首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Abstract

The effect of atrazine (2‐chloro‐4‐ethylamino‐6‐isopropylamino‐s‐triazine) on rhizosphere microorganisms and its fate in a containerized rhizosphere system was studied. The rhizosphere system consisted of corn grown in pot containing a defined potting mix of sand and bark with atrazine. Sterilized potting mix and a container without plants served as controls. Atrazine was extracted and analyzed via HPLC. Fluorescent pseudomonad populations increased 100‐fold in the rhizposphere during a 60‐day incubation period as compared to the nonvegetated control. Atrazine degradation was higher in the rhizosphere system (half‐life of 7 days) compared to the nonvegetated control (half‐life of greater than 45 days). The major degradation product detected in the rhizosphere system was deisopropylatrazine; other products detected included deethylatrazine, deethylhydroxyatrazine, deisopropylatrazine and hydroxyatrazine. Hydroxyatrazine was detected in the nonvegetated and sterile controls. The containerized rhizosphere system provides an experimental system to study the fate of pesticidal chemicals as well as the effects on microbial populations.  相似文献   

2.
Microbial degradation of mefenoxam in rhizosphere of Zinnia angustifolia   总被引:3,自引:0,他引:3  
Pai SG  Riley MB  Camper ND 《Chemosphere》2001,44(4):577-582
The fate of the fungicide mefenoxam was studied in a containerized rhizosphere system. The rhizosphere system used Zinnia angustifolia (Tropic Snow) in a bark/sand potting mix and was compared to bulk potting mix (no plants). Rhizosphere microbial populations were allowed to establish for 3 weeks prior to fungicide addition (20 microg per g mix). Mefenoxam and degradation product concentrations were determined by High HPLC or capillary electrophoresis after extraction. Seventy eight percent of the fungicide originally applied to the rhizosphere was degraded after 21 days compared to 44% in bulk system (no plant). The primary degradation product was the free acid N-(2,6-dimethylphenyl)-N-(methoxyacetyl)-DL-alanine, which accounted for 71% of the applied parent chemical after 30 days. N-(2,6-dimethylphenyl)-acetamide was also detected, but in lesser amounts. Bacterial populations in the rhizosphere increased during the 30-day period, which correlated with an increase in degradation of the parent compound. Pure cultures of Pseudomonas fluorescens and Chrysobacterium indologenes isolated from the rhizosphere system could degrade the applied fungicide (10 microg/ml) almost completely to the free acid within 54 h.  相似文献   

3.
Drakeford CE  Camper ND  Riley MB 《Chemosphere》2003,50(9):1243-1247
Commercial production of ornamental plants is an important industry in the United States and involves a complex technology that includes the use of herbicides. Isoxaben[N-[3-(1-ethyl-1-methylpropyl)-5-isoxazolyl]-2,6-dimethoxybenzamide] is a pre-emergence herbicide used for controlling weeds in many areas including containerized ornamental plants. Degradation was studied in potting mix (80% bark, 20% sand) with three different regimes (sterile, bulk and rhizosphere). The rhizosphere regime contained Switch Grass (Panicum virgatum), and plants were allowed to grow for 14 days before adding isoxaben (10 microg/g potting mix). Isoxaben was degraded to 0.5 microg/g in 60 days giving a half-life of 7 days. Two degradation products were detected: 3-nitrophthalic acid in the rhizosphere and bulk regimes and 4-methoxyphenol in the sterile regime. Microbial population shifts were determined by fatty acid methyl ester profile analysis and were influenced by the introduction of a plant (rhizosphere regime) and by isoxaben addition.  相似文献   

4.
Atrazine, a broad-leaf herbicide, has been used widely to control weeds in corn and other crops for several decades and its extensive used has led to widespread contamination of soils and water bodies. Phytoremediation with switchgrass and other native prairie grasses is one strategy that has been suggested to lessen the impact of atrazine in the environment. The goal of this study is to characterize: (1) the uptake of atrazine into above-ground switchgrass biomass; and (2) the degradation and transformation of atrazine over time. A fate study was performed using mature switchgrass columns treated with an artificially-created agricultural runoff containing 16 ppm atrazine. Soil samples and above-ground biomass samples were taken from each column and analyzed for the presence of atrazine and its chlorinated metabolites. Levels of atrazine in both soil and plant material were detectable through the first 2 weeks of the experiment but were below the limit of detection by Day 21. Levels of deethylatrazine (DEA) and didealkylatrazine (DDA) were detected in soil and plant tissue intermittently over the course of the study, deisopropylatrazine (DIA) was not detected at any time point. A radiolabel study using [14C]atrazine was undertaken to observe uptake and degradation of atrazine with more sensitivity. Switchgrass columns were treated with a 4 ppm atrazine solution, and above-ground biomass samples were collected and analyzed using HPLC and liquid scintillation counting. Atrazine, DEA, and DIA were detected as soon as 1 d following treatment. Two other metabolites, DDA and cyanuric acid, were detected at later time points, while hydroxyatrazine was not detected at all. The percentage of atrazine was observed to decrease over the course of the study while the percentages of the metabolites increased. Switchgrass plants appeared to exhibit a threshold in regard to the amount of atrazine taken up by the plants; levels of atrazine in leaf material peaked between Days 3 and 4 in both studies.  相似文献   

5.
Abstract

Movement and degradation of 14C‐atrazine (2‐chloro 4‐(ethylamino)‐6‐(isopropylamino)‐s‐triazine, was studied in undisturbed soil columns (0.50m length × 0.10m diameter) of Gley Humic and Deep Red Latosol from a maize crop region of Sao Paulo state, Brazil. Atrazine residues were largely confined to the 0–20cm layers over a 12 month period Atrazine degraded to the dealkylated metabolites deisopropylatrazine and deethylatrazine, but the major metabolite was hydroxyatrazine, mainly in the Gley Humic soil. Activity detected in the leachate was equivalent to an atrazine concentration of 0.08 to 0.11μg/1.

The persistence of 14C‐atrazine in a maize‐bean crop rotation was evaluated in lysimeters, using Gley Humic and Deep Red Latosol soils. Uptake of the radiocarbon by maize plants after 14‐days growth was equivalent to a herbicide concentration of 3.9μg/g fresh tissue and was similar in both soils. High atrazine degradation to hydroxyatrazine was detected by tic of maize extracts. After maize harvest, when beans were sown the Gley Humic soil contained an atrazine concentration of 0.29 μg/g soil and the Deep Red Latosol, 0.13 μg/g soil in the 0–30 cm layer. Activity detected in bean plants corresponded to a herbicide concentration of 0.26 (Gley Humic soil) and 0.32μg/g fresh tissue (Deep Red Latossol) after 14 days growth and 0.43 (Gley Humic soil) and 0.50 μg/g fresh tissue (Deep Red Latossol) after 97 days growth. Traces of activity equivalent to 0.06 and 0.02μg/g fresh tissue were detected in bean seeds at harvest. Non‐extractable (bound) residues in the soils at 235 days accounted for 66.6 to 75% (Gley Humic soil and Deep Red Latossol) of the total residual activity.  相似文献   

6.
Atrazine is a persistent organic pollutant in the environment which affects not only terrestrial and aquatic biota but also human health. Since its removal from the environment is needed, atrazine biodegradation is achieved in the present study using the bacterium Rhodococcus sp. BCH2 isolated from soil, long-term treated with atrazine. The bacterium was capable of degrading about 75 % atrazine in liquid medium having pH 7 under aerobic and dark condition within 7 days. The degradation ability of the bacterium at various temperatures (20–60 °C), pH (range 3–11), carbon (glucose, fructose, sucrose, starch, lactose, and maltose), and nitrogen (ammonium molybdate, sodium nitrate, potassium nitrate, and urea) sources were studied for triumph optimum atrazine degradation. The results indicate that atrazine degradation at higher concentrations (100 ppm) was pH and temperature dependent. However, glucose and potassium nitrate were optimum carbon and nitrogen source, respectively. Atrazine biodegradation analysis was carried out by using high-performance thin-layer chromatography (HPTLC), Fourier transform infrared spectroscopy (FTIR), and liquid chromatography quadrupole time-of-flight (LC/Q-TOF-MS) techniques. LC/Q-TOF-MS analysis revealed formation of various intermediate metabolites including hydroxyatrazine, N-isopropylammelide, deisopropylhydroxyatrazine, deethylatrazine, deisopropylatrazine, and deisopropyldeethylatrazine which was helpful to propose biochemical degradation pathway of atrazine. Furthermore, the toxicological studies of atrazine and its biodegraded metabolites were executed on earthworm Eisenia foetida as a model organism with respect to enzymatic (SOD and Catalase) antioxidant defense mechanism and lipid peroxidation studies. These results suggest innocuous degradation of atrazine by Rhodococcus sp. BCH2 in nontoxic form. Therefore the Rhodococcus sp.BCH2 could prove a valuable source for the eco-friendly biodegradation of atrazine pesticide.  相似文献   

7.
Lin T  Wen Y  Jiang L  Li J  Yang S  Zhou Q 《Chemosphere》2008,72(1):122-128
To evaluate the treatment capability of subsurface flow constructed wetland (SFCW) and the effect of salinity on the degradation of atrazine, the degradation of atrazine in SFCW was studied. Under the static condition, the degradation of atrazine in SFCW followed first-order kinetics: c=0.09679 exp(-0.0396t) (c, residue concentration, mg l(-1); t, retention time, d), with a half-life of approximately 17.5 days. The atrazine degradation kinetic functions were established for salinities of 1.5, 3.0, 5.0, 10.0 and 15.0 g l(-1), respectively, which appeared to approach first-order kinetics. The effect of salinity on the atrazine treatment efficiency showed an exponential inhibition: lnk=3.204+0.04991 C (k, degradation constant; C, NaCl concentration, mg l(-1)). The attenuation of atrazine in SFCW cannot be a result of hydrolysis or sorption process. It was considered that some bacteria in the wetland system degraded atrazine into deethylatrazine (DEA) and deisopropylatrazine (DIA) and sequentially into CO(2) and H(2)O. Salinity impacted on the growth of bacteria resulting in a switch of the microbial community. With the increase of salinity, Shannon-Wiener Diversity Index in the SFCW system declined. The relationship between atrazine degradation constant (k) and Shannon Index was established as shown in linear phase, y=-0.07286+0.0363x. The positive correlation between them indicated that microbial community played an important role in the atrazine degradation process.  相似文献   

8.
Constructed wetlands offer promise for removal of nonpoint source contaminants such as herbicides from agricultural runoff. Laboratory studies assessed the potential of soils to degrade and sorb atrazine and fluometuron within a recently constructed wetland. The surface 3 cm of soil was sampled from two cells of a Mississippi Delta constructed wetland; one shallow area disturbed only hydrologically, and the second excavated to provide greater water-holding capacity. The excavated area was more acidic on average (pH 4.85 versus 5.21), but otherwise the physical properties and general microbial enzyme activities in the two areas were similar. Soils were treated with 84 and 68 microg kg(-1) soil (14)C-ring labeled atrazine and fluometuron, respectively, and incubated under either saturated (88% moisture, w:w) or flooded (1cm standing water) conditions. Soils were sampled over 32 days and extracted for herbicide and metabolite analysis. Under saturated conditions, fluometuron metabolized to desmethylfluometuron (DMF) with a half-life equal 25-27 days. However, under flooded conditions, the half-life of fluometuron was more than 175 days. Atrazine dissipated rapidly in saturated and flooded soil with a half-life of approximately 23 days, but only 10% of atrazine was mineralized to CO(2). The overall atrazine and fluometuron dissipation rates were similar between the two cells, but each area had a different pattern of metabolite accumulation. The major route of atrazine dissipation was incorporation of atrazine residues into methanol-nonextractable (soil-bound) components, with minimal extractable metabolite accumulation. A mixed-mode extractant (potassium phosphate:acetonitrile) recovered greater amounts of (14)C-residues from atrazine-treated soils, suggesting that hydrolysis of atrazine to hydroxylated metabolites was a major component of the bound residues. These studies indicate the potential for herbicide dissipation in wetland soils and a differential effect of flooding on the fate of these herbicides.  相似文献   

9.
Effects of an arbuscular mycorrhizal (AM) fungus (Glomus caledonium) on accumulation and metabolism of atrazine in maize grown in soil contaminated with different concentrations of atrazine were investigated in a series of pot experiments. Roots of mycorrhizal plants accumulated more atrazine than non-mycorrhizal roots. In contrast, atrazine accumulation in shoot decreased in mycorrhizal compared with non-mycorrhizal plants. No atrazine derivatives were detected in the soil, either with or without mycorrhizal colonization. However, atrazine metabolites, deethylatrazine (DEA) and deisopropylatrazine (DIA), were detected in plant roots and the AM colonization enhanced the metabolism. After plant harvest atrazine concentrations decreased markedly in the soils compared to the initial concentrations. The decreases were the most in rhizosphere soil and then near-rhizosphere soil and the least in bulk soil. Mycorrhizal treatment enhanced atrazine dissipation in the near-rhizosphere and bulk soils irrespective of atrazine application rates.  相似文献   

10.
Atrazine degrading enrichment culture was prepared by its repeated addition to an alluvial soil and its ability to degrade atrazine in mineral salts medium and soil was studied. Enrichment culture utilized atrazine as a sole source of carbon and nitrogen in mineral salts medium and degradation slowed down when sucrose and/or ammonium hydrogen phosphate were supplemented as additional source of carbon and nitrogen, respectively. Biuret was detected as the only metabolite of atrazine while deethylatrazine, deisopropyatrazine, hydroxyatrazine and cyanuric acid were never detected at any stage of degradation. Enrichment culture degraded atrazine in an alkaline alluvial soil while no degradation was observed in the acidic laterite soil. Enrichment culture was able to withstand high concentrations of atrazine (110 μg/g) in the alluvial soil as atrazine was completely degraded. Developed mixed culture has the ability to degrade atrazine and has potential application in decontamination of contaminated water and soil.  相似文献   

11.
Large-scale column experiments were undertaken to evaluate the potential of in situ polymer mats to deliver oxygen into groundwater to induce biodegradation of the pesticides atrazine, terbutryn and fenamiphos contaminating groundwater in Perth, Western Australia. The polymer mats, composed of woven silicone (dimethylsiloxane) tubes and purged with air, were installed in 2-m-long flow-through soil columns. The polymer mats proved efficient in delivering dissolved oxygen to anaerobic groundwater. Dissolved oxygen concentrations increased from <0.2 mg l(-1) to approximately 4 mg l(-1). Degradation rates of atrazine in oxygenated groundwater were relatively high with a zero-order rate of 240-380 microg l(-1) or a first-order half-life of 0.35 days. Amendment with an additional carbon source showed no significant improvement in biodegradation rates, suggesting that organic carbon was not limiting biodegradation. Atrazine degradation rates estimated in the column experiments were similar to rates determined in laboratory culture experiments, using pure cultures of atrazine-mineralising bacteria. No significant degradation of terbutryn or fenamiphos was observed under the experimental conditions within the time frames of the study. Results from these experiments indicate that remediation of atrazine in a contaminated aquifer may be achievable by delivery of oxygen using an in situ polymer mat system.  相似文献   

12.
Gu JG  Fan Y  Gu JD 《Chemosphere》2003,52(9):1515-1521
Persistence and degradation of the herbicides Atrazine, Cyanazine and Dicamba were measured in laboratory microcosms incubated under methanogenic condition using three soils of China. Results showed that Atrazine was more resistant to degradation than Cyanazine and Dicamba for the 300 days of incubation. Between 30% and 40% of the initially introduced chemicals were found to be not recoverable through solvent extraction of the incubated soils. Our results also indicated that the half-life of these herbicides in the three soils generally followed: Atrazine>Cyanazine>Dicamba. Biodegradation of Cyanazine and Dicamba was further substantiated by establishing enrichment cultures in which the degradation of the respective herbicides could be accelerated by the microorganisms. Our results suggest that biodegradation of xenobiotics can be established through enrichment culture transfer technique and non-extractability of chemicals should be taken into account in evaluation of chemicals' fate and risk.  相似文献   

13.
The chemical fate and movement of pesticides may be subject to transient storage in unsaturated soils during periods of light rainfall, and subsequent release into shallow groundwater by increased rainfall. The objective of this study was to conduct field-scale experiments to determine the relative importance of transient storage and subsequent release of agrichemicals from the vadose zone into potential aquifers. Two field-scale experiments were conducted under a rain exclusion shelter. In the 1x experiment, atrazine and chlorpyrifos were applied at application-rate equivalents (1.6 kg ha(-1) and 1.3 kg ha(-1), respectively). In the 4x experiment, atrazine was applied in an amount that was four times greater than that usually applied to fields (6.7 kg ha(-1)). Water was either applied to simulate rain or withheld to simulate dry periods. In the 1x experiment, atrazine was detected in the water samples whereas chlorpyrifos was not detected in the majority of the samples. The dry period imposed on the treatment plot did not appear to result in storage of the chemicals, whereas the wet period resulted in greater leaching of atrazine, although the concentrations remained less than the Maximum Contaminant Level of 3 microg L(-1). Both chemicals were detected in soil samples collected from a 20- to 30-cm depth, but it appeared that both chemicals dissipated before the field experiment was concluded. It appeared that the one-time application of atrazine and chlorpyrifos at the label rates did not result in a sufficient mass to be stored and flushed in significant concentrations to the saturated zone. When atrazine was applied at 4x and a longer drought period was imposed on the treatment plot, the resulting concentrations of dissolved atrazine were still less than 3 microg L(-1) . Atrazine was detected in only the near-surface (0 to 15 cm) soil samples and the herbicide dissipated before the onset of the dry period in the treatment plot. The results of this field study demonstrated that atrazine and chlorpyrifos were not sufficiently persistent to be stored and then released in significantly large concentrations to the saturated zone. The dissipation half-life of atrazine in the 4x application was about 44 days. This study, in addition to others, suggested that atrazine may be less persistent in surface soil than has been generally reported.  相似文献   

14.
Constructed wetlands for mitigation of atrazine-associated agricultural runoff   总被引:11,自引:0,他引:11  
Atrazine was amended into constructed wetlands (59-73x14x0.3 m) for the purpose of monitoring transport and fate of the pesticide to obtain information necessary to provide future design parameters for constructed wetlands mitigation of agricultural runoff. Following pesticide amendment, a simulated storm and runoff event equal to three volume additions was imposed on each wetland. Targeted atrazine concentrations were 0 microg/l (unamended control), 73 microg/l, and 147 microg/l. Water, sediment, and plant samples were collected weekly for 35 days from transects longitudinally distributed throughout each wetland and were analyzed for atrazine using gas chromatography. Between 17 and 42% of measured atrazine mass was within the first 30-36 m of wetlands. Atrazine was below detection limits (0.05 microg/kg) in all sediment and plant samples collected throughout the duration of this study. Aqueous half lives ranged from 16 to 48 days. According to these data, conservative buffer travel distances of 100-280 m would be necessary for effective runoff mitigation.  相似文献   

15.
Laabs V  Amelung W  Pinto A  Altstaedt A  Zech W 《Chemosphere》2000,41(9):1441-1449
Pesticide pollution of ground and surface water is of growing concern in tropical countries. The objective of this pilot study was to evaluate the leaching potential of eight pesticides in a Brazilian Oxisol. In a field experiment near Cuiabá, Mato Grosso, atrazine, chlorpyrifos, lambda-cyhalothrin, endosulfane alpha, metolachlor, monocrotofos, simazine, and trifluraline were applied onto a Typic Haplustox. Dissipation in the topsoil, mobility within the soil profile and leaching of pesticides were studied for a period of 28 days after application. The dissipation half-life of pesticides in the topsoil ranged from 0.9 to 14 d for trifluraline and metolachlor, respectively. Dissipation curves were described by exponential functions for polar pesticides (atrazine, metolachlor, monocrotofos, simazine) and bi-exponential ones for apolar substances (chlorpyrifos, lambda-cyhalothrin, endosulfane alpha, trifluraline). Atrazine, simazine and metolachlor were moderately leached beyond 15 cm soil depth, whereas all other compounds remained within the top 15 cm of the soil. In lysimeter percolates (at 35 cm soil depth), 0.8-2.0% of the applied amounts of atrazine, simazine, and metolachlor were measured within 28 days after application. Of the other compounds less than 0.03% of the applied amounts was detected in the soil water percolates. The relative contamination potentials of pesticides, according to the lysimeter study, were ranked as follows: metolachlor > atrazine = simazine > monocrotofos > endsulfane alpha > chlorpyrifos > trifluraline > lambda-cyhalothrin. This order of the pesticides was also achieved by ranking them according to their effective sorption coefficient Ke, which is the ratio of Koc to field-dissipation half-life.  相似文献   

16.
Smalling KL  Aelion CM 《Chemosphere》2006,62(2):188-196
The degradation and distribution potential of atrazine, a persistent triazine herbicide, into three chemical fractions were measured in coastal aquatic sediments in the laboratory over time. Sediments with varying organic carbon contents were extracted with an organic solvent followed by an alkali hydrolysis reaction, and atrazine, deethylatrazine (DEA) and deisopropylatrazine (DIA) were quantified in the aqueous, solvent, and basic fractions using gas chromatography-mass spectrometry. The total amount of atrazine and its metabolites recovered after 95 days varied by site and ranged from 5% to 30% in which 95% was atrazine found primarily in the solvent fraction. Sediment organic carbon was positively correlated with the distribution of atrazine into the basic fraction and the decline in the total amount recovered. No DIA was detected in laboratory spiked sediments and transformation to DEA was limited in all sediments and made up less than 1% of the mass balance. The production and persistence of DEA were inversely correlated to organic carbon; sediments with less carbon and limited binding sites had increased formation and persistence of DEA. A secondary metabolite, methylated atrazine (M-ATR) not previously documented to be derived from atrazine, was chemically produced, detected in all sediments and time points, and concentrations were an order of magnitude higher than DEA. Based on results from spiked estuarine sediments, atrazine and M-ATR may have the potential to persist in the environment while DEA and DIA may not be an ecological threat due to their limited formation.  相似文献   

17.
Pesticide transport models commonly assume first-order pesticide degradation kinetics for describing reactive transport in soil. This assumption was assessed in mini-column studies with associated batch degradation tests. Soil mini-columns were irrigated with atrazine in two intermittent steps of about 30 days separated by 161 days application of artificial rain water. Atrazine concentration in the effluent peaked to that of the influent concentration after initial break-through but sharply decreased while influx was sustained, suggesting a degradation lag phase. The same pattern was displayed in the second step but peak height and percentage of atrazine recovered in the effluent were lower. A Monod model with biomass decay was successfully calibrated to this data. The model was successfully evaluated against batch degradation data and mini-column experiments at lower flow rate. The study suggested that first-order degradation models may underestimate risk of pesticide leaching if the pesticide degradation potential needs amplification during degradation.  相似文献   

18.
Atrazine sorption and fate in a Ultisol from humid tropical Brazil   总被引:1,自引:0,他引:1  
This study combined laboratory based microcosm systems as well as field experiments to evaluate the mobility of atrazine on a Ultisol under humid tropical conditions in Brazil. Results from sorption experiments fit to the Freundlich isotherm model [K(f) 0.99 mg kg(-1)/(mg l(-1))(1/n)], and indicate a low sorption capacity for atrazine in this soil and consequently large potential for movement by leaching and runoff. Microcosm systems using (14)C-atrazine to trace the fate of the applied herbicide, showed that 0.33% of the atrazine was volatilized, 0.25% mineralized and 6.89% was recorded in the leachate. After 60 d in the microcosms, 75% of the (14)C remained in the upper 5 cm soil layer indicating atrazine or its metabolites remained close to the soil surface. In field experiments, after 60 d, only 5% of the atrazine applied was recovered in the upper soil layers. In the field experiments atrazine was detected at a depth of 50 cm indicating leaching. Simulating tropical rain in field experiments resulted in 2.1% loss of atrazine in runoff of which 0.5% was adsorbed onto transported soil particles and 1.6% was in solution. Atrazine runoff was greatest two days after herbicide application and decreased 10 fold after 15 d. The use of atrazine on Ultisols, in the humid tropics, constitutes a threat to water quality, causing surface water and ground water pollution.  相似文献   

19.
This study evaluated the mobility and persistence of atrazine and ametryn in red–yellow latosols using polyvinyl chloride columns with a diameter of 100 mm and a height of 15 cm. The assays simulated 60-mm rainfall events at 10-day intervals for 70 days. The persistence and leaching were evaluated for these two herbicides. The analytes obtained from the samples were quantified by gas chromatography using flame ionization detection. Compared with ametryn, atrazine showed a greater potential to reach depths below 15 cm over 30 days of simulated rain. Ametryn, however, showed greater persistence in soil at 70 days after application. The persistence of atrazine and ametryn in soil under sunlight was 10 and 144 days respectively. Atrazine was more susceptible to sunlight than ametryn because sunlight favored atrazine degradation in hydroxyatrazine. The results indicate that in red–yellow latosol, atrazine has a high leaching potential in short term, but that ametryn is more persistent and has a high leaching potential in long term.  相似文献   

20.
A fungal strain able to use atrazine (2-chloro-4-ethylamino-5-isopropylamino-1,3,5-triazine) as a source of nitrogen was isolated from a corn field soil that has been previously treated with the herbicide. This strain was purified and acclimatized to atrazine at a higher level in the laboratory. A supplemented N was required to trigger the reaction. Atrazine was degraded at a faster rate in inoculated mineral salt medium (MSM) than non-inoculated MSM. Within 20 days, nearly 34% of the atrazine was degraded in inoculated medium while only 2% of the herbicide was degraded in non-inoculated medium. Degradation of atrazine by the isolated fungal strain was also studied in sterile and non-sterile soil to determine the compatibility of the isolated strain with native microorganisms in soil. The degradation of atrazine was found to be more in inoculated sterile soil than in inoculated non-sterile soil. Cell free extract (CFE) of fungal mycelium degraded about 50% of the atrazine in buffer in 96 hours compared to the control. Four atrazine metabolites were isolated and characterized by LCMS. On the basis of morphological parameters the isolate was identified as Penicillium species. Results indicated that the microorganism may be useful for remediation of atrazine-contaminated soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号