南郊细颗粒物中水溶性离子的污染特征 总被引:1,自引:0,他引:1
运用美国R&P公司TEOM-1400a的ACCU 8通道,分8个时段采集了西安南郊的细颗粒物(PM2.5)样品.运用离子色谱分析检测了样品中9种水溶性离子(Na+、NH4+、K+、Mg2+、Ca2+、F-、Cl-、NO3-和SO24-).结果表明,燃放烟花爆竹时段的PM2.5平均浓度及9种水溶性离子总平均浓度分别高于正常时段的1.6倍和1.3倍,其中0∶00—02∶59时段PM2.5平均浓度及9种水溶性离子总平均浓度高于正常同时段的6.6倍和5.2倍;其中Cl-、SO24-、K+和Mg2+4种离子质量浓度明显增加,分别增加了19.1倍、5.0倍、62.0倍和10.3倍.离子平衡表明燃放烟花时段的气溶胶接近中性略微偏酸性.运用主成分分析判断得知,水溶性离子主要来源于燃放烟花爆竹及少量机动车尾气和燃煤. 相似文献
18.
19.
为探究川南地区大气气溶胶中化学组分与来源特征,于2015年9月—2016年8月在四川盆地南部4个典型代表城市(泸州、内江、宜宾、自贡)采集了226个PM2.5样品,对PM2.5的质量浓度和主要化学组分(水溶性离子和碳质组分)进行测定,并利用颗粒物源解析受体模型对PM2.5来源进行解析.结果表明:川南地区PM2.5日均浓度为46.4—68.0μg·m-3,均高于国家环境空气质量标准年均PM2.5限值(35.0μg·m-3).OC、EC和水溶性二次离子(SO42-、NO3-和NH4+)分别占PM2.5质量的15.7%—22.8%、4.2%—6.4%和28.6%—55.8%.PM2.5及其主要化学组分浓度有显著的季节变化,即冬季浓度显著高于其他季节,夏季浓度最低.泸州除夏季外,其他季节SO42-、NO3-同源性较好;其他城市在冬季,SO42-、NO3-同源性较好.NH4+主要存在形式为NH4NO3、(NH4)2SO4、NH4HSO4.OC、EC来源复杂,主要为机动车源、煤燃烧源和生物质燃烧源.川南地区PM2.5的来源主要受8种因子影响,按总体贡献排序依次为:二次硫酸盐、生物质燃烧、工业源、二次硝酸盐、机动车源、煤燃烧、道路尘埃和建筑尘埃.此外,相比较而言,机动车源贡献在泸州市较凸显,煤燃烧源贡献在宜宾市较凸显. 相似文献
20.
为研究天津市夏季PM2.5中碳组分的时空变化特征及来源,于2019年7—8月设立2个点位分昼夜采集天津市PM2.5样品,并测定了其中有机碳(OC)和元素碳(EC)的含量。结果表明,城区PM2.5、OC和EC浓度日均值分别为(53.4±20.8)μg·m-3、(8.72±2.56)μg·m-3和(1.67±0.90)μg·m-3,郊区PM2.5、OC和EC浓度日均值分别为(54.2±24.5)μg·m-3、(7.54±2.50)μg·m-3和(1.82±1.06)μg·m-3;白天PM2.5、OC、EC的平均浓度分别为(47.3±16.1)μg·m-3、(8.7±2.1)μg·m-3和(1.5±0.6)μg·m-3,夜间PM2.5、OC、EC的平均浓度分别为(60.2±26.2)μg·m-3、(7.5±2.9)μg·m-3和(2.0±1.2)μg·m-3。OC浓度表现为城区高于郊区,白天高于夜间;EC及PM2.5浓度表现为郊区高于城区,夜间高于白天。OC/EC比值分析得,城区(6.04)高于郊区(5.08);白天(6.58)高于夜间(4.54)。城区OC与EC相关性弱于郊区,白天OC与EC相关性弱于夜间。采用EC示踪法与MRS模型对SOC含量进行估算,得到白天与夜间SOC浓度分别为(5.71±1.35)μg·m-3和(3.81±1.20)μg·m-3,白天SOC污染比夜间严重。丰度分析与主成分分析的结果表明,天津市夏季城郊区PM2.5中碳组分均主要来源于燃煤和机动车尾气排放。 相似文献