首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Runaway reactions present a potentially serious threat to the chemical process industry and the community; such reactions occur time and time again often with devastating consequences. The main objective of this research is to study the root causes associated with ammonium nitrate (AN) explosions during storage. The research focuses on AN fertilizers and studies the effects of different types of fertilizer compatible additives on AN thermal decomposition. Reactive Systems Screening Tool (RSST) has been used for reactivity evaluation and to better understand the mechanisms that result in explosion hazards. The results obtained from this tool have been reported in terms of parameters such as “onset” temperature, rate of temperature and pressure rise and maximum temperature. The runaway behavior of AN has been studied as a solid and solution in water. The effect of additives such as sodium sulfate (Na2SO4) and potassium chloride (KCl) has also been studied. Multiple tests have been conducted to determine the characteristics of AN decomposition accurately. The results show that the presence of sodium sulfate can increase the “onset” temperature of AN decomposition thus acting as AN thermal decomposition inhibitor, while potassium chloride tends to decrease the “onset” temperature thus acting as AN thermal decomposition promoter.  相似文献   

2.
Azodicarbonamide (ADC) is a type of azo compound with outstanding application performance, it is always used as a blowing agent in the production of foamed plastics. Based on previous studies, it has been considered harmless in its practical application process. Nevertheless, our research has overturned this standpoint and denoted the special exothermic behavior of ADC under specific use processes, especially when it was placed in a high-pressure system. In this study, a simultaneous thermogravimetric analyzer (STA) was employed to preliminarily evaluate the thermal stability of ADC under atmospheric pressure. Followed with calorimetric experiments by high-pressure differential scanning calorimetry (HP DSC), the exothermic behaviors of ADC under different initial furnace pressures were investigated. The obtained results revealed that the thermal decomposition rate of ADC linearly increases along with increasing testing pressure, which shows a highly autocatalytic characteristic. The peak power of DSC curve breathtakingly reached 73 W/g when the initial testing pressure was set at 4 MPa, and the overall decomposition heat reached 1261 J/g with the scanning rate at 4 °C/min. Furthermore, the decomposition mechanism, thermal hazards, and explosion potential were comprehensively evaluated in this study for the first time.  相似文献   

3.
Obtaining accurate thermal risk assessment parameters of chemical processes and substance properties is essential for improving the safety of chemical production and substance use and storage, and the adiabatic reaction calorimeter (ARC) has been employed by many researchers for this purpose. However, with the improvement and upgrading of the instrument, an examination of the factors that affect its detection accuracy is warranted. A simplified reaction model of the adiabatic thermal decomposition of tert-butyl peroxyacetate was constructed using computational fluid dynamics in which the adiabatic thermal decomposition kinetic model and fluid-solid coupling model were combined to simulate heat transfer. To verify the reliability of the parameters of the numerical calculation model, the effects of the sample cell's material, wall thickness, and mass were investigated in relation to the thermal inertia of the ARC. The results indicated that the thermal inertia of the system was lowest when the sample cell was composed of titanium. When the sample pool's composition is determined, the thermal inertia of the system can be reduced to a certain extent through an approximate increase in the sample mass. Finally, an analysis of the heat flow cloud diagram of the wall of sample pools made from different materials revealed that the thermal conductivity of titanium was high; this information can assist in controlling the adiabatic process.  相似文献   

4.
A mathematical model is described that may be used to determine the safety of hydroxylamine nitrate (HAN) solutions used in solvent extraction purification of plutonium. The most significant hazard associated with hydroxylamine use in processing plutonium is its rapid, autocatalytic reaction with nitric acid which can result in an explosion or pressurization of process vessels with radiological consequences to humans. In addition, heat is produced by the reaction that could potentially ignite process solvents. The HAN decomposition reaction can occur only under specific process conditions (temperature; HAN, plutonium and nitric acid concentrations) and the model is used to identify these conditions so that they can be avoided. A kinetics model has been developed using all of the known significant reactions that could occur in process solutions containing HAN and nitric acid as well as plutonium and iron. The reaction kinetics data (rate laws, rate constants, activation energies) used in the model were obtained from chemical literature sources. The model shows that the autocatalytic HAN reaction with nitric acid is very rapid and is catalyzed by Pu(III) and Fe(II) in process solutions. High temperatures and nitric acid concentrations also promote the reaction.  相似文献   

