首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Ecosystem consequences of cyanobacteria in the northern Baltic Sea   总被引:1,自引:0,他引:1  
Cyanobacteria of the Baltic Sea have multiple effects on organisms that influence the food chain dynamics on several trophic levels. Cyanobacteria contain several bioactive compounds, such as alkaloids, peptides, and lipopolysaccharides. A group of nonribosomally produced oligopeptides, namely microcystins and nodularin, are tumor promoters and cause oxidative stress in the affected cells. Zooplankton graze on cyanobacteria, and when ingested, the hepatotoxins (nodularin) decrease the egg production of, for example, copepods. However, the observed effects are very variable, because many crustaceans are tolerant to nodularin and because cyanobacteria may complement the diet of grazers in small amounts. Cyanobacterial toxins are transferred through the food web from one trophic level to another. The transfer rate is relatively low in the pelagic food web, but reduced feeding and growth rates of fish larvae have been observed. In the benthic food web, especially in blue mussels, nodularin concentrations are high, and benthic feeding juvenile flounders have been observed to disappear from bloom areas. In the littoral ecosystem, gammarids have shown increased mortality and weakening of reproductive success under cyanobacterial exposure. In contrast, mysid shrimps seem to be tolerant to cyanobacterial exposure. In fish larvae, detoxication of nodularin poses a metabolic cost that is reflected as decreased growth and condition, which may increase their susceptibility to predation. Cyanobacterial filaments and aggregates also interfere with both hydromechanical and visual feeding of planktivores. The feeding appendages of mysid shrimps may clog, and the filaments interfere with prey detection of pike larvae. On the other hand, a cyanobacterial bloom may provide a refuge for both zooplankton and small fish. As the decaying bloom also provides an ample source of organic carbon and nutrients for the organisms of the microbial loop, the zooplankton species capable of selective feeding may thrive in bloom conditions. Cyanobacteria also compete for nutrients with other primary producers and change the nitrogen (N): phosphorus (P) balance of their environment by their N-fixation. Further, the bioactive compounds of cyanobacteria directly influence other primary producers, favoring cyanobacteria, chlorophytes, dinoflagellates, and nanoflagellates and inhibiting cryptophytes. As the selective grazers also shift the grazing pressure on other species than cyanobacteria, changes in the structure and functioning of the Baltic Sea communities and ecosystems are likely to occur during the cyanobacterial bloom season.  相似文献   

2.
A steady state model is developed to describe the bioaccumulation of organic contaminants by 14 species in a Baltic food web including pelagic and benthic aquatic organisms. The model is used to study the bioaccumulation of five PCB congeners of different chlorination levels. The model predictions are evaluated against monitoring data for five of the species in the food web. Predicted concentrations are on average within a factor of two of measured concentrations. The model shows that all PCB congeners were biomagnified in the food web, which is consistent with observations. Sensitivity analysis reveals that the single most sensitive parameter is log K(OW). The most sensitive environmental parameter is the annual average temperature. Although not identified amongst the most sensitive input parameters, the dissolved concentration in water is believed to be important because of the uncertainty in its determination. The most sensitive organism-specific input parameters are the fractional respiration of species from the water column and sediment pore water, which are also difficult to determine. Parameters such as feeding rate, growth rate and lipid content of organism are only important at higher trophic levels.  相似文献   

3.
The present study reports concentrations and biomagnification potential of per- and polyfluorinated alkyl substances (PFAS) in species from the Barents Sea food web. The examined species included sea ice amphipod (Gammarus wilkitzkii), polar cod (Boreogadus saida), black guillemot (Cepphus grylle) and glaucous gull (Larus hyperboreus). These were analyzed for PFAS, polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethanes (DDTs) and polybrominated diphenyl ethers (PBDEs). Perfluorooctane sulfonate (PFOS) was the predominant of the detected PFAS. Trophic levels and food web transfer of PFAS were determined using stable nitrogen isotopes (delta(15)N). No correlation was found between PFOS concentrations and trophic level within species. However, a non-linear relationship was established when the entire food web was analyzed. Biomagnification factors displayed values >1 for perfluorohexane sulfonate (PFHxS), perfluorononanoic acid (PFNA), PFOS and SigmaPFAS(7). Multivariate analyses showed that the degree of trophic transfer of PFAS is similar to that of PCB, DDT and PBDE, despite their accumulation through different pathways.  相似文献   

4.
Stable isotope values (13C, 15N) and concentrations of persistent organochlorine contaminants (OCs) were determined to evaluate the near-shore marine trophic status of biota and biomagnification of OCs from the southern Beaufort-Chukchi Seas (1999-2000) near Barrow, AK. The biota examined included zooplankton (Calanus spp.), fish species such as arctic cod (Boreogadus saida), arctic char (Salvelinus alpinus), pink salmon (Oncorhynchus gorbuscha), and fourhorn sculpin (Myoxocephalus quadricornis), along with marine mammals, including bowhead whales (Balaena mysticetus), beluga whales (Delphinapterus leucas), ringed seals (Phoca hispida) and bearded seals (Erignathus barbatus). The isotopically derived trophic position of biota from the Beaufort-Chukchi Seas marine food web, avian fauna excluded, is similar to other coastal food webs in the Arctic. Concentrations of OCs in marine mammals were significantly greater than in fish and corresponded with determined trophic level. In general, OCs with the greatest food web magnification factors (FWMFs) were those either formed due to biotransformation (e.g. p,p'-DDE, oxychlordane) or considered recalcitrant (e.g. -HCH, 2,4,5-Cl substituted PCBs) in most biota, whereas concentrations of OCs that are considered to be readily eliminated (e.g. -HCH) did not correlate with trophic level. Differences in physical-chemical properties of OCs, feeding strategy and possible biotransformation were reflected in the variable biomagnification between fish and marine mammals. The FWMFs in the Beaufort-Chukchi Seas region were consistent with reported values in the Canadian Arctic and temperate food webs, but were statistically different than FWMFs from the Barents and White Seas, indicating that the spatial variability of OC contamination in top-level marine Arctic predators is attributed to differences in regional sources of contamination rather than trophic position.  相似文献   

5.
Havenhand JN 《Ambio》2012,41(6):637-644
Increasing partial pressure of atmospheric CO2 is causing ocean pH to fall—a process known as ‘ocean acidification’. Scenario modeling suggests that ocean acidification in the Baltic Sea may cause a ≤3 times increase in acidity (reduction of 0.2–0.4 pH units) by the year 2100. The responses of most Baltic Sea organisms to ocean acidification are poorly understood. Available data suggest that most species and ecologically important groups in the Baltic Sea food web (phytoplankton, zooplankton, macrozoobenthos, cod and sprat) will be robust to the expected changes in pH. These conclusions come from (mostly) single-species and single-factor studies. Determining the emergent effects of ocean acidification on the ecosystem from such studies is problematic, yet very few studies have used multiple stressors and/or multiple trophic levels. There is an urgent need for more data from Baltic Sea populations, particularly from environmentally diverse regions and from controlled mesocosm experiments. In the absence of such information it is difficult to envision the likely effects of future ocean acidification on Baltic Sea species and ecosystems.  相似文献   

6.
Polychlorobiphenyls (PCB) and stable isotopes (delta15N and delta13C) were analyzed in the spider crab (Maja brachydactyla) food web from the Iroise Sea (Western Brittany) and the Seine Bay (Eastern English Channel). PCB concentrations were all significantly higher in organisms from the Seine Bay than those from the Iroise Sea. PCB patterns were strongly related to the feeding mode of the species, and increased influence of higher chlorinated congeners was highlighted with trophic position of the organisms. PCB concentrations (lipid normalized) were significantly related to the isotopically derived trophic level (TL) in spider crab food webs. The highest trophic magnification factors (TMFs) were calculated for the congeners with 2,4,5-substitution, and were lower in the Seine Bay compared to the Iroise Sea. The confrontation of PCB and TL data also revealed biotransformation capacity of decapod crustaceans for specific congeners based on structure-activity relations.  相似文献   

7.
Binelli A  Provini A 《Chemosphere》2003,53(2):143-151
Several models of varying complexity have been used to predict pollutant concentrations in the higher levels of the food web from those in lower levels, but the role of the biomagnification process in aquatic food chains is still controversial. We used the fugacity-based approach to verify the transfer of PCBs through the pelagic food chain of Lake Iseo (N. Italy), sampling several zebra mussel specimens and some fish belonging of different trophic levels. The zebra mussel seems to be a suitable starting species for modelling the bioaccumulation process through the trophic web, not only because its physiological characteristics and population size do not change much with time (as do algae and zooplankton) but also because it takes up toxicants exclusively from the water, as shown by the application of two predictive trophic models commonly used. The data provided by one of those models were in good agreement with our experimental data on fish in Lake Iseo, that show a not negligible uptake from food for the top predator species (pike and perch) with an increase of about three times in comparison with the PCB levels measured in the zebra mussel specimens.  相似文献   

8.
The present study elucidated the biomagnification profiles of persistent organic pollutants (POPs) through a tropical aquatic food web of Vietnam based on trophic characterization using stable nitrogen analysis. Various biological samples collected from the main stream of the Mekong Delta were provided for the analysis for both POPs, and stable nitrogen and carbon isotope ratios. Of the POPs analyzed, dichlorodiphenyltrichloroethane and its metabolites (DDTs) were the predominant contaminants with concentrations ranging from 0.058 to 12 ng/g wet weight, followed by polychlorinated biphenyls (PCBs) at 0.017-8.9 ng/g, chlordane compounds (CHLs) at 0.0043-0.76 ng/g, tris-4-chlorophenyl methane (TCPMe) at N.D.-0.26 ng/g, hexachlorocyclohexane isomers (HCHs) at N.D.-0.20 ng/g and hexachlorobenzene (HCB) at 0.0021-0.096 ng/g. Significant positive increases of concentrations in DDTs, CHLs, and TCPMe against the stable nitrogen ratio (delta(15)N) were detected, while, concentrations of HCHs and HCB showed no significant increase. The slopes of the regression equations between the log-transformed concentrations of these POPs and delta(15)N were used as indices of biomagnification. The slopes of the POPs for which positive biomagnification was detected ranged from 0.149 to 0.177 on a wet weight basis. The slopes of DDTs and CHLs were less than those reported for a marine food web of the Arctic Ocean, indicating that less biomagnification had occurred in the tropical food web. Of the isomers of CHLs, unlike the studies of the Arctic Ocean, oxychlordane did not undergo significant biomagnification through the food web of the Mekong Delta. This difference is considered to be due to a lack of marine mammals, which might metabolize cis- and trans-chlordane to oxychlordane, in the Mekong Delta ecosystem. The biomagnification profile of TCPMe is reported for the first time in the present study.  相似文献   

9.
Trace elements (22) and stable isotope ratios (δ15N and δ13C) were analyzed in marine organisms from shallow (SW) and deep-water (DW) of the East China Sea to understand biomagnification and prey source of trace elements. In the benthic marine organisms from DW, δ15N values were negatively correlated with Ba, Cu, Ag, Mo, Sr, As, and Co concentrations. This may be due to the specific accumulation in lower trophic animals and/or the biodilution through the food web in DW. Relationships between δ15N and concentrations of Co, Cr, Bi, and Tl in fish and Ag, Bi, V, Hg, and Tl in crustaceans showed positive correlations, suggesting that trophic position was affecting the concentrations of those elements in phyla, with higher trophic animals retaining higher concentrations than the lower trophic animals. Positive correlations between δ13C and Rb were observed in marine organisms. Therefore, Rb may be a possible substitute of δ13C as tracer of prey source in the East China Sea although further investigation is required.  相似文献   

10.
Acidification can affect aquatic organisms directly through hydrogen ion toxicity, and indirectly through disrupted food web dynamics and altered abiotic conditions. Field populations from selected taxa were studied during the Little Rock Lake whole-basin acidification experiment to illustrate patterns whose timing suggests direct (i.e. immediate) or indirect (i.e. delayed or non-uniform) responses to pH change. As the treatment basin was acidified to pH 5.6, 5.2 and 4.7, immediate changes consistent with a direct pH response were observed for species representing several trophic levels. For other taxa (e.g. littoral invertebrates associated with filamentous algal mats, several species of pelagic zooplankton), indirect mechanisms induced by food web changes were more likely explanations for abundance patterns. The results presented here suggest that the responses of aquatic ecosystems to acidification involve a complex interplay between direct pH effects and subsequent indirect interactions.  相似文献   

11.
Nine heavy metals sampled from water, sediments, and aquatic organisms in the newly-formed wetlands of the Yellow River Delta (YRD) of China were analyzed to evaluate their concentrations and trophic transfer in food webs. The stable carbon (δ13C) and nitrogen (δ15N) isotopes were used to investigate trophic interactions. Results show that most of heavy metals detected in water and sediments are lower than that in Yangtze River Delta and Pearl River Delta. The longest food web is approximately 4 with the highest trophic level of birds. The difference of heavy metal concentrations between endangered Saunders’s Gull and other three kinds of protected birds is not obvious. Cd, Zn, and Hg were identified to have an increase with the trophic level (TL), while As, Cr, Cu, Mn, Ni and Pb show an opposite trend, however, the biomagnification of the selected nine heavy metals in the food webs is not significant.  相似文献   

12.
To evaluate the biomagnification extent of polybrominated diphenyls ethers (PBDEs) and polychlorinated biphenyls (PCBs) in a highly contaminated freshwater food web from South China, trophic magnification factors (TMFs) for 18 PBDE congeners and 53 PCB congeners were calculated. The TMF values ranged 0.26-4.47 for PBDEs and 0.75-5.10 for PCBs. Forty-five of 53 PCBs and BDEs 47, 100 and 154 had TMFs greater than one, suggesting their biomagnification in the present food web. The TMFs for PBDEs were generally smaller than those for PCBs with the same degree of halogenation, indicating a lower biomagnification potential for PBDEs compared to PCBs. For PCBs, it followed a parabolic relationship between TMFs and log KOW (octanol-water partition coefficient). However, this relationship was not significant for PBDEs, possibly due to the more complex behaviors of PBDEs in the food web (e.g., metabolism), compared to that of PCBs.  相似文献   

13.
Organochlorine contaminants (OCs) were determined in liver and fat of seven species of seabirds (Alle alle, Uria lomvia, Cepphus grylle, Rissa tridactyla, Pagophila eburnea, Larus hyperboreus, and Fulmaris glacialis) collected in May/June 1998 from the Northwater Polynya in northern Baffin Bay. OC concentrations ranged over an order of magnitude between seabird species and OC groups, with PCBs having the highest concentrations followed by DDT, chlordane, HCH and ClBz. Positive relationships between delta15N (estimator of trophic level) and OC concentrations (lipid basis) were found for all OC groups, showing that trophic position and biomagnification significantly influence OC concentrations in Arctic seabirds. Concentrations of a number of OCs in particular species (e.g., HCH in P. eburnean) were lower than expected based on delta15N and was attributed to biotransformation. P. eburnea and F. glacialis, which scavenge, and R. tridactyla, which migrate from the south, were consistently above the delta15N-OC regression providing evidence that these variables can elevate OC concentrations. Stable isotope measurements in muscle may not be suitable for identifying past scavenging events by seabirds. OC relative proportions were related to trophic position and phylogeny, showing that OC biotransformation varies between seabird groups. Trophic level, migration, scavenging and biotransformation all play important roles in the OCs found in Arctic seabirds.  相似文献   

14.
Concentrations of four possibly naturally produced organohalogens--1,1'-dimethyl-3,3',4-tribromo-4,5,5'-trichloro-2,2'-bipyrrole (DBP-Br3Cl3), 1,1'-dimethyl-3,3',4,4'-tetrabromo-5,5'-dichloro-2,2'-bipyrrole (DBP-Br4Cl2), 1,1'-dimethyl-3,3',4,4',5-pentabromo-5'-chloro-2,2'-bipyrrole (DBP-Br5Cl) and 1,1'-dimethyl-3,3',4,4',5,5'-hexabromo-2,2'-bipyrrole (DBP-Br6)--were quantitated and the extent of their magnification through an entire Arctic marine food web [measured as integrated trophic magnification factors (TMFs)] were calculated. The food web consisted of three zooplankton species (Calanus hyperboreus, Mysis oculata, and Sagitta sp.), one fish species [Arctic cod (Boreogadus saida)], four seabird species [dovekie (Alle alle), black guillemot (Cepphus grylle), black-legged kittiwake (Rissa tridactyla), and glaucous gull (Larus hyperboreus)], and one marine mammal species [ringed seal (Phoca hispida)]. Trophic levels in the food web were calculated from ratios of stable isotopes of nitrogen (15N/14N). All halogenated dimethyl bipyrrole (HDBP) congeners were found to significantly (P<0.02) biomagnify, or increase in concentration with trophic level in the invertebrate--fish--seabird food web. DBP-Br4Cl2 (TMF= 14.6) was found to biomagnify to a greater extent than DBP-Br3Cl3 (TMF = 5.2), DBP-Br5Cl (TMF = 6.9), or DBP-Br6 (TMF = 7.0), even though the Kow of DBP-Br4CI2 was predicted to be lower than those of DBP-Br5Cl and DBP-Br6. None of the four HDBP congeners in ringed seals followed the general trend of increasing concentration with trophic level, which was possibly due to an ability of the seals to metabolize HDBPs.  相似文献   

15.
Background, aim, and scope  Selenium (Se) has been shown to reduce mercury (Hg) bioavailability and trophic transfer in aquatic ecosystems. The study of methylmercury (MeHg) and Se bioaccumulation by plankton is therefore of great significance in order to obtain a better understanding of the estuarine processes concerning Hg and Se accumulation and biomagnification throughout the food web. In the western South Atlantic, few studies have documented trace element and MeHg in fish tissues. No previous study about trace elements and MeHg in plankton has been conducted concerning tropical marine food webs. Se, Hg, and MeHg were determined in two size classes of plankton, microplankton (70–290 μm) and mesoplankton (≥290 μm), and also in muscle tissues and livers of four fish species of different trophic levels (Mugil liza, a planktivorous fish; Bagre spp., an omnivorous fish; Micropogonias furnieri, a benthic carnivorous fish; and Centropomus undecimalis, a pelagic carnivorous fish) from a polluted estuary in the Brazilian Southeast coast, Guanabara Bay. Biological and ecological factors such as body length, feeding habits, and trophic transfer were considered in order to outline the relationships between these two elements. The differences in trace element levels among the different trophic levels were investigated. Materials and methods  Fish were collected from July 2004 to August 2005 at Guanabara Bay. Plankton was collected from six locations within the bay in August 2005. Total mercury (THg) was determined by cold vapor atomic absorption spectrometry (CV-AAS) with sodium borohydride as a reducing agent. MeHg analysis was conducted by digesting samples with an alcoholic potassium hydroxide solution followed by dithizone-toluene extraction. MeHg was then identified and quantified in the toluene layer by gas chromatography with an electron capture detector (GC-ECD). Se was determined by AAS using graphite tube with Pin platform and Zeeman background correction. Results and discussion  Total mercury, MeHg, and Se increased with plankton size class. THg and Se values were below 2.0 and 4.8 μg g−1 dry wt in microplankton and mesoplankton, respectively. A large excess of molar concentrations of Se in relation to THg was observed in both plankton size class and both fish tissues. Plankton presented the lowest concentrations of this element. In fish, the liver showed the highest THg and Se concentrations. THg and Se in muscle were higher in Centropomus undecimalis (3.4 and 25.5 nmol g−1) than in Micropogonias furnieri (2.9 and 15.3 nmol g−1), Bagre spp (1.3 and 3.4 nmol g−1) and Mugil liza (0.3 and 5.1 nmol g−1), respectively. The trophic transfer of THg and Se was observed between trophic levels from prey (considering microplankton and mesoplankton) to top predator (fish). The top predators in this ecosystem, Centropomus undecimalis and Micropogonias furnieri, presented similar MeHg concentrations in muscles and liver. Microplankton presented lower ratios of methylmercury to total mercury concentration (MeHg/THg) (34%) than those found in mesoplankton (69%) and in the muscle of planktivorous fish, Mugil liza (56%). The other fish species presented similar MeHg/THg in muscle tissue (of around 100%). M. liza showed lower MeHg/THg in the liver than C. undecimalis (35%), M. furnieri (31%) and Bagre spp. (22%). Significant positive linear relationships were observed between the molar concentrations of THg and Se in the muscle tissue of M. furnieri and M. liza. These fish species also showed significant inverse linear relationships between hepatic MeHg and Se, suggesting a strong antagonistic effect of Se on MeHg assimilation and accumulation. Conclusions  Differences found among the concentrations THg, MeHg, and Se in microplankton, mesozooplankton, and fishes were probably related to the preferred prey and bioavailability of these elements in the marine environment. The increasing concentration of MeHg and Se at successively higher trophic levels of the food web of Guanabara Bay corresponds to a transfer between trophic levels from the lower trophic level to the top-level predator, suggesting that MeHg and Se were biomagnified throughout the food web. Hg and Se were positively correlated with the fish standard length, suggesting that larger and older fish bioaccumulated more of these trace elements. THg, MeHg, and Se were a function of the plankton size. Recommendations and perspectives  There is a need to assess the role of selenium in mercury accumulation in tropical ecosystems. Without further studies of the speciation of selenium in livers of fishes from this region, the precise role of this element, if any, cannot be verified in positively affecting mercury accumulation. Further studies of this element in the study of marine species should include liver samples containing relatively high concentrations of mercury. A basin-wide survey of selenium in fishes is also recommended.  相似文献   

16.
Biomagnification of organochlorines along a Barents Sea food chain   总被引:2,自引:0,他引:2  
To trace the biomagnification of organochlorines in marine food chains near Svalbard, which may lead to the high organochlorine concentrations in top predators from the area, we compared concentrations and patterns of organochlorines in selected taxa. The pelagic crustaceans, Calanus spp. (copepods), Thysanoessa spp. (euphausiids), Parathemisto libellula (amphipod), and the fish species, Boreogadus saida (polar cod) and Gadus morhua (cod) were selected to represent the lower trophic levels in the food web. Four seabird species were chosen at the higher trophic levels, Uria lomvia (Brünnich's guillemot), Cepphus grylle (black guillemot), Rissa tridactyla (black-legged kittiwake) and Larus hyperboreus (glaucous gull). We found low concentrations of the organochlorines sigma hexachlorocyclohexanes (sigma HCHs), hexachlorobenzene (HCB), sigma Chlordanes, sigma DDTs and sigma polychlorinated biphenyls (sigma PCBs) in crustaceans (11-50 ng g-1 lipid wt.) and fish (15-222 ng g-1 lipid wt.). In seabirds, the organochlorine concentrations biomagnified one to three orders of magnitude dependent on species and compound class. Glaucous gulls had the highest concentrations of all organochlorines. The organochlorine levels in all taxa except glaucous gull were comparable to those recorded in similar species in the Canadian Arctic. The organochlorine pattern changed from crustaceans and fish to seabirds. Moving up the food chain, the relative contribution of sigma HCHs, HCB and sigma Chlordanes decreased, and the relative contribution of sigma DDTs, sigma PCBs, persistent compounds and metabolites increased. The results reflected trophic transfer of organochlorines along the food chain as well as different elimination potentials due to direct diffusion in crustaceans and fish, and higher contaminant metabolic activity in seabirds.  相似文献   

17.
Lucyna Polak-Juszczak   《Chemosphere》2009,76(10):1334-1339
This study is based on raw data obtained from 1 225 samples of herring (Clupea harengus), sprat (Sprattus sprattus), and cod (Gadus morhua) collected in the 1994–2003 period from the Polish coastal zone of the Baltic Sea. This paper presents the results of investigations of the contents of Cu, Zn, Cd, Pb, Hg, and As in fish. The aim was to identify temporal trends in trace metal contamination and variations in the concentrations of Hg in the flesh of herring, sprat, and cod of different lengths. A positive correlation between fish length and Hg concentration was noted for cod, sprat, and herring. The temporal trend analyses of heavy metal concentrations in the fish in the 1994–2003 period indicated ten significant downward trends out of eighteen tests; these referred to concentrations of Cd, Hg, and Pb in all the species studied, and to As in sprat. Concentrations of Cu and Zn remained stable in all the species studied, as did As in herring and cod. No upward trends were detected in the concentration of trace metals in the fish studied. Smaller scale temporal variations in concentrations of some elements were also observed and were associated with natural events, such as increased river discharge resulting from floods. The most likely factors which contributed to the observed downward trends in heavy metals concentrations in fish could possibly stem from lesser quantities of Cd, Pb, and Hg being introduced to the Baltic Sea with the waters of rivers from Baltic countries, including Poland, and atmospheric depositions in the 1994–2003 period. Diminishing trends of concentrations of these elements in Baltic Sea waters are also evidence of this. These facts might indicate that advantageous changes are occurring in the concentrations of heavy metals in the southern Baltic environment.  相似文献   

18.
Mercury contamination in freshwater food webs can be severe and persistent, and freshwater fish are a major source of mercury contamination in humans. Northern hemisphere studies suggest that the primary pathway by which freshwater fish accumulate mercury is the food web, and that atmospheric deposition is the primary route by which mercury enters freshwater systems. Levels of atmospheric deposition are closely linked to proximity to sources of mercury emissions. These propositions have not been tested in the southern hemisphere. In this study, we measured mercury levels at three lakes in southern Brazil and assessed relationships between mercury in precipitation, lake water, sediment and fish tissues at sites close to (industrial and suburban areas) and distant from (protected conservation area) sources of mercury emissions. We also assessed relationships between mercury in fish species and their trophic habits. Mercury concentrations in sediment and lake water did not vary among lakes. In contrast, mercury in precipitation at the study lakes increased with proximity to industrial sources. Mercury in fish tissue generally increased along the same gradient, but also varied with trophic level and preferred depth zone. Atmospheric mercury deposition to these closed lakes may be directly linked to concentrations in fish, with surface-feeding piscivorous species attaining the highest concentrations.  相似文献   

19.
Total mercury (THg) concentrations were measured for various fish species from Lakes Turkana, Naivasha and Baringo in the rift valley of Kenya. The highest THg concentration (636 ng g(-1) wet weight) was measured for a piscivorous tigerfish Hydrocynus forskahlii from Lake Turkana. THg concentrations for the Perciformes species, the Nile perch Lates niloticus from Lake Turkana and the largemouth bass Micropterus salmoides from Lake Naivasha ranged between 4 and 95 ng g(-1). The tilapiine species in all lakes, including the Nile tilapia Oreochromis niloticus, had consistently low THg concentrations ranging between 2 and 25 ng g(-1). In Lake Naivasha, the crayfish species, Procambrus clarkii, had THg concentrations similar to those for the tilapiine species from the same lake, which is consistent with their shared detritivore diet. THg concentrations in all fish species were usually consistent with their known trophic position, with highest concentrations in piscivores and declining in omnivores, insectivores and detritivores. One exception is the detritivore Labeo cylindricus from Lake Baringo, which had surprisingly elevated THg concentrations (mean=75 ng g(-1)), which was similar to those for the top trophic species (Clarias and Protopterus) in the same lake. Except for two Hydrocynus forskahlii individuals from Lake Turkana, which had THg concentrations near or above the international marketing limit of 500 ng g(-1), THg concentrations in the fish were generally below those of World Health Organization's recommended limit of 200 ng g(-1) for at-risk groups.  相似文献   

20.
Silver (Ag) ions are among the most toxic metallic ions to aquatic biota. In southern Argentina, fish from Patagonian lakes have liver Ag concentrations [Ag] among the highest ever reported globally. Silver concentration in phytoplankton from Lake Moreno (1.82 ± 3.00 μg g−1 dry weight, DW) was found to be significantly higher than [Ag] in zooplankton (0.25 ± 0.13 μg g−1). Values in snails and decapods (0.60 ± 0.28 μg g−1 and 0.47 ± 0.03 μg g−1 respectively), were higher than in insect larvae (0.28 ± 0.39 μg g−1 for Trichoptera). We examined trophic transfer of Ag in the biota using stable nitrogen and carbon isotopes ratios (δ15N and δ13C respectively). Silver concentrations in the biota of Lake Moreno were not associated with any particular C source, as assessed by δ13C. Hepatic [Ag] significantly increased with trophic position, as measured by δ15N, within the brook trout sample set. Biodilution of Ag was observed between primary producers and small forage fish when whole body [Ag] was analyzed. Nevertheless, when considering whole food web biomagnification and hepatic [Ag] of top predator fish, a significant positive regression was found between [Ag] and trophic position, as measured by δ15N. The importance of species-specific and tissue-specific considerations to obtain more information on Ag trophodynamics than that usually presented in the literature is shown. To the best of our knowledge, this is the first study in assessing Ag trophodynamics and tissue-specific biomagnification in a whole freshwater food web.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号