首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper compares calculated results for two-phase flows through safety relief valves and pipes using the TPHEM, CCFLOW and RRERSP computer programs. These studies were conducted to locate errors in the programs as well as to further our understanding of how each program worked. For most low-to-moderate viscosity flow examples, and for the frozen flow examples, the program results agreed despite differences in the calculation methods. Current thinking is that the TPHEM computer program gets better results for high viscosity flows through safety relief valves (nozzles) and for pipe down flows. This is because this program successively iterates nozzle flows to achieve results consistent with the choke pressure, temperature and quality and successively iterates pipe flows to achieve results consistent with the pipe length. Safety relief valve flows from the RRERSP computer program are reduced by the inlet pipe non-recoverable pressure loss. This effect is significant for several cases.  相似文献   

2.
为考察在特高压换流变压器特殊火灾场景下水喷雾灭火系统的有效性,通过模拟不同数量喷头掉落情况下的冷喷实验,研究分析喷头工作压力、有效喷雾流量、水雾覆盖范围及全包络情况。结果表明:喷头工作压力、有效喷雾流量及水雾覆盖范围受掉落喷头占比影响显著,当掉落喷头占比超过10%时,喷头工作压力和有效喷雾流量均达不到标准规定要求,且喷头射程下降、覆盖范围缩小,无法全包络变压器;当喷头掉落后,消防水直接从消防支管以水柱射流形式喷射,不仅不具备水雾灭火的能力,而且有引发变压器热油火灾扩大的风险。  相似文献   

3.
The effect of internal shape of obstacles on the deflagration of premixed methane–air (concentration of 10%) was experimentally investigated in a semi-confined steel pipeline (with a square cross section size of 80 mm × 80 mm and 4 m long). The obstacles used in this study were circular, square, triangular and gear-shaped (4-teeth, 6-teeth and 8-teeth) orifice plates with a blockage ratio of 75%, and the perimeter of the orifice was regarded as a criterion for determining the sharpness of the orifice plate. The overpressure history, flame intensity histories, flame front propagation speed, maximum flame intensity and peak explosion overpressure were analyzed. The explosion in the pipeline can be divided into two stages: initial explosion and secondary explosion. The secondary explosion is caused by recoiled flame. The perimeter is positively related to the intensity of the recoiled flame and the ability of orifice plate to suppress the explosion propagation. In addition, the increase in the perimeter will cause the acceleration of the flame passing through the orifice plate, while after the perimeter of the orifice reaches a certain value, the effect of the increase in perimeter on explosion excitation becomes no obvious. The overpressure (static pressure) downstream of the orifice plate is the result of the combined effect of explosion intensity and turbulence. The increase in perimeter leads to the increase in turbulence downstream of the orifice plate which in turn causes more explosion pressure to be converted into dynamic pressure.  相似文献   

4.
Valves and orifices are the most widely devices of flow control used in oil and gas industry. In particular, they are installed in relief piping system in order to control the discharge flow during potential plant overpressuring scenarios, thus ensuring plant safety. It is a common practice to flow liquid and gas mixtures through such restriction devices.Rigorous models are available to precisely size pressure relief devices operating in single phase flow; however for two-phase flow, no models are considered sufficiently reliable for predicting the relevant flow conditions.In the present paper, two-phase flow of hydrocarbons fluids through an orifice under critical conditions has been numerically investigated.The existing literature has been analyzed and data on two-phase flow of highly volatile mixtures of hydrocarbons through openings have been collected. A comparison has been carried out with numerical simulations carried out by the multiphase flow simulation tool OLGA by SPT.The Henry–Fauske model has been used as orifice choke model and the orifice discharge flow coefficient, required as input by OLGA, has been calculated by Chisholm's model.Comparison between OLGA's results and experimental data shows that Henry–Fauske model markedly underestimates the mass flow rate through the orifice, if Chisholm's model is used to calculate discharge coefficient. It was found that the error of the model could be minimized using different values of orifice discharge coefficient (Cd).A new discharge flow coefficient model, suitable for choked two-phase flow across orifices, is proposed in this study and it has been determined to match the above mentioned experimental measurements.  相似文献   

5.
为解决煤化工业中节流阀突扩口高速气固两相流对管壁材质的冲蚀磨损问题,利用基于激波管原理驱动的气固两相流冲蚀实验装置,试验研究冲击角度、温度对煤化工管材(10#、AISI304)的冲蚀磨损规律。研究结果表明:10#、AISI304管材的冲蚀率将随着冲击角度的增加而先增大后减小;室温下,10#、AISI 304钢的最大冲蚀率均出现在15°~30°区间;随着温度的升高,10#的最大冲蚀率出现在30°~45°区间,AISI304最大冲蚀率出现在30°。10#在30°,45°冲击角度下冲蚀磨损率会随温度上升显著上升,在15°冲击角度下冲蚀磨损率反而会随温度上升而下降。AISI 304在15°,30°,45°冲击角度下,冲蚀磨损率均会随温度上升而上升;在特定条件下,10#管材的冲蚀性能将优于AISI304。  相似文献   

6.
针对萘在人工煤气管道中沉积会造成管道堵塞,影响管道的安全运行的这一问题,以昆明人工煤气管道为例,运用计算流体动力学软件Fluent,选用离散相模型和雷诺应力模型,对水平直管、水平弯管和三通管进行萘颗粒沉积的数值模拟,对于不同的管径、弯曲比、管径比,分别分析萘颗粒直径、入口速度、温度及压力对萘颗粒沉积的影响。研究结果表明:水平直管、水平弯管、三通管中的萘颗粒沉积率与颗粒粒径成正相关关系,而与气流入口速度、压力成负相关关系;萘颗粒在人工煤气管道中的沉积率主要受颗粒直径、气流入口速度的影响;萘颗粒的沉积率随着水平直管的管径增大而增大,随着水平弯管的弯曲比增大而增大,随着三通管的管径比增大而先增大后减小;可通过适当增大管内煤气输送速度、压力,降低温度来降低萘颗粒在人工煤气管道中的沉积速度,进而减少萘颗粒沉积的发生。  相似文献   

7.
This paper presents a detailed review and analysis of sonic gas flow in pipelines, adding considerably more detail to the analysis, particularly for long pipelines. Our results show that (1) the mass flow rate is asymptotic as the velocity head pipe loss increases (2) the asymptotic value is identical for both adiabatic and isothermal conditions and (3) a maximum is found in the gas flow, although this maximum is near the asymptotic value. A graphical method for isothermal flows and a simple, shortcut formula is presented using asymptotic analysis which accurately estimates gas flow rates in long pipelines under both adiabatic and isothermal conditions. Process safety applications are provided.  相似文献   

8.
为对防砂过程中因地层物性影响而导致冲缝筛管出现结垢问题进行准确的过程分析,基于FLUENT平台利用现场数据建立流道中的化学反应和沉积结垢的数值模型,评估管道缝宽、环境压力、温度、离子浓度与流速对冲缝筛管结垢速率的影响规律。结果表明:筛管结垢速率与管内温度和离子浓度成正相关,与管内流体流速成负相关,但环境压力影响不大,同时结垢主要产生在冲缝台阶以及冲缝套与打孔基管的接触面上,对产液的过流面积存在较大影响;结合正交分析得到4个敏感因素的主次顺序为:管内温度、管内流速、反应物浓度、环境压力,并确定最小结垢的组合方案;通过DPM模型探究CaCO3颗粒的沉积规律,得到管内的沉积情况,并建立多因素垢层厚度的计算模型。在实际生产中为降低筛管结垢对油井产能的影响,可以通过降低管内的温度、离子浓度及适当地增大流速来抑制结垢过程的发生。  相似文献   

9.
The purpose of the present work is the experimental investigation on the extinguishment of diesel container fires by a water-mist system with base injection through multiple nozzles placed symmetrically at various positions around the rim of the container. Experimental parameters selected are the orifice diameter of the nozzle, the number of nozzles, position of nozzles (angle of orientation, radial and vertical distance of the nozzle from the edge of the container), and injection pressure. Nozzles used in the present work are pressure-swirl nozzles with Z-type swirl-insert with solid-cone spray. Desirable properties of the system such as the non-clogging operation of the nozzle and uniform mass flux density in the spray are tested for the nozzles. The optimized solution is provided considering water consumption and the physical stability of the fuel surface in the container. Displacement of oxygen is observed as a predominant extinction mechanism due to the effective application of spray in the base region of the fire. The present work provides the parametric study of the extinction establishing the feasibility of the water mist system with a base injection for extinguishing tank fires. This may serve as guidelines for the preliminary design of the system with the extension for larger tank fires.  相似文献   

10.
为了探究煤与瓦斯突出后煤粉-瓦斯两相流传播规律,利用自主搭建的煤与瓦斯突出管网实验系统,研究突出后冲击气流压力衰减规律、煤粉运移分布特征。结果表明:在初始压力为0.4 MPa时共突出煤粉3.12 kg,管道内煤粉质量呈正态分布,管道前部煤粉分布较少,占突出煤粉质量33.7%,多为小粒径煤粉;管道中部煤粉分布最多,占突出煤粉质量61%,粒径分布范围广;后部煤粉分布质量最小,仅占突出煤粉质量的5.3%,但多为大颗粒粒径煤粉。煤粉在管道内测点处依次为分层流、均匀流、大颗粒流3种流态,每种流动形态所对应的运移速度与煤粉打击压力均呈现逐渐衰减的规律。突出后冲击气流压力沿管道呈现衰减趋势,冲击气流对管道内所造成的压力扰动可持续 4 s左右。  相似文献   

11.
The evolution of pressure, temperature, and gas inventory during containment of blowdown from two high pressure gas networks into a third lower pressure relatively large redundant pipeline is followed through a simple lumped parameter model. Numerical solution of the non-linear model equations enabled to study the effects of relevant operating conditions on the system's dynamics. The effects of initial pressure difference between the supply and receiving networks, ratio of discharge orifice to pipe diameters in the supply networks, and heat transfer from the surroundings are investigated. A set of computer generated results are presented to demonstrate vividly the effect of the above variables on the percent of gas recovered in the lower pressure pipeline, the blowdown time, and the minimum temperatures reached in the networks.  相似文献   

12.
Evaluation of gas release rate through holes in pipelines   总被引:10,自引:0,他引:10  
A mathematical model of an accidental gas release in a long transmission pipeline is presented in terms of computational fluid mechanics. It was found that the hole model is suitable for the release of gas through a small hole, while the pipe model is suitable for the gas release through a hole corresponding to the complete breaking of the pipe. In this paper, a new model was proposed for a hole that lies between both these situations. The results of the example show that when the initial inside pressure is higher than 1.5 MPA, the mass of gas released during the sonic flow is more than 90% of the total mass of gas released. The average release rate of the total release process could be substituted by the average release rate of the sonic flow, or by 30% of the initial release rate. This approximation would become more accurate with the increase in the initial inside pressure.  相似文献   

13.
A thermodynamic procedure has been proposed which can be used to predict the gas pressure, temperature and flow rate through orifice upon chock flow condition, using equation of state (EOS). The procedure applied for emergency depressurization operation incorporating the Peng-Robinson EOS and validated by comparing flow rates of a multi-component hydrocarbon gas mixture for thirteen experimental cases. The average absolute deviations of the predicted flow rates for orifice discharge coefficients of 0.85 and 0.9, are 7.36% and 2.03%, respectively. The corresponding error for API 520 (American Petroleum Institute Recommendation Practice 520) method is 6.91%. In this work, the hydrate formation temperature and hydrate inhibitor type and its required weight fraction for preventing the hydrate formation upon orifice and its upstream conditions are evaluated by the EZ-Thermo software using the Moshfeghian–Maddox method. The results qualitatively show that the hydrate prevention is essential for the safety of the operation due to low temperature condition.  相似文献   

14.
Gas emission rate from borehole is one of the most important indexes for the coal and gas outburst prediction. The mathematical model of gas flow in the coal seam, gas flow into the measuring chamber, gas pressure change in the measuring chamber, and gas flow out of the chamber through the pipe is established. Gas migration in the coal seam, gas pressure in borehole chamber and gas flow in pipe is simulated using the finite difference method. Gas emission rate is obtained under dynamic boundary conditions. The influence of gas storage parameters on gas emission rate from borehole is analyzed. Results show that: the gas pressure and the permeability coefficient have great impacts on the value of gas flow quantity in borehole. The larger the original gas pressure of coal seam and the permeability coefficient of coal seam are, the greater the maximum value of gas emission rate form borehole and the later the maximum appears.  相似文献   

15.
A previous study of gas-service direct-spring pressure relief valves connected to a tank via a straight pipe is continued by deriving a reduced-order model for predicting oscillatory instabilities such as valve flutter and chatter. The reduction process uses collocation to take into account a finite number N of acoustic pressure waves within the pipe, resulting in a set of 2N+3 ordinary differential equations. Following a novel non-dimensionalization, it is shown analytically that the model can exhibit, at experimentally realistic parameter values, instabilities associated with coupling between the valve and acoustic waves in the pipe. The thresholds for each instability are such that for a given flow rate, the first mode to go unstable as the inlet pipe length increases is the quarter-wave mode, then a three-quarter wave, a 5/4-wave etc. Thus the primary mode of instability should always be due to the quarter wave. In the limit of low flow rates, a simple approximate expression is found for the quarter-wave instability threshold in the form of inlet pipe length against mass flow rate. This threshold curve is found to agree well with simulation of the full model. For higher flow rates there is a need to include fluid convection, inlet pressure loss and pipe friction in order to get good agreement. The reduced model enables the dependence of the stability curve on key dimensionless physical parameters to be readily computed.  相似文献   

16.
为分析含硫天然气气田井口笼套式节流阀的硫沉积问题,基于雷诺应力模型、组分输运模型及离散相模型,建立硫沉积数值模拟模型,分析笼套式节流阀的硫沉积规律及影响因素.研究结果表明:硫沉积主要出现在正对来流的节流孔外侧下缘、阀套边缘以及阀芯内侧,其中节流孔外侧下缘的沉积最严重,对于该位置,随着气流进口速度的增大,硫沉积速率先增大...  相似文献   

17.
为研究管道结构对氢-空预混气体爆炸特性影响,采用实验与数值模拟相结合的方法,分析不同管道结构内氢-空预混气体燃爆时火焰传播进程、爆炸压力、湍流动能变化及流场分布.结果表明:90°弯管对氢-空预混气体爆炸强度增强作用明显高于T型分岔管和直管.火焰阵面在结构突变处褶皱变形较明显,并出现大尺度强湍流和涡团,气团脉动速度与湍流...  相似文献   

18.
为研究压裂高压管汇在大排量携砂液输送过程中的管壁冲蚀磨损问题,应用CFD方法及Fluent软件,建立了高压管汇主要管件三通管的冲蚀模型,基于数值模拟计算研究了冲蚀发生机理及位置,探讨了高压管汇的冲蚀特点。结果表明:压裂液流动方向变化区域存在严重的冲蚀现象,如主管与支管连接处;三通主管下游段,内壁冲蚀主要是来自支管的固体支撑剂在运动方向改变时对内壁低角度切削;管汇里越靠近井口的三通因为压裂液流量增加,主管下游段两侧冲蚀越严重。该研究结果可为管汇设计制造、关键部位检测等提供技术参考。  相似文献   

19.
为了探索非金属输送管道泄漏规律,从数值模拟和试验两个角度,对液体PE管道发生泄漏前后管道内流体与泄漏口的流动状态进行了对比分析,为判定管道泄漏提供了依据。运用FLUENT软件针对PE液体管道泄漏,在不同孔径、不同压力下,构建管道泄漏模型分别进行仿真,分析不同泄漏情景下压力梯度的分布规律。同时在近似相同条件下进行PE管道两点泄漏模拟试验。结果显示:数值模拟与试验结果基本一致,泄漏孔处压力、流速均与管内初始压力成正相关;初始压力和孔径的增大,会导致管内压力下降速度上升,但最终会趋于稳定值。  相似文献   

20.
为了研究超高压水力压裂下支撑剂颗粒进入弯管后冲蚀磨损区域的变化特性。基于液-固两相流理论、Fluent冲蚀模型建立弯管冲蚀模型,结合弯管内流场分析颗粒运动轨迹,引入斯托克斯数(St)探究冲蚀磨损区域变化,并进行数值分析。研究结果表明:弯管中冲蚀磨损发生区域有5处,主要严重区域有3处,弯管流场会改变固体颗粒数量及对壁面冲击动能与运动轨迹,St变化会明显引起冲蚀磨损区域的规律性变化;随着St从0~1至St>1变化,弯管段内壁面外侧(液体进入弯管后的正对区域)与直管段靠近弯管段的侧方区域的冲蚀磨损情况呈现“此消彼长”的规律性差异;管径越小,最大冲蚀速率的增长幅度越明显,增大管径,是减小冲蚀磨损的有效途径。研究结果对压裂弯管的改进设计及管道安全防护具有指导作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号