首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Simultaneous nitrification-denitrification (SND) of municipal wastewater was investigated in a laboratory-scale membrane bioreactor (MBR) operated at two different hydraulic retention times (HRTs), 0.5 and 1 day, dissolved oxygen 3.0 to 0.5 mg/L, and solids retention time (SRT) between 28 and 120 days. The organic loading rate (OLR) (0.11 to 0.64 kg chemical oxygen demand [COD]/m3/d) and influent soluble COD (SCOD)/ total Kjeldahl nitrogen (TKN) ratio (5 to 19) were varied by the addition of glucose. The ammonia-nitrogen and TKN removals were over 97%, and total nitrogen removal was approximately 89% in the MBR. The maximum specific nitrification rates (98 mg N/d/g VSS) and specific denitrification rates (81 mg N/d/g VSS) occurred at an SCOD/TKN ratio of 9.1. The optimum conditions for maximum total nitrogen removal by SND in a single reactor MBR have been found to be low dissolved oxygen (< 0.6 mg/L) and high OLR (approximately 0.64 kg COD/m3/d) at an HRT of 0.5 day and SRT of approximately 85 days.  相似文献   

2.
A wastewater-treatment facility at Ford (Dearborn, Michigan) was recently upgraded from chemical de-emulsification to ultrafiltration (UF) followed by a membrane-biological reactor (MBR). This paper describes the design, startup, and initial operational performance of the facility. Primary findings are as follows: (1) the MBR proved resilient; (2) the MBR removed approximately 90% of chemical-oxygen demand (COD) after primary UF; (3) the removal of total Kjeldahl nitrogen by MBR appeared to be more sensitive to operating conditions than COD removal; (4) nitrification and denitrification were established in one month; (5) the MBR removed oil and grease and phenolics to below detection levels consistently, in contrast to widely fluctuating concentrations in the past; (6) permeate fluxes of the primary and MBR UF were adversely affected by inadvertent use of a silicone-based defoamer; and (7) zinc concentrations in the effluent increased, which might have been a result of ethylenediaminetetraacetic acid used in membrane washing solutions and/or might have been within typical concentration ranges.  相似文献   

3.
Bae HS  Yamagishi T  Suwa Y 《Chemosphere》2004,55(1):93-100
An anaerobic continuous-flow fixed-bed column reactor capable of degrading 3-chlorobenzoate (3-CBA) under denitrifying conditions was established, and its rate reached 2.26 mM d(-1). The denitrifying population completely degraded 3-CBA when supplied at 0.1-0.54 mM, but its activity was partly suppressed when 3-CBA was supplied at 0.89 mM. Nitrate was concomitantly consumed throughout the operation of the reactor, the amount of which was similar to or up to 35% higher than the theoretical stoichiometric value that was calculated by assuming that 3-CBA degradation is coupled with denitrification. Batch incubation experiments proved that nitrate is strictly required for 3-CBA degradation in the absence of molecular oxygen. The population also degraded 3-CBA aerobically. Benzoate and 4-CBA were degraded under denitrifying conditions as well as 3-CBA, but 2-CBA was not. Considering that the previously reported denitrifying 3-CBA-degrading cultures do not exhibit 4-CBA degradation under denitrifying conditions, nor aerobic 3-CBA degradation [FEMS Microbiol. Lett. 144 (1996) 213, Appl. Environ. Microbiol. 66 (2000) 3446], the microbial population developed in this experiment was physiologically versatile with respect to the utilization of both electron donors and electron acceptors.  相似文献   

4.
研究了微曝气Fenton氧化法关键工艺参数对模拟双酚A(BPA)废水处理效果的影响,并从活性污泥性质和污染物去除率两方面,采用膜生物反应器(membrane bioreactor, MBR)对微曝气Fenton氧化法的处理效果进行了实验验证,为实现BPA废水的生物处理奠定基础。结果表明,初始pH值、反应时间、H2O2/COD(质量浓度比)、H2O2/Fe2+ (摩尔浓度比)、反应温度及曝气量均对预处理效果有较大影响,在最佳条件下,COD去除率可达70%,BOD/COD值则由原废水的0.02提高到0.50以上。MBR处理上述出水的结果表明,经微曝气Fenton氧化处理BPA的废水,可较好地适应后续的生化处理。  相似文献   

5.
实验基于企业污水站的改造工程,研究了MBR对玉米深加工废水的处理效果并对工艺运行参数优化提出建议.结果表明,该工艺对COD的去除率可以达到90%以上,出水稳定在26 mg/L左右;出水NH4-N达到1 mg/L以下;TN去除率达到70%以上,出水TN达到10 mg/L以下,出水完全达到排放标准.通过4种工况的比较,说明在污泥浓度8 g/L左右,曝气池内DO在3 mg/L左右,MBR内DO>4 mg/L,好氧段停留时间13.5 h,并保证3h以上的缺氧段水力停留段时间的条件下,A/O+ MBR工艺可以有效去除玉米深加工废水中的污染物.  相似文献   

6.
2-萘酚生产废水具有COD高、BOD/COD值低和生物毒件高的特点,采用FOP-EGSB-MBR组合工艺对其模拟废水进行处理工艺的研究.结果表明:废水经Fenton氧化处理后,可将出水BOD/COD值从0.01提高至0.67;再经过厌氧和好氧处理后,出水COD为100 mg/L以下;该组合上艺总的COD去除去可达99%,且运行性能稳定,效果可靠.  相似文献   

7.
The long-term operational stability (159 d) in removal of organics and ammonia from synthetic wastewater was investigated. The experiment was carried out in two identical plug flow membrane bioreactors (MBR) (each with a submerged A4 Kubota membrane) operated under aerobic conditions. The vacuum distillate of a crude oil fraction in the emulsified state, which was used to model the petroleum pollutants, was added into the feed medium. The performance of biological treatment was evaluated by physicochemical analyses such as nitrogen forms, COD, and BOD. Additionally, monitoring of PAHs in the wastewaters was performed using HPLC-diode array detector. Moreover, the community structure of bacteria was analyzed by polymerase chain reaction-denaturing gradient gel electrophoresis. The MBR treatment was very effective with reduction by more than 90% of COD and Total Organic Carbon. Nearly complete removal of petroleum originated non-polar micropollutants was observed. The influence of the highest dosage of petroleum pollutants (1000 μLL(-1)) on the bacterial community was noted.  相似文献   

8.
An aerobic bioreactor and an anaerobic bioreactor, each coupled with a microfiltration membrane filter (MBR), were operated at different hydraulic retention times (HRTs) with primary effluent from the City of Elmhurst, Illinois, municipal-wastewater-treatment plant. The soluble chemical oxygen demand (COD) removal performance of the anaerobic MBR system was similar to that of the aerobic MBR under the same operational conditions, without the added cost of aeration. The results indicated that the solids deposition rate on the membrane surface was lower in the case of anaerobic MBR compared to the aerobic MBR, indicating possible lower loss in water-flux rates. This research found that an anaerobic MBR is a feasible and economical option for municipal-wastewater-treatment plants seeking COD removal by a biological process followed by a separate nitrification and denitrification system.  相似文献   

9.
采用超声波-膜生物法(MBR)联合处理垃圾渗滤液,探讨了超声波辐射时间和MBR的水力负荷对COD、NH3-N和TP去除的影响。结果表明,(1)超声波单独处理时,超声波辐射时间在30~90 s时,COD、NH3-N最大增加率分别34.31%、3.36%,而对TP的去除没有影响;(2)超声波-膜生物(MBR)联合处理时,超声波辐射时间为300 s,MBR的水力负荷为6.4 L/(m2.d)时,COD、NH3-N和TP的最佳去除率分别为92.20%、80.10%和91.12%;MBR的水力负荷为12.8 L/(m2.d),超声波辐射时间在5~20 min时,COD、NH3-N的最佳去除率分别为92.34%、79.93%,TP的浓度低于0.2 mg/L;MBR反应时间为7 h,超声波辐射时间为5~20 min,与未进行超声波辐射处理(超声波辐射时间为0 min)相比,COD、NH3-N的去除率增加了11.37%、15.26%;超声波预处理有助于提高后续MBR对COD、NH3-N的去除作用。  相似文献   

10.
Four commercially available membrane bioreactor (MBR) systems were operated at the pilot scale, to investigate performance during the reclamation of municipal wastewater. The MBR performance was evaluated under a variety of operating conditions, including two types of feed wastewater (raw and advanced primary effluent), hydraulic retention times (HRTs) ranging from 2 to 6 hours, and permeate fluxes between 20 and 41 lmh. Test results showed that MBR systems were capable of operating on advanced primary effluent, despite the possible presence of coagulant and/or polymer residual, with minimal membrane fouling. Membrane performance data generated during this study was also used to quantify the relationship between permeate flux and membrane fouling. Cleaning intervals at various flux conditions were estimated as follows: 69 days at 20 lmh, 58 days at 25 lmh, and 30 days for operation between 31 and 41 lmh. It was also demonstrated that the MBR process could be optimized to operate with minimal fouling under high hydraulic (flux = 37 lmh) and organic loading (HRT = 2 hours and food-to-microorganism ratio = 0.33 g COD/g VSS x d) conditions. Water quality monitoring conducted throughout the study showed that each MBR system consistently produced an oxidized (5-day biochemical oxygen demand < 2 mg/L) and nitrified (ammonia < 1 mg-N/L) effluent low in particulate matter (turbidity < 0.1 NTU), under all conditions tested.  相似文献   

11.
采用膜生物反应器进行含酚废水的处理,探讨投加好氧颗粒污泥对反应器中污泥性能的影响。结果表明,在膜生物反应器中投加好氧颗粒污泥能有效改善污泥性能,提高处理效果。从采用絮状污泥到逐渐增加好氧颗粒污泥投加量为100%的过程中,反应器中污泥浓度明显提高,MLSS由5 582 mg/L增加到8 168 mg/L;沉降性能得到改善,SVI由135.85 mL/g下降到29.36 mL/g;疏水性增强,Zeta电位由-20.302 mV升高到-4.325 mV;对含酚废水中COD、NH3-N的降解能力明显提高,COD、NH3-N、NO3-N去除率分别由87.3%、83.2%、55.3%增加到99.2%、94.9%、66.3%。改善了膜污染现象,膜通量衰减率由63.3%降低到42.8%。用二元多项式三维回归分析,得到污染物去除率关于好氧颗粒污泥投加量和反应器运行时间的二元方程,对指导好氧颗粒污泥膜生物反应器的连续运行具有重要意义。  相似文献   

12.
我们对电絮凝 -催化氧化法处理染料工业废水COD进行了研究。实验结果表明 ,此方法对废水的COD具有良好的去除效果 ,并确定了相应的处理条件 :电解电压 4V ,电解时间 1.5h ,H2 O2 为 0 .6 % ,MO(含 75 %以上的TiO2 )为 2 .5g/L。平均COD去除率达到 77.5 %。电絮凝 -催化氧化法具有能耗低、操作简便等特点 ,为进一步深化处理奠定了基础  相似文献   

13.
膜污染是限制膜生物反应器(MBR)广泛应用的主要因素之一。针对MBR处理生活污水过程中存在的硝化效果不稳定与膜污染问题,提出了一种新型的MBR系统:通过吸附-预沉淀实现进水中碳氮的分离和单独处理,不仅提高了污染物去除效果,且能够有效控制膜污染。研究结果表明,吸附-预沉淀可以去除进水中约89.7%的有机物,系统出水COD、NH4+-N平均浓度为24 mg/L、0.78 mg/L,去除率分别为95.9%和98.1%。MBR中碳氮比的降低和硝化细菌比例的增加大大降低了MBR内MLSS、EPS和SMP含量,平均浓度分别为5 185 mg/L、41 mg/g MLSS和2.62 mg/g MLSS。在膜通量为4 L/(m2·h)条件下,TMP可稳定保持在20 kPa左右。通过吸附-预沉淀过程可有效控制MBR中的膜污染。  相似文献   

14.
Three different combinations of treatment techniques, i.e. electrocoagulation combined with microfiltration (EMR), membrane bioreactor (MBR) and electrocoagulation integrated with membrane bioreactor (hybrid MBR, (HMBR)), were analysed and compared for the treatment of tannery wastewater operated for 7 days under the constant trans-membrane pressure of 5 kPa. HMBR was found to be most suitable in performance as well as fouling reduction, with 94 % of chemical oxygen demand (COD) removal, 100 % chromium removal and 8 % improvement in percentage reduction in permeate flux compared to MBR with only 90 % COD removal and 67 % chromium removal. The effect of mixed liquor suspended solids on fouling was also investigated and was found to be insignificant. EMR was capable of elevating the flux but was not as efficient as HMBR and MBR in COD removal. Fouling reduction by HMBR was further confirmed by SEM-EDX and particle size analysis.  相似文献   

15.
MBR工艺处理含50%海水的污水试验研究   总被引:1,自引:0,他引:1  
采用MBR工艺对含50%海水的污水生物处理进行了试验研究。实验条件为进水COD为300~2 600 mg/L,NH3-N为50~300 mg/L,pH值为6~9,混合液污泥浓度为7 000 mg/L,溶解氧浓度为2~4 mg/L,温度为20~25℃。试验结果表明,系统的最佳运行条件为:有机负荷<3.2 kg COD/(m3·d),氨氮负荷<0.35 kg/(m3·d),pH值在7.5~8.5之间,HRT>12 h。在此条件下,COD与氨氮的去除率可同时达到90%。高盐环境下微生物所分泌的大量胞外多聚物是造成MBR工艺处理含盐废水过程中膜污染的主要原因。  相似文献   

16.
有机负荷对膜-生物反应器硝化性能的影响   总被引:1,自引:0,他引:1  
采用厌氧动态膜-生物反应器(AnDMBR)组合自养膜-生物反应器(MBR)工艺,研究冬季低温条件下系统的硝化效果以及TP的去除效果,并与单级MBR工艺进行对比。结果表明:(1)AnDMBR对COD的去除率基本保持在50%~60%,AnDMBR组合自养MBR工艺对COD的去除率为80%~85%;单级MBR工艺对COD的去除率为80%左右。(2)总体上,AnDMBR组合自养MBR工艺对NH4+-N的去除率大于95%;单级MBR对NH4+-N的去除效果比AnDMBR组合自养MBR工艺差。(3)AnDMBR组合自养MBR工艺中,出水NO2--N与NO3--N均有积累;单级MBR工艺中,出水NO2--N积累不明显。(4)相对于亚硝酸盐氧化菌(NOB),氨氧化菌(AOB)对有机负荷更敏感,当有机负荷高时,AOB更易受到异养菌活动的抑制;当有机负荷降低、异养菌活性减弱时,AOB活性明显增强,系统的硝化效果得到明显改善。(5)AnDMBR组合自养MBR工艺对TP的去除率高于80%,单级MBR工艺稳定后对TP的去除率仅为20%~30%。(6)从呼吸速率和硝化速率可知,自养MBR的硝化效果优于单级MBR。  相似文献   

17.
膜生物反应器中新型无纺布膜过滤特性及膜污染特征   总被引:1,自引:1,他引:0  
通过无纺布和聚偏氟乙烯平板膜组件在相同操作条件下的对比实验,研究无纺布膜的过滤特性。结果表明,2种膜的膜生物反应器COD、氨氮平均去除率均>90%。过膜压力变化表明在长期运行条件下,无纺布可适于作为膜生物反应器的过滤介质,其过滤机理为膜表面滤饼层形成动态膜,从而增强了膜截留能力。膜污染研究表明,无纺布膜阻力主要来自滤饼层(占总阻力的83.6%),经清洗后膜通量可恢复至94%。扫描电镜显示膜表面滤饼层较厚,结合膜阻力分析结果认为,该滤饼层对膜污染和可逆性影响较大。对膜表面和膜孔中胞外聚合物(EPS)的红外分析证实,其中含有蛋白质和多糖物质,而且组分分析表明蛋白质是膜污染物EPS中的主要组分,在膜孔中的含量比滤饼层中还高。  相似文献   

18.
采用膜生物反应器(MBR)-反渗透(RO)工艺对印染废水进行了深度处理实验。原水经MBR系统处理后,COD去除率、ss去除率和色度去除率分别达89.9%、100%和87.5%。MBR系统处理出水进入反渗透(RO)系统进行处理,硬度去除率和除盐率分别达99.62%和99.64%,同时可进一步除去剩余的COD、色度。系统出水水质满足生产回用的要求。  相似文献   

19.
针对上海老港垃圾填埋场经过厌氧-曝气塘处理后的渗滤液难进一步处理的问题,对其采用厌氧滤池-好氧接触法、氧化钙2种方式预处理,在此预处理基础上,考察了Fenton法深度处理的效果,探讨了H2O2/Fe2+投加比、初始pH、H2O2投加量、反应时间和Fenton试剂投加方式对渗滤液COD去除效果的影响。研究发现:经过生物预处理后,渗滤液的COD和TP分别降低了24%和25%;氧化钙调碱可以进一步使COD和TP去除率分别达到42%和96%;后续Fenton深度氧化的最佳条件为:初始pH为2,H2O2投加量为2.4 g/L,H2O2/Fe2+摩尔比为5∶1,Fenton试剂一次投加,反应时间为2 h。在此条件下,渗滤液的COD从1 340 mg/L降到198 mg/L,总COD去除率达到85%。  相似文献   

20.
为了考察膜生物反应器(MBR)净化受污染地表水自然启动过程中功能菌群的成熟规律及碱度对MBR去除水中氨氮的影响,通过构建小试规模的MBR,考察了MBR处理受污染地表水的自然启动和稳定运行除污染特性。结果表明,MBR在自然启动过程中不会出现异养菌成熟的标志,系统对进水DOC、UV254和CODMn的平均去除率分别仅为(14.5±5.1)%、(12.6±5.6)%和(31.2±7.4)%,应考虑将其他工艺与MBR联用以提高系统的有机物去除能力。启动23天后,MBR中的亚硝化细菌成熟,NH3-N去除率达到80%以上;启动31 d后,MBR中的硝化细菌成熟,出水NO2--N稳定在0.05mg/L以下。碱度对MBR去除NH3-N效能影响较大,向进水中投加30 mg/L的NaHCO3能使MBR对NH3-N的去除率由(86.1±3.7)%提高至(98.0±1.6)%。在连续曝气、10 L/(m2.h)通量、每10 min反洗15 s运行模式下,MBR的膜污染较为严重,平均TMP增长速率为0.45 kPa/d,需进一步优化相关参数以实现MBR的长期稳定运行。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号