首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rise in discarded or unwanted medications (UMs) is becoming an issue of great concern, as it has the potential to harm the components of the environment where it is discarded: particularly air, water and soil. To combat this problem, many researchers have investigated the best approach for the collection and proper disposal of UMs. This paper intends to elaborate upon a safe solution for treating this waste, specifically through a process of solidification/stabilization (S/S) that involves mixing UMs with asphalt cement and asphalt concrete mixtures. Volumes of 5, 10, 15 and 20 % of a mixture of UMs were mixed with asphalt cement and the analyzed properties of the mixture of UMs–asphalt included: softening point, ductility, penetration, flash and fire points, specific gravity and rotational viscosity. Marshal stability, flow, air voids, unit weight, voids in mineral aggregate (VMA) and voids filled with binder (VFB) of asphalt concrete mixture were also investigated. Results showed that this approach of S/S is a promising method for dual achievements to solve an environmental problem and to use the waste for road construction.  相似文献   

2.
Sewage sludge with high organic content is particularly difficult to dewater before disposal in landfill. In this study, different hybrid cement binders were investigated to evaluate their ability to dewater the sewage sludge with high organic content. After 7 days of stabilization, the CASC (Mayenite/Sulfoaluminate cement) hybrid binder showed an excellent efficiency on both water content reduction and strength development; the water content and unconfined compressive strength value of solidified sludge reached 52.43 % and 109.55 kPa, respectively, at 8 % binder/sludge mass rate. The horizontal vibration leaching test (HJ 557-2009) indicated that leachability of heavy metals of the CASC-solidified sludge was far lower than that of non-solidified sludge and CAPC-solidified sludge. Furthermore, SEM and XRD analyses suggested that certain hydrates formed in the solidification process might have accelerated the depletion of interstitial water and strength development in the CASC-solidified sludge.  相似文献   

3.
Immobilization of a model liquid organic pollutant, i.e. the 2-chloroaniline (2-CA), into a cement matrix using organoclays as pre-sorbent agents was investigated. Five cement-clay pastes were prepared with different nominal water-to-cement ratios (w/c=0.40, 0.25 and 0.15 wt/wt) and various amounts of waste (waste-to-cement o/c=0.20, 0.60 and 1.00 wt/wt); for comparison, a neat cement paste was also prepared. Dynamic leach tests were performed on solidified monoliths in order to assess the successful immobilization of the 2-CA. In monoliths at constant w/c ratio (0.40) the total amount of pollutant released increases with its initial content, and ranges from 15 to 35% with respect to it. By lowering w/c from 0.40 to 0.15 at constant o/c, the performances improved (<25% released). The microstructure of the hardened cement-clay pastes was characterized by quantitative X-ray diffraction (QXRD) and electronic microscopy (SEM-EDS) techniques; hydration degree was estimated by means of thermogravimetric analysis (TGA) in addition to QXRD. No evidence of any chemical reaction between 2-CA and cement phases was found. Moreover, it was shown that the most important factors affecting the cement hydration process were the total water content, i.e. the one taking also into account the water contained in the wet polluted clay, and the amount of 2-CA not firmly sorbed by the organoclay, and then freely dispersed in the paste.  相似文献   

4.
Elemental mercury, contaminated with radionuclides, presents a waste disposal problem throughout the Department of Energy complex. In this paper we describe a new process to immobilize elemental mercury wastes, including those contaminated with radionuclides, in a form that is non-dispersible, will meet EPA leaching criteria, and has low mercury vapor pressure. In this stabilization and solidification process, elemental mercury is combined with an excess of powdered sulfur polymer cement (SPC) and sulfide additives in a mixing vessel and heated to approximately 40 degrees C for several hours, until all of the mercury is converted into mercuric sulfide (HgS). Additional SPC is then added and the temperature of the mixture raised to 135 degrees C, resulting in a molten liquid which is poured into a mold where it cools and solidifies. The final treated waste was characterized by powder X-ray diffraction and found to be a mixture of the hexagonal and orthorhombic forms of mercuric sulfide. The Toxicity Characteristic Leaching Procedure was used to assess mercury releases, which for the optimized process averaged 25.8 microg/l, with some samples being well below the new EPA Universal Treatment Standard of 25 microg/l. Longer term leach tests were also conducted, indicating that the leaching process was dominated by diffusion. Values for the effective diffusion coefficient averaged 7.6x10(-18) cm2/s. Concentrations of mercury vapor from treated waste in equilibrium static headspace tests averaged 0.6 mg/m3.  相似文献   

5.
Cement was used to solidify/stabilize the abandoned mine tailings contaminated primarily with arsenic (up to 88 mg/kg) and lead (up to 35 mg/kg). Solidified/stabilized (s/s) forms with a range of cement contents, 5–30 wt%, were evaluated to determine the optimal binder content. Unconfined compression strength test (UCS), Korean standard leaching tests, toxicity characteristic leaching procedures (TCLP), and synthetic precipitation leaching procedure (SPLP) were used for physical and chemical characterization of the s/s forms. Addition of 5% cement was enough for the s/s forms to satisfy the UCS requirements (0.35 MPa). The addition of 7.5% cement remarkably reduced the leachability of arsenic in tailings. However, that of lead tends to increase slightly with increase of cement content due to its amphoteric nature. The discussions were made for determination of optimal binder content and for results from different evaluation procedures.  相似文献   

6.
梁颖 《化工环保》2021,41(1):61-65
通过比较不同稳定剂、固化剂、土壤pH条件下土壤中重金属锑的修复效果,研究了锑的固化-稳定化影响因素并探讨了相关稳定化机理.实验结果表明:铁基稳定剂的效果明显优于磷酸二氢钾和腐殖酸钠,而零价铁的稳定化效果更优于硫酸铁和硫酸亚铁,较适宜的稳定剂投加量为5%(w);水泥做固化剂对锑的稳定化效果优于氧化钙,最佳投加量为5%(w...  相似文献   

7.
8.
The application of a catalytic-activated carbon to the solidification/stabilization (S/S) process for immobilization of phenol and 2-chlorophenol and catalytic decomposition was investigated. The effect of the catalytic-activated carbon, in amounts of 0.25-1% (by dry sand wt.), on the leaching of phenol and 2-chlorophenol was studied. H2O2 was added as a source of oxygen in the amounts of 1 or 5%, with respect to liquid solution weight. Toxicity characteristic leaching procedure (TCLP) leaching tests showed that adding the catalytic-activated carbon to the S/S matrix significantly reduced the leachability of both phenol and 2-chlorophenol. Only trace amounts of phenol were found in the leaching solution, while the concentration of 2-chlorophenol was below the detection limit of the gas chromatography (GC). Without addition of the catalytic-activated carbon, 87% of the phenol and 92% of the 2-chlorophenol leached. Additional tests on TCLP leachate solutions using GC-mass spectrometry indicated the existence of simple, less hazardous, hydrocarbons, including alcohol. Catalytic-activated carbons treated with phenol in the presence of H2O2 were also analyzed using time of flight-secondary ion mass spectroscopy (TOF-SIMS). Results indicate that the phenol aromatic ring was broken by the catalytic reaction.  相似文献   

9.
The treatment of organically contaminated industrial wastes by cement-based stabilization/solidification has, in the past, been restricted by the detrimental effect of organic compounds on cement hydration. This work investigates the use of organophilic clays as adsorbents for the organic components of industrial wastes prior to conventional cement-based solidification. Three industrial wastes containing between 2–12% organic carbon and trace heavy metal contamination were treated with a quaternary ammonium salt exchanged clay. The organic component of all three wastes was well adsorbed by the clay. Solidification of the waste/clay mixes produced a monolithic mass with adequate strength and very low leaching of either the organic compounds or the metals. This study has shown that organophilic clays can act as successful adsorbents for the organic contaminants of industrial wastes and enable them to be treated by cement-based solidification.  相似文献   

10.
This article describes portland cement-based solidification/stabilization (S/S) treatment of heavy metal-contaminated soil. The soil was discovered during highway construction in West Jordan, Utah. Environmental Chemical Corporation (ECC) performed an emergency response to remediate the soil under contract with the EPA and the United States Bureau of Reclamation (USBR). The soil was treated by S/S. Treatment of the soil, contaminated with lead and arsenic, involved: (1) excavation, (2) size segregation, (3) reduction of oversized particles, (4) addition and mixture of portland cement and cement kiln dust, and (5) beneficial reuse of the treated soil as a subbase. S/S treatment successfully reduced Toxicity Characteristic Leaching Procedure (TCLP) concentrations of the contaminants to below regulatory levels.  相似文献   

11.
A promising strategy for effectively incorporating metal-containing waste materials into a variety of ceramic products was devised in this study. Elemental analysis confirmed that copper was the predominant metal component in the collected electroplating sludge, and aluminum was the predominant constituent of waterworks sludge collected in Hong Kong. The use of waterworks sludge as an aluminum-rich precursor material to facilitate copper stabilization under thermal conditions provides a promising waste-to-resource strategy. When sintering the mixture of copper sludge and the 900 °C calcined waterworks sludge, the CuAl2O4 spinel phase was first detected at 650 °C and became the predominant product phase at temperatures higher than 850 °C. Quantification of the XRD pattern using the Rietveld refinement method revealed that the weight of the CuAl2O4 spinel phase reached over 50% at 850 °C. The strong signals of the CuAl2O4 phase continued until the temperature reached 1150 °C, and further sintering initiated the generation of the other copper-hosting phases (CuAlO2, Cu2O, and CuO). The copper stabilization effect was evaluated by the copper leachability of the CuAl2O4 and CuO via the prolonged leaching experiments at a pH value of 4.9. The leaching results showed that the CuAl2O4 phase was superior to the CuAlO2 and CuO phases for immobilizing hazardous copper over longer leaching periods. The findings clearly indicate that spinel formation is the most crucial metal stabilization mechanism when sintering multiphase copper sludge with aluminum-rich waterworks sludge, and suggest a promising and reliable technique for reusing both types of sludge waste for ceramic materials.  相似文献   

12.
The sludge from a steel processing unit bearing zinc, lead, iron, and manganese was solidified with ordinary Portland cement. The waste was stabilized in the specimens with a waste/binder ratio range of 0.16–4.0. On the basis of the available leaching and unconfined compressive strength, the performance of the solidified/stabilized waste was compared for different numbers of curing days. It was found that curing up to 28 days resulted in a performance improvement, as shown by less leaching of heavy metals and the increased unconfined compressive strength of the specimen. The treatment effectiveness of the solidification/stabilization process was assessed for the metals Pb, Zn, Fe, and Mn, and was found to be 89%, 95%, 74%, and 90%, respectively, for an optimum ratio of 4.0 after 28 days of curing.  相似文献   

13.
Stabilization/solidification (S/S) processes have been used as the final treatment step for hazardous wastes prior to land disposal. Fly ash is a by-product of coal-fired power generation; a significant proportion of this material is low-grade, reject material (rFA) that is unsuitable as a cement replacement due to its high carbon content and large particle size (>45 microm). Flue gas desulphurization (FGD) sludge is a by-product from the air pollution control systems used in coal-fired power plants. The objective of this work was to investigate the performance of S/S waste binder systems containing these two waste materials (rFA and FGD). Strength tests show that cement-based waste forms with rFA and FGD replacement were suitable for disposal in landfills. The addition of an appropriate quantity of Ca(OH)2 and FGD reduces the deleterious effect of heavy metals on strength development. Results of TCLP testing and the progressive TCLP test show that cement-rFA-Ca(OH)2 systems with a range of FGD additions can form an effective S/S binder. The Leachability Index indicates that cement-based waste forms with rFA replacement were effective in reducing the mobility of heavy metals.  相似文献   

14.
The performance of ordinary and organophilic clays in the solidification and stabilization process was investigated with respect to the unconfined compressive strength (UCS) and leaching of phenol‐contaminated soil. The samples contained 2,000 mg/kg of phenol. White cement (15 and 30 percent by weight [wt%]) was used as binder, while ordinary and organophilic clays (8, 15, and 30 wt%) were applied as additives for reducing the harmful effects of phenol interference in cement hydration with a 28‐day curing time. The results revealed that the UCS is reduced by increasing the amount of clays. The values of UCS of all samples met the minimum standards specified for disposal in sanitary landfills determined by developed countries. The leaching test demonstrated that the degree of leaching diminished with increased clay content in all samples of both clay types. This reduction was observed to be greater in samples containing organophilic clay than in bentonite clay samples. Furthermore, the best composition of the materials tested was determined to be 30 wt% white cement plus 13.3 wt% organophilic clay with a compressive strength of 3,839 kPa, phenol removal percentage of 80 percent, and a cost of $67 per ton of contaminated soil.  相似文献   

15.
Journal of Material Cycles and Waste Management - For environmental protection, safe disposal of toxic pollutants such as heavy metal is very important since they are regarded as hazardous waste....  相似文献   

16.
The survival of viruses has been measured in bench scale stabilization units. A strain of coxsackievirus B3 was seeded in sludge and recoveries were measured at intervals from 1 h to 70 days. Mesophilic anaerobic digesters were operated at 33°C with detention times of 15 and 33 days. Thermophilic digesters were operated at 50, 53 and 56°C with detention times of 4 to 10 days. Aerobic stabilization was carried out at 5, 20 and 33°C (with detention times of 30, 20 and 15 days, respectively.Controls were run at the same temperature in Hanks' balanced salt solution.Inactivation of virus was slower in thermophilic anaerobic digesters than in the controls and the rate of inactivation often fell off with time (tailing). In mesophilic anaerobic digesters and aerobic stabilization units, the rates of inactivation were greater than in the controls.The rates are, nevertheless, very much faster at the higher temperatures. Up to 3 log units of destruction might be obtained if the interval between feeding and drawing at 53°C were 10 h and 5 log units if it were 24 h. Retention times would have to be serveral days at 33°C to obtain similar reduction in virus content.  相似文献   

17.
An extremely acidic, heavy metal-rich sludge (pH=-1.2) was scrubbed with a Class-F fly ash in order to simultaneously neutralize the acidity and stabilize the heavy metals contained in both wastes. This paper outlines the leaching behavior of the aggregate material generated by scrubbing. For proper fly ash/sludge ratios, the fly ash acted as an outstanding neutralizer for the acidic waste. Leaching of heavy metals from the aggregate samples was below the environmental limits within a pH range between 3 and 9. Subsequent washing of the leached aggregate with acidic CALWET solutions did not result in an additional release of heavy metals. It is proposed that coordinative bonding of the metal cations onto neutral surface sites and electrostatic adsorption led to stabilization of the heavy metals within the aggregate structure below hydrolysis pHs.  相似文献   

18.
19.
20.
The analysis of heavy metals is a very important task to assess the potential environmental and health risk associated with the sludge coming from wastewater treatment plants (WWTPs). However, it is necessary to apply sequential extraction techniques to obtain suitable information about their bioavailability or toxicity. In this paper, a sequential extraction scheme according to the Standard, Measurements and Testing Programme of the European Commission was applied to sludge samples collected from ten anaerobic wastewater stabilization ponds (WSPs) located in southern Spain. Al, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Ti and Zn were determined in the sludge extracts by inductively coupled plasma atomic emission spectrometry. In relation to current international legislation for the use of sludge for agricultural purposes, none of the metal concentrations exceeded maximum permitted levels. Overall, heavy metals were mainly associated with the two less-available fractions (34% oxidizable metal and 55% residual metal). Only Mn and Zn showed the highest share of the available (exchangeable and reducible) fractions (25-48%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号