首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The proposed conversion from gasoline powered automobiles to diesel powered vehicels has prompted the Environmental Protection Agency to evaluate the potential health effects associated with exposure to diesel emissions. At present, there is no direct epidemiological link between this exposure and human health. Therefore, a research program was constructed to compare the health effects associated with diesel emissions with those from other emission sources for which epidemiological information was available. The emission sources chosen were cigarette smoke, roofing tar, and coke oven. An additional comparative emission source which was a gasoline catalyst engine. Respirable particles from a variety of combustion sources have the potential of being carcinogenic and mutagenic. The objective of these studies was to determine the relative biological activity of the organic material adsorbed on these particles in both in vitro mutagenesis and in vitro and in vivo bioassays. The organic extracts from the following series of emission sources were quantitatively bioassayed in a matrix of tests for their carcinogenic and mutagenic activity: (1) a light-duty Oldsmobile diesel 350 engine; (2) a heavy-duty Caterpillar diesel engine; (3) a light-duty Nissan engine; (4) a Volkswagen Rabbit diesel engine; (5) cigarette smoke; (6) roofing tar; (7) coke oven; and (8) a gasoline catalyst Mustang. The test matrix consisted of the following bioassay: reverse mutation in Salmonella typhimurium; mitotic recombination in Saccharomyces cerevisiae; DNA damage in Syrian hamster embryo cells (SHE); sister chromatid exchange in CHO cells; gene mutation in L5178Y mouse lymphoma cells, Balb/c 3T3 mouse embryo fibroblasts and CHO cells; viral enhancement of SHE cells; oncogenic transformation in Balb/c 3T3 cells; and skin tumor initiation in SENCAR and C57 black mice. The results of this test matrix are discussed.  相似文献   

2.
To estimate the human health risk of inhaled diesel particles, it is necessary to know their deposition and retention in the respiratory tract and the rate of dissociation of mutagenic compounds associated with the particles. The deposition of a chain aggregate aerosol of 67Ga2O3 with size and shape characteristics similar to diesel exhaust particles has been evaluated using Beagle dogs. Approximately one-third of the inhaled activity is deposited in the respiratory tract with most of the particles deposited in the lung. The mutagenic activity present in dichloromethane, dog serum, dog lung lavage fluid, saline, dipalmitoyl lecithin (DPL) and albumin following incubation of these fluids with diesel exhaust particles was determined in the Ames Salmonella system. As observed by other investigators, large quantities of mutagenic activity were removed by dichloromethane. A very small amount of mutagenic activity was removed by the serum and lavage fluid over a 3-day incubation period. No activity was detected following elution with the other solvents. The finding that minimal mutagenic activity could be demonstrated in the biological media following incubation with diesel exhaust particles may be due to a lack of removal of mutagens from the particles or an inactivation of removed mutagens by protein binding or other processes.  相似文献   

3.
A major diesel emissions research program has been initiated by the U.S. Environmental Protection Agency to assess the human health risk associated with increased use of diesel automobiles. This program is intended to establish the mutagenic and carcinogenic potency of complex organics associated with diesel particles as well as comparative particle-bound organics from other environmental emissions for which human epidemiological data are available. The mobile source samples selected for this study were collected from a heavy-duty diesel engine, a series of light-duty diesel passenger cars, and a gasoline catalyst automobile. The comparative source samples incorporated into the study were cigarette smoke condensate, coke oven emissions, roofing tar emissions, and benzo(a)pyrene. The samples were tested using three mutagenic assays and four carcinogenic assays as prescribed by a test matrix. This report describes the study design, particle generation, and sample collection and preparation. A brief summary of the bioassays is also included.  相似文献   

4.
Particulate extracts from six different environmental emission sources were assayed for genotoxic activity in mouse BALB/c 3T3 clone A31-1 cells. All compounds were tested simultaneously for both transforming and mutagenic (induction of ouabain-resistance) potential with and without exogenous metabolic activation in the form of a 9000 × g postmitochondrial hepatic supernatant fraction from Aroclor-1254 induced Fischer 344 rats. Dichloromethane particulate extracts from the exhaust of two light duty diesel engines (Oldsmobile and Nissan), one heavy duty diesel engine (Caterpillar) and one late model gasoline engine (Mustang II) were assayed in an identical manner to particulate extracts from the emissions of a roofing tar pot and a coke oven. No clear dose-dependent responses were observed, but several of the samples showed significant transforming and mutagenic activity. A qualitative ranking system showed the activity of these particulate extracts for either mutagenesis or transformation was: coke oven = Mustang II gasoline engine > Nissan diesel engine > roofing tar. Particulate extracts from the Oldsmobile diesel engine and the Caterpillar diesel engine showed essentially no activity.  相似文献   

5.
Mutagenic activity in diesel emission particulate extracts was detected by the Salmonella typhimurium/microsome assay. Direct-acting mutagens as well as promutagens requiring metabolic activation were detected. The extracts were fractionated into acidic, basic, and neutral fractions, and the neutral fraction was chromatographed into seven subfractions. Differences in the mutagenic potency of these fractions and subfractions were determined by the Salmonella assay. Fractions containing as yet unidentified compounds, but not polynuclear aromatic hydrocarbons, were found to make a major contribution to mutagenic activity of the extracts.  相似文献   

6.
Motor vehicle exhaust from prechamber injection diesel and gasoline powered passenger cars, sampled during US FTP 1973 test cycles and comprising both particulate matter and compounds condensable at ambient temperature, has been assayed for mutagenicity in the Salmonella/microsome test. Mutagenic components were to a large extent active in the absence of the mammalian microsomal preparation. The mutagenicity of both particulate matter and condensate from diesel exhaust and condensate from gasoline exhaust was decreased in the presence of the microsomal preparation whereas the mutagenicity of particulate matter from gasoline exhaust was enhanced by microsomal activation. A comparison between the investigated diesel and gasoline exhaust samples shows that the mutagenic effect in the Salmonella test of the diesel exhaust is more than ten times higher than that of the gasoline exhaust. Fractionation with respect to polarity indicates that the mutagenic components mainly are distributed in neutral aliphatic, aromatic, and oxygenated fractions. Tests for mutagenic monofunctional nitroarenes by an anaerobic assay indicate that such compounds at most are marginally present in the exhaust samples as compared with their presence in airborne particulate matter collected in an urban environment.  相似文献   

7.
Extracts from emissions of four diesel engines, a gasoline engine and three related environmental samples were tested in four in vitro assay systems designed to detect carcinogenic or mutagenic activity of chemicals. Samples from three of four diesel extracts, the gasoline engine, and all three related samples were positive in an enhancement of viral transformation assay. Two diesel samples, the gasoline engine extract and extract from coke oven emissions were positive for mutation induction in Chinese hamster ovary cells. Only the gasoline engine extract and the coke oven sample were positive in a DNA fragmentation assay using alkaline sucrose gradients. Experiments using chemical transformation of Syrian hamster embryo cells as an assay method have not been completed.  相似文献   

8.
The Ames bacterial mutagenicity test system was used to evaluate parameters which may affect the mutagenic activity of diesel particulate extracts. The optimal extraction conditions, extractability of mutagens by simulated biological fluids and the effect of collection method were investigated. The role of solvent was examined by extracting diesel particles with methanol, acetone, cyclohexane, ethyl acetate, n-hexane, dichloromethane, benzene and a benzene-ethanol mixture. Of these, the dichloromethane extract exhibited the highest activity in the Ames test, although methanol yielded the largest extractable mass. Diesel particles were also extracted by dimethyl sulfoxide (DMSO) and four other simulated biological fluids for 48 h at 25, 37, and 45°C to study the effects of temperature. The mutagenic activity of the DMSO extract began to decline at temperatures higher than 37°C after 8 h of incubation. Fetal calf serum was the only simulated biological fluid which eluted mutagenic activity from the particles. No activity was detected in the 0.5% bovine serum albumin, simulated lung surfactant and saline extracts. Diesel particles collected by electrostatic precipitation (ESP) and filtration were studied. The mutagenic activities of both extracts were comparable when expressed as revertants per mg of particle. After the extracts were separated into nine fractions by a solvent partitioning scheme, the majority of the activity was found in the neutral-nonpolar II, neutral polar, strong acid and weak acid fractions. The acid salt fraction from the ESP sample was inactive. These results demonstrate that differences in the extraction conditions can result in differences in the mutagenic activity of diesel particulate extract. Since the mutagens in the extracts are not readily extractable by simulated biological fluids, the question of bioavailability of mutagens in diesel particles must be considered in the final assessment of their potential effects in biological systems and organisms.  相似文献   

9.
The diminishing resources and continuously increasing cost of petroleum in association with their alarming pollution levels from diesel engines have caused an interest in finding alternative fuels to diesel which are renewable and sustainable. Emission control and engine efficiency are two most important parameters in current engine design. The impending introduction of emission standards such as Euro IV and Euro V is forcing the research towards developing new technologies for combating engine emissions. The classification of Euro IV and V norms is applicable to heavy-duty engines in Europe, where as Euro 5 is applicable to light-duty engines. This paper presents the effects of exhaust gas recirculation (EGR), swirl augmentation techniques and ethanol addition on the combustion of Honge oil methyl ester (HOME) and its blends with ethanol in a diesel engine. From the experimental work conducted, it is found that the combustion of HOME plus up to 15% ethanol blend in a diesel engine operated with optimised parameters of injection timing 23° Before Top Dead Centre and compression ratio 17.5 results in acceptable combustion emissions and improved brake thermal efficiency (BTE). The addition of ethanol increased BTE with reduced hydrocarbons (HCs), CO and smoke emissions. However, NO x emissions increased dramatically. Use of appropriate EGR reduces NO x to acceptable levels. The implementation of swirl augmentation techniques further resulted in increased BTE and considerable reduction in tail pipe emissions such as smoke, HCs, CO and NO x . The effect of swirl by providing grooves on the piston was taken into consideration to find the overall biodiesel engine performance, which gives scope for further studies.  相似文献   

10.
Carcinogenic and mutagenic compounds, which were extracted from the particulates that adhered to inner surfaces of diesel and gasoline engine mufflers, were quantified by the series method of Soxhlet extraction, liquid-liquid partition, thin-layer chromatography, and spectrofluorometry. Mutagenic activity of their neutral and acidic fractions was tested in the improved Ames assay by the preincubation method with Salmonella typhimurium TