首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SINTEF Applied Chemistry has been working in the field of in situ burning since 1988, beginning with the first open water testing of the 3M fire proof boom which took place on Spitsbergen. In recent years, the focus of SINTEF's research activities in this area has been on the burning of emulsions. An experimental programme was initiated by NOFO in 1990 to study the in situ burning of water-in-oil (w/o) emulsions, as part of a wider NOFO programme ‘Oil spill contingency in Northern and Arctic waters’ (ONA). The research conducted under this programme has addressed many areas of in situ burning including:
  • •• study of processes governing burning emulsions
  • •• development of ignition techniques for emulsions
  • •• effect of environmental conditions on burning
  • •• burning crude oil and emulsions in broken ice
  • •• uncontained burning of crude oil and emulsions.
  相似文献   

2.
This paper focuses on the cost recovery issues arising through the operation of the International Oil Pollution Compensation Fund (IOPC) and administrative matters which arose following the Braer and Sea Empress oil tanker pollution incidents in the UK. Each of these oil spills brought very different problems.Any major oil spill will have prolonged economic and social consequences for the communities affected. Membership of the International Oil Pollution Compensation Fund (IOPC Fund) will do much to soften the impact as regards economic damage. However, the operation of the Fund brings difficulties which may not have been considered by the administration prior to the spill. Some of the difficulties are foreseeable.It covers details of the international compensation and liability regimes, it considers a number of administrative consequences and highlights seven lessons that have been learned in the UK in the light of recent experience. These lessons are:
  • •Claims may not be paid quickly or in full.
  • •Claimants will need advice and government involvement.
  • •Action by the government may be needed to complement the IOPC Fund.
  • •Governments have to balance their obligations as a member state with the needs of claimants.
  • •It is better for claimants to keep matters out of court for as long as possible.
  • •Administrative consequences will continue for a long time after the oil has been cleared from the shoreline.
  • •Each major oil spill brings different cost recovery problems and will also bring demands ‘to learn the lessons’.
In much the same way as contingency plans are regularly tested, each state party to the regime would be wise, from time to time, to think through the likely scenarios so as to better prepare themselves in the light of experiences elsewhere. The United Kingdom has had rather more experience in recent years than it would have wished!  相似文献   

3.
At an excitation wavelength of 320 nm, the ultraviolet fluorescence (UVF) spectra emitted by reference oils dispersed in seawater with mineral fines yielded two important results:
  • (1)Resuspended negatively-buoyant oil–mineral aggregates (OMAs) exhibited maximum fluorescence at an emission wavelength of 450 nm and,
  • (2)the hydrocarbons dispersed and/or dissolved in the seawater that remained after the aggregates had settled out exhibited maximum fluorescence at 355 nm.
Data from UVF analysis (450 nm emission) and microscopical observations of seven reference oils suggest that higher-viscosity oils are less likely to form aggregates with mineral fines. This decline in OMA formation with increased oil viscosity could be predicted from a decrease in the ratio of emission at 450–355 nm. The data suggest that direct UVF spectroscopy of dispersed/dissolved oil and OMAs in seawater can be used to predict and verify the extent of OMA formation.  相似文献   

4.
Based on a study carried out by the Versuchsanstalt für Wasserbau und Schiffbau, Berlin – VWS for the German Environmental Agency, this report represents an attempt to summarize the knowledge in the Federal Republic of Germany and world-wide concerning the control of hazards from discharged oil and other liquid chemicals after casualties on and in the hydrosphere. Because of technical reasons, control measures can be classified into passive and active types; this classification has been adopted for this report in the following order:
  • •Part 1: Passive mechanisms: Booms and barriers.
  • •Part 2: Active mechanisms: Recovery devices.
  • •Part 3: Other means: Dispersion.
  • •Part 4: Control of sinking and/or sunken chemicals.
Part 1 not only evaluates the behaviour of liquid chemicals on water, but also considers the physical fundamentals underlying the functioning of booms and barriers. Some widely used definitions and relations (such as the relationship between the blocking of liquid chemicals and boom draught or efficiency) will be refined. The discussion of the physical fundamentals is presented in the broadest sense and concludes with practical advice on the deployment of booms.Part 2 attempts to standardize recovery devices based on the application of fundamental physical principles. Four classes were identified and have been used to classify pick-up devices. Once again basic physical fundamentals have been presented in a way that facilitates deductions on application possibilities. The evaluation showed that practically only those methods that utilize adhesion and “hole-in-the-water” principles can be operated with sufficient efficiency which, in turn, reflects the world-wide state-of-the-art in equipment development. Special attention has been paid to hybrid systems which utilize both passive and active methodologies.In Part 3, the basics of dispersion of oil and other floating liquid chemicals are considered. It can be shown that mechanical dispersion has the same effect as its chemical counterpart. This relationship recognizes the necessity for applying a mechanical agitator for using dispersants effectively. This strategy calls into question the efficiency of chemical dispersion.Part 4 deals with the behaviour and control options for sinking and/or sunken liquid chemicals. Contrary to the general opinion that liquid chemicals which have disappeared from the surface cannot be controlled, it has been found that, under certain conditions, even these chemicals can be “herded” and recovered. It will be shown that practically the same techniques can be applied to submerged chemicals as has been used for the recovery of floating hazardous substances.  相似文献   

5.
An initial operation in Paris has made it possible to gauge the effectiveness of a selective pick-up of non-returnable bottles according to the following criteria: willingness of the people of Paris, the danger of breakage when collecting in special containers and the technical and economic aspects of the implementation of an industrial-scale sorting machine. In view of the positive results of this experiment, the following system has been installed:
  • •• Containers have been placed on the public walkway, the drop of bottles being at the most 1 m.
  • •• The bottles are transported to a plant with an annual capacity of 35,000 tons of glass or 20 million bottles.
  • •• Following a first hand-sorting process, the bottles are washed and sorted in an automatic sorter.
Currently two sizes of each of three categories of wine bottles are recovered. Rejected bottles are sent to the scrap pile and shipped as cullett to glass factories to be melted down.This design constitute a complete system which enables us to recover not only glass but bottles which are intact and thus represent a higher level of energy savings.  相似文献   

6.
Rheological studies were conducted on the water-in-oil emulsions of three crude oils: Arabian Light; Green Canyon; and Sockeye. The emulsions were found to fall into three categories on the basis of both rheological properties and visual appearance: stable; mesostable; and unstable. Stable emulsions are characterized by high viscosities and elasticities and are indefinitely stable. In this study stable emulsions showed true viscosities (viscosity with elasticity separated) approximately 700 times that of the starting oil and mesostable emulsions approximately 50 times that of the starting oil. Mesostable emulsions break into water, oil and sometimes emulsion within about 3 d.  相似文献   

7.
8.
O/W型乳化液的处理   总被引:3,自引:0,他引:3  
采用药剂破乳-电解破乳工艺处理O/W型乳化液,药剂破乳选用聚合硫酸铁为破乳剂,破乳时最佳PH为8,聚合硫酸铁的最佳投量为1500mg/L,电解破乳选用铁作阳极,铝作阴极,电流密度0.86A/dm^2,极距25mm,电解时间3h。在上述条件下,破乳效果良好,出水清澈透明,COD总去除率可达到96-97%。  相似文献   

9.
This paper discusses the changes in spilled oil properties over time and how these changes affect differential density separation. It presents methods to improve differential density, and operational effectiveness when oil-water separation is incorporated in a recovery system. Separators function because of the difference in density between oil and seawater. As an oil weathers this difference decreases, because the oil density increases as the lighter components evaporate. The density also increases as the oil incorporates water droplets to form a water-in-oil emulsion. These changes occur simultaneously during weathering and reduce the effectiveness of separators. Today, the state-of-the-art technologies have limited capabilities for separating spilled marine oil that has weathered.For separation of emulsified water in an emulsion, the viscosity of the oil will have a significant impact on drag forces, reducing the effect of gravity or centrifugal separation. Since water content in an emulsion greatly increases the clean up volume (which can contain as much as two to five times as much water as the volume of recovered oil), it is equally important to remove water from an emulsion as to remove free water recovered owing to low skimmer effectiveness. Removal of both free water and water from an emulsion, has the potential to increase effective skimming time, recovery effectiveness and capacity, and facilitate waste handling and disposal. Therefore, effective oil and water separation in marine oil spill clean-up operations may be a more critical process than credited because it can mean that fewer resources are needed to clean up an oil spill with subsequent effects on capital investment and basic stand-by and operating costs for a spill response organization.A large increase in continuous skimming time and recovery has been demonstrated for total water (free and emulsified water) separation. Assuming a 200 m3 storage tank, 100 m3 h−1 skimmer capacity, 25% skimmer effectiveness, and 80% water content in the emulsion, the time of continuous operation (before discharge of oil residue is needed), increases from 2 to 40 h and recovery of oil residue from 10 to 200 m3.Use of emulsion breakers to enhance and accelerate the separation process may, in some cases, be a rapid and cost effective method to separate crude oil emulsions. Decrease of water content in an emulsion, by heating or use of emulsion breakers and subsequent reduction in viscosity, may improve pumpability, reduce transfer and discharge time, and can reduce oily waste handling, and disposal costs by a factor of 10. However, effective use of emulsion breakers is dependant on the effectiveness of the product, oil properties, application methods and time of application after a spill.  相似文献   

10.
The subject of investigation was exhausted cooling oil-emulsions coming from copper wire drawing. The summary content of the organic substances in emulsions expressed as COD, ranged from 200 to 300 gO2/dm3. The total amount of copper was about 7 g/dm3. The suggested method of treatment was based on separation of emulsion, thermocatalytic oxidation of the oil phase and electrochemical reduction of copper. The method allows oxidation of 99% organic substances in an autothermic way and over 90% recovery of metallic copper contained in emulsion with energy consumption at 2.2 kWh/kg.  相似文献   

11.
分别以H2O2和Na2CO3·1.5H2O2活化Na2S2O4降解原油污染土壤,考察氧化后土壤的原油降解率、pH、微生物含量以及原油组分的变化,比较两种活化剂对过硫酸钠氧化—微生物降解联用技术修复原油污染土壤效果的影响。实验结果表明:两种活化剂氧化处理7 d后的最大原油降解率分别达到42.94%和44.07%;氧化后原油组分的占比情况发生变化,w(饱和烃)增加5.28~11.93个百分点,而w(芳香烃)、w(胶质)和w(沥青质)则分别降低了0.10~2.53,2.53~3.80,0.94~3.43个百分点;添加微生物菌剂进行50 d的生物降解后,两种活化剂的最大原油降解率分别达到71.00%和75.70%,比单独微生物降解时提高了5.96~12.08个百分点。  相似文献   

12.
13.
In 1970, approximately 2000 m3 of Bunker C crude oil impacted 300 km of Nova Scotia’s coastline following the grounding of the tanker Arrow. Only 10% of the contaminated coast was subjected to cleanup, the remainder was left to cleanse naturally. To determine the long-term environmental impact of residual oil from this spill event, samples of sediment and interstitial water were recovered in 1993, 1997 and 2000 from a sheltered lagoon in Black Duck Cove. This heavily oiled site was intentionally left to recover on its own. Visual observations and chemical analysis confirmed that substantial quantities of the weathered cargo oil were still present within the sediments at this site. However, direct observations of benthic invertebrate abundance suggest that natural processes have reduced the impacts of the residual oil. To confirm this hypothesis, sediment and interstitial water samples from Black Duck Cove were assessed with a comprehensive set of biotests and chemical assays.Residual oil in the sediments had limited effect on hepatic CYP1A protein levels and mixed function oxygenase (MFO) induction in winter flounder (Pleuronectes americanus). No toxicity was detected with the Microtox solid phase test (Vibrio fischeri). Significant sediment toxicity was detected by the amphipod survival test (Eohaustorius estuarius) in four out of the eight contaminated sediments. Interstitial water samples were deemed non-toxic by the Microtox 100% test (Vibrio fischeri) and the echinoid fertilization test (Lytechinus pictus). Sediment elutriates were also found to be non-toxic in the grass shrimp embryo-larval toxicity (GSELTOX) test (Palaemonetes pugio).Recovery at this contaminated site is attributed to natural processes that mediated biodegradation and physical removal of oil from the sediments. In support of the latter mechanism, mineralization experiments showed that all test sediments had the capacity for hexadecane, octacosane and naphthalene degradation, while chemical analysis confirmed that the Bunker C oil from the Arrow had undergone substantial biodegradation.  相似文献   

14.
15.
废弃饱和盐水钻井液的固液分离   总被引:2,自引:0,他引:2  
采用化学破胶脱稳和压滤机械分离的化学强化固液分离技术处理江汉油田废弃饱和盐水钻井液(简称废钻井液).最佳固液分离工艺为:调节废钻井液的pH为6.5左右,先加入无机破胶剂(HWJ),HWJ的加入量为15 000 mg/L,以400 r/min的转速搅拌3 min,稀释1倍后,再加入有机破胶剂(HYJ),HYJ的加入量为300 mg/L,以120 r/min的转速搅拌5min.固液分离结果表明,分离后出水率达68.2%,而泥饼湿含量只有55.8%,废钻井液的COD由67 886.8 mg/L降至8 898.9 mg/L.  相似文献   

16.
This paper summarizes the development, field testing and performance evaluation of the Transrec oil recovery system including the Framo NOFO Transrec 350 skimmer and multi-functional oil spill prevention and response equipment and presents performance data, not published before, from full-scale experimental oil spills in the North Sea from 1981 to 1990. The rare data provides useful information for evaluation of mechanical clean-up capabilities and efficiency, in particular, for responders who are using this equipment in many countries around the world.The development of the Transrec oil recovery system represents one of the most comprehensive efforts funded to date by the oil industry in Norway to improve marine and open ocean oil spill response capabilities. The need for improvements was based upon early practical user experience with different oil recovery systems, and test results from experimental oil spills in the North Sea.The result of the development efforts increased: (1) skimmer efficiency from approximately 15–75% (it reached 100% under favorable environmental conditions); (2) oil emulsion recovery rate from approximately 20–300 m3/h; (3) recovery system efficiency from approximately 15–85% in 1.5 m significant wave height; (4) oil emulsion thickness from approximately 15–35 cm; (5) weather-window for mechanical recovery operations from 1.5 to 3.0 m significant wave height; (6) capability for transfer of recovered oil residue to shuttle tankers in up to 4 m significant wave height and 45 knot winds; (7) capability for operations at night.The new Transrec oil recovery system with the special J-configuration virtually eliminated skimming operation downtime, and damage to booms and equipment failures that had been caused by oil spill response vessel (OSRV) problems with maintaining skimming position in the previous three-vessel oil recovery system with the boom towed in U-configuration. The time required to outfit OSRVs dropped from approximately 30–<1 h, reducing time from notification to operation on site by more than 24 h.Improvement in oil recovery resulted in the acceptance of a new oil spill preparedness and response plan. The new plan reduced the need for oil recovery systems from 21 to 14, towing vessels in preparedness from 42 to 18, and personnel on stand-by from 135 to 70, which subsequently reduced the total contingency and operational costs by almost 50%. These cost reductions resulted from lower contingency fees for personnel, fewer towing vessels on stand-by, less expensive open ocean training and exercises, less equipment and reduced storage space to lease, and simplified equipment maintenance.  相似文献   

17.
Investigations at former dry cleaning sites in Denmark show that sewer systems often are a major vapor intrusion pathway for chlorinated solvents to indoor air. In more than 20 percent of the contaminated drycleaner sites in Central Denmark Region, sewer systems were determined to be a major vapor intrusion pathway. Sewer systems can be a major intrusion pathway if contaminated groundwater intrudes into the sewer and contamination is transported within the sewer pipe by water flow in either free phase or dissolved states. Additionally, the contamination can volatilize from the water phase or soil gas can intrude the sewer system directly. In the sewer, the gas phase can migrate in any direction by convective transport or diffusion. Indications of the sewer as a major intrusion pathway are:
  • higher concentrations in the upper floors in buildings,
  • higher concentrations in indoor air than expected from soil gas measurements,
  • higher concentrations in bathrooms/kitchen than in living rooms,
  • chlorinated solvents in the sewer system, and
  • a pressure gradient from the sewer system to indoor air.
Measurements to detect whether or not the sewer system is an intrusion pathway are simple. In Central Denmark Region, the concentrations of contaminants are routinely measured in the indoor air at all floors, the outdoor air, behind the water traps in the building, and in the manholes close to the building. The indoor and outdoor air concentration, as well as concentrations in manholes, are measured by passive sampling on sorbent samplers over a 14‐day period, and the measurements inside the sewer system are carried out by active sampling using carbon tubes (sorbent samplers). Furthermore, the pressure gradient over the building slab and between the indoor air and the sewer system are also measured. A simple test is depressurization of the sewer system. Using this technique, the pressure gradient between the sewer system and the indoor air is altered toward the sewer system—the contamination cannot enter the indoor air through the sewer system. If the sewer system is a major intrusion pathway, the effect of the test can be observed immediately in the indoor air. Remediation of a sewer transported contamination can be:
  • prevention of the contaminants from intruding into the sewer system or
  • prevention of the contaminated gas in the sewer system from intruding into the indoor air.
Remediation techniques include the following:
  • lining of the sewer piping to prevent the contamination from intruding into the sewer;
  • sealing the sewer system in the building to prevent the contamination from the sewer system to intrude the indoor air;
  • venting of manholes; and
  • depressurizing the sewer system.
  相似文献   

18.
旋流萃取分离技术处理石化电脱盐废水   总被引:1,自引:0,他引:1       下载免费PDF全文
陈永强  龚小芝  陈发 《化工环保》2015,35(3):297-299
采用旋流萃取分离技术处理某炼油厂常减压装置电脱盐废水(初始废水含油量约为5 000 mg/L),优化了废水除油的工艺条件。试验结果表明,废水除油的最佳工艺条件为:旋流萃取分离机中心转子的转速960 r/min、废水流量2 000 L/h、废水温度80℃。废水经旋流萃取分离后,废水的含油量小于200 mg/L,废水除油效果较好;分离后油相的含水量约为0.1%(w),盐质量浓度小于20 mg/L,可回注到常减压装置原料罐循环利用。对于2 Mt/a的常减压装置,采用旋流萃取分离技术后,每年可减少支出100.4万元。  相似文献   

19.
The burning rate of a slick of oil on a water bed is calculated by a simple expression derived from a one-dimensional heat conduction equation. Heat feedback from the flame to the surface is assumed to be a constant fraction of the total energy released by the combustion reaction. The constant fraction (χ) is named the burning efficiency and represents an important tool in assessing the potential of in situ burning as a counter-measure to an oil-spill. The total heat release, as a function of the pool diameter, is obtained from an existing correlation. It is assumed that radiative heat is absorbed close to the fuel surface, that conduction is the dominant mode of heat transfer in the liquid phase and that the fuel boiling temperature remains constant. By matching the characteristic thermal penetration length scale for the fuel/water system and an equivalent single layer system, a combined thermal diffusivity can be calculated and used to obtain an analytical solution for the burning rate. Theoretical expressions were correlated with crude oil and heating oil, for a number of pool diameters and initial fuel layer thickness. Experiments were also conducted with emulsified and weathered crude oil. The simple analytical expression describes well the effects of pool diameter and initial fuel layer thickness permitting a better observation of the effects of weathering, emulsification and net heat feedback to the fuel surface. Experiments showed that only a small fraction of the heat released by the flame is retained by the fuel layer and water bed (of the order of 1%). The effect of weathering on the burning rate decreases with the weathering period and that emulsification results in a linear decrease of the burning rate with water content.  相似文献   

20.
This paper reports on the results of weathering studies conducted on four light crude oils from production platforms on the northwest shelf of Australia. The laboratory weathering included both evaporative weathering and emulsification studies. The fresh oils and their topped residues were subjected to a battery of physical and chemical characterization analyses. Detailed analyses were performed for n-alkanes by GC/FID and for mono- and polycyclic aromatic hydrocarbons and phenols by GC/MS. The water-in-oil emulsion formation properties of these oils and their topped residues were investigated at two environmentally significant temperatures (13 and 20°C). The results of the analyses indicate that these oils are very different compositionally and have a wide range of physical and chemical properties. The emulsification properties of these oils and their weathered residues ranged from oils that have very rapid water uptake to oils having no water uptake. Unexpectedly, the very waxy oils had very little water uptake and did not form stable water-in-oil emulsions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号