5.
Ammonium nitrate (AN) has been widely used as a fertilizer for almost a century because it is an excellent nitrogen source. However, AN related explosions continue to occur time and again, despite the fact that AN has been extensively investigated. There have been more than 70 AN-related incidents during the last century, which reemphasize the dire need for further research on AN reactive hazards. This research focuses on the alternatives to make AN safer as a fertilizer by reducing its explosivity, by studying the effect of inhibitors, confinement, and heating rate on AN thermal decomposition using the Reactive Systems Screening Tool (RSST). First, the thermal decomposition of AN in the presence of different types of additives, including sodium bicarbonate, potassium carbonate, and ammonium sulfate, was studied under two concentrations, i.e., 2.8 wt.% and 12.5 wt.%. The results show that they are good inhibitors for AN. Second, the effect of confinement was tested by observing AN decomposition under five different initial pressures, varying from ambient pressure to 187 psig. It is concluded that confinement is dangerous to AN, which should be avoid in AN storage and transportation. Lastly, the effect of heating rate was studied by heating up AN under two heating rates of 0.25 °C min−1 and 2 °C min−1. The lower the heating rate, the lower the “onset” temperature detected.  相似文献   

6.
The first step to be performed during the development of a new industrial process should be the assessment of all hazards associated to the involved compounds. Particularly, the knowledge of all substances thermochemical parameters is a primary feature for such a hazard evaluation. CHETAH (CHEmical Thermodynamic And Hazard evaluation) is a prediction software suitable for calculating potential hazards of chemicals, mixtures or a single reaction that, using only the structure of the involved molecules and Benson's group contribution method, is able to calculate heats of formation, entropies, Gibbs free energies and reaction enthalpies. Because of its ability to predict the potential hazards of a material or mixture, CHETAH is part of the so-called “desktop methods” for early stage chemical safety analysis.In this work, CHETAH software has been used to compile a complete risk database reporting heats of decomposition and Energy Release Potential (ERP) for 342 common use chemicals. These compounds have been gathered into classes depending on their functional groups and similarities in their thermal behavior. Calculated decomposition enthalpies for each of the compounds have also been compared with experimental data obtained with either thermoanalytic or calorimetric techniques (Differential Scanning Calorimeter – DSC – and Accelerating Rate Calorimeter – ARC).  相似文献   

7.
气体二氧化氯的光降解规律研究   总被引:1,自引:0,他引:1  
为研究气体二氧化氯的光降解规律,利用自行设计的光降解装置,考察不同波长光源、温度和气体二氧化氯初始质量浓度对其降解速率的影响,同时以暗室降解作为参比试验。结果表明:分别在365 nm紫外光、日光、254 nm紫外光以及400~700 nm荧光照射下,相同初始质量浓度的气体二氧化氯的降解速率逐渐下降;当温度在15~25℃范围变化时,相同初始质量浓度的气体二氧化氯的日光降解速率基本相同;不同质量浓度的气体二氧化氯在日光照射下,降解速率随气体质量浓度的增加而增大。因此,对气体二氧化氯的光降解起主要作用的波长是在365 nm附近的紫外光;温度对其降解速率基本没有影响;在日光照射下,气体二氧化氯的降解速率与质量浓度的一次方成正比,属于一级反应,其半衰期与初始质量浓度无关,仅与反应速率常数k有关,半衰期约为63 min。  相似文献   

8.
9.
The pure decomposition behavior of 2,2′-azobis (isobutyronitrile) (AIBN) and its physical phase transformation were examined and discussed. The thermal decomposition of this self-reactive azo compound was explored using differential scanning calorimetry (DSC) to elucidate the stages in the progress of this chemical reaction. DSC was used to predict the kinetic and process safety parameters, such as self-accelerating decomposition temperature (SADT), time to maximum reaction rate under adiabatic conditions (TMRad), and apparent activation energy (Ea), under isothermal and adiabatic conditions with thermal analysis models. Moreover, vent sizing package 2 (VSP2) was applied to examine the runaway reaction combined with simulation and experiments for thermal hazard assessment of AIBN. A thorough understanding of this reaction process can identify AIBN as a hazardous and vulnerable chemical during upset situations. The sublimation and melting of AIBN near its apparent onset decomposition temperature contributed to the initial steps of the reaction and explained the exothermic attributes of the peaks observed in the calorimetric investigation.  相似文献   

10.
To improve the fire extinguishing efficiency of existing dry powders, a new type of superfine dry powder was prepared using magnesium hydroxide as an additive. In our study, a thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were used to analyze the thermal decomposition of the synthesized powders. The temperature of thermal decomposition, weight loss, and other thermodynamic parameters of the fire extinguishing powders were analyzed to explain the performance advantages of the compound superfine powder. Through a small-scale fire experiment, the physical parameters of the extinguishing process—such as extinguish time, powder dosage, smoke concentration, and minimum extinguishing concentration—were quantified for the suppression of a diesel fire using the different powders; these parameters were used to evaluate the fire extinguishing capacity and toxic gas suppression ability of the powders. TGA demonstrated that the compound superfine powder decomposed more quickly and its thermal decomposition process was much shorter than those of the other powders. The DSC data indicated that the compound superfine powder could decrease the characteristic temperature at each stage and thus the powder absorbed the flame's heat more quickly and suppressed flame propagation. The fire extinguishing test demonstrated that the consumption of the three types of fire extinguishing powder decreased with an increase in the driving pressure, and the order of powder dosage was as follows: commercial dry powder > superfine powder > compound superfine powder. Similarly, the order of minimum extinguishing concentration was as follows: commercial dry powder > superfine powder > compound superfine powder. Furthermore, the compound superfine powder exhibited a greater capacity for controlling toxic and harmful gas emissions.  相似文献   

11.
传统的氧烛是将氯酸盐或高氯酸盐与金属燃料、催化剂混合后压缩所制得。其产氧原理是利用燃料燃烧所释放的热量来促成氯酸盐或高氯酸盐分解,释放出氧气。氧烛不仅因燃料燃烧而消耗所产生的氧气,而且在产氧过程中往往会产生少量的氯气等有害副产品。为解决上述两个缺陷,笔者提出一种新的微波诱导催化技术来代替传统的燃料加热方法。即在氧烛配方中舍弃燃料,而使用外加的微波作为氯酸盐分解的热源。具体方法是先对氯酸钠氧烛的热过程进行数值模拟,通过反应温度的差异解释氯气作为副产品产生的机理;为验证利用微波诱导加热代替燃料加热的可行性,对TE10基模微波场中氯酸钠的热过程进行数值模拟。计算结果表明,氯酸钠在微波场中升温均匀。因此,微波诱导是抑制产氧过程中有害副产品产生的一种有效途径。  相似文献   

12.
为研究储氢材料Kβ-MgH2分解放气过程,在以10 ℃为步长,80~130 ℃区间内,48,120 h时间条件下,采用基于传感器压力变化计算被测物质分解放气量的动态真空安定性测试(DVST)方法,得到在上述条件下Kβ-MgH2分解过程中的压力变化、Kβ-MgH2的单位分解放气量和在不同研究温度下的分解放气规律,分析DVST测试时长的设置方法,验证Kβ-MgH2在时温等效系数为2.5时的时温等效特性。结果表明:在选定的测试条件下,Kβ-MgH2分解放气量稳定,单位分解放气量与样品状态无关;Kβ-MgH2单位质量放气量先快速增加,随后趋于平稳,测试温度越高,Kβ-MgH2放气速率越快,单位质量放气量越大;根据选定的测试温度和温度变化步长,可知Kβ-MgH2分解放气过程具有时温等效性。  相似文献   

13.
When ortho-nitrated benzoic acids are chlorinated in xylene and acetonitrile, the product gases, HCl and SO2, dissolve in the solvent mixture. Previously measured solubilities [Lever, S. D., Papadaki, M. (2004a). o-Chlorination of 2-nitrobenzoic acid with thionly chloride in xylene and acetonitrile. Solubility study of hydrogen chloride and sulphur dioxide in xylene and acetonitrile, IChemE transactions part B. Process Safety and Environmental Protection. 48–60.] were compared to other published data and found to be in very good agreement. The heat of solution of SO2 in xylene was evaluated calorimetrically and compared to the value obtained from our previous experimental work. In our previous work [Lever, S. D., Papadaki, M. (2004b). Study of condition-dependent decomposition reactions—the thermal behaviour and decomposItion of 2-nitrobenzoyl chloride part_I. Journal of Hazardous Materials. 115; pp. 91–100], it was reported that the products of the decomposition are condition dependent. The current study showed that the decomposition is extensively promoted by the presence of HCl. This has important safety implications should the process operating temperature be reduced and HCl solution in the solvent mixture be increased. If a thermal runaway began in the increased availability of HCl, an undesirable escalation of the runaway could occur.  相似文献   

14.
This work shows an application of inherent safety principles to a reaction widely used in the pharmaceutical industry. More specifically, it incorporates the teachings of Trevor Kletz into the design of an inherently safer process for the N-oxidation of alkylpyridines. This reaction is of interest because of the hazards resulting from the undesired, gas-generating decomposition of hydrogen peroxide, the oxidizing agent. The generation of oxygen, combined with the flammability of the alkylpyridines, represents a serious fire and explosion hazard for this process. The purpose of this paper is to demonstrate how an inherently safer process can be potentially achieved by designing improved reactors and by assessing conditions that reduce or eliminate the hazards. Furthermore, it is shown that such improvement in safety increases the efficiency of the process and results in a cost reduction.  相似文献   

15.
Aiming at the green and sustainable energy substitution and supply, biomass valorization has become a potential strategy to face the energy crisis and increasing demand all over the world from long-term perspectives. Among the bio-based chemicals, γ-valerolactone (GVL) production from hydrogenation of levulinic acid (LA) and its esters has attracted great interests due to its wide applications, such as fuel, solvent, and additives. However, the safety evaluation for this hydrogenation reaction has received few attentions. To fill this gap, thermal hazard evaluation for GVL production from LA hydrogenation by using formic acid (FA) as hydrogen donor was first performed. The process conditions were optimized by using orthogonal experimental method for further calorimetry study. Thermal stability of chemicals and thermal risk of reaction process under adiabatic conditions were investigated by applying differential scanning calorimetry and accelerating rate calorimeter Phi-Tec II, respectively. The results revealed that the chemicals were stable in temperature range from 30 to 250 °C except FA due to its evaporation and decomposition with endothermic behaviors. The reaction process under isothermal and adiabatic conditions demonstrates that the decomposition of FA was rapid and followed by the hydrogenation of LA to GVL. Based on kinetic model under adiabatic conditions and risk matrix, the thermal runaway risk was found to be medium, indicating that certain safety measures should be properly designed and taken for loss prevention. This work could benefit the safety design and thermal risk prevention for GVL production by using FA as hydrogen donor.  相似文献   

16.
使用加速量热仪(ARC)研究硝酸异辛酯(EHN)的热分解,得到热分解温度随时间的变化曲线,自放热速率、分解压力随温度的变化曲线以及分解压力随升温速率的变化曲线。分析在绝热条件下硝酸异辛酯的热分解反应动力学和热分解过程,计算表观活化能、指前因子和反应热等参数。根据绝热热分解的起始温度和反应热数据,给出硝酸异辛酯在反应危险度等级中的分类,并计算在75℃时的反应风险指数。  相似文献   

17.
Hydroxylamine, NH2OH, thermal decomposition has been responsible for two serious accidents. However, its reactive behavior and the synergy of factors affecting the rate of its decomposition are not understood. In this work, isoperibolic calorimetric measurements were performed in a metal reactor, in the temperature range 130–150 °C, employing 30–80 ml solutions containing 1.4–20 g of pure hydroxylamine (2.8–40 g of the supplied reagent). The calorimetric measurements were performed in order to assess the effects that NH2OH concentration, temperature and reactor venting has on NH2OH rate of decomposition. The measurements showed that increased concentration or temperature, results in faster reactions and probably higher pressure generation per mass of reactant, with concentration having a more pronounced effect. However, when both factors work synergistically the result is dramatically worse in terms of reaction rate. The pressure generation is also different, thus indicating that different reaction pathways predominate each time. Venting the produced gases in stages resulted in the highest mass loss of the solution.  相似文献   

18.
为研究有机酸对H发泡剂热分解特性的影响,采用量热仪测试不同质量分数苯甲酸、水杨酸、邻苯二甲酸与H发泡剂混合物的热分解特性参数。结果表明:H发泡剂分解时,随着升温速率增加,外推起始分解温度Te、峰值温度Tp与最大放热速率随之升高。3种有机酸的加入均可以促进H发泡剂的分解,随着有机酸质量分数的增加,其外推起始分解温度和峰值温度呈现同步下降趋势。有机酸熔融生成的H+对H发泡剂分解过程具有显著影响。加入水杨酸能显著降低H发泡剂分解的热释放速率,降低H发泡剂分解过程中的热风险,当水杨酸质量分数达到24%时,较之混有苯甲酸与邻苯二甲酸的H发泡剂外推起始分解温度降低20 ℃。  相似文献   

19.
为评价丁基钠黄药的热稳定性,采用真空安定性测试仪和C600量热仪对其热分解过程进行了研究。分别考察了质量为1.0g的样品在温度为60℃、70℃、80℃、90℃、100℃和质量为0.5g、0.75g、1.0g、1.25g、1.5g、1.75g、2.0g的样品在温度80℃条件下的热分解特性。结果表明,采用真空安定性测试仪在80℃、21mL真空封闭空间的测试条件下,当丁基钠黄药质量小于1.25g时,其平均分解速率较慢,与时间近似成线性关系;当样品质量大于1.50g时,其平均分解速率与时间近似呈一条S形曲线。平均分解速率与质量不是成正比,而是先增加后减小,质量为1.65g时,平均分解速率最大,为0.0957mL/(g.h)。采用C600量热仪确定了丁基钠黄药的分解过程为吸热反应,起始分解温度为93℃,分解过程吸收热量为110.51J/g。明确了温度、堆积样品量的大小和时间为影响丁基钠黄药热稳定性的主要因素。  相似文献   

20.
The dicumyl peroxide (DCP) is widely used as a polymerization initiator, catalyst and vulcanizing agent in the chemical industry. A number of accidents have been caused by its thermal instability in storage or manufacturing process. Thus, its hazard characteristics have to be clearly identified. First of all, the differential scanning calorimeter (DSC) is used to measure the heat of decomposition reaction, which can contribute to understanding the reaction characteristics of DCP. The accelerating rate calorimeter (ARC) is used to measure the rates of temperature and pressure rises of decomposition reaction, and then the kinetics parameters are estimated. Furthermore, the MIKE 3 apparatus and the 20-l-Apparatus are used to measure and analyze the dust explosion characteristics of DCP at room temperature and atmospheric pressure. Finally, Semenov's thermal explosion theory is applied to investigate the critical runaway condition and the stability criterion of decomposition reaction, and to build the relationship of critical temperature, convective heat transfer coefficient, heat transfer surface area and ambient temperature. These results contribute to improving the safety in the reaction, transportation and storage processes of DCP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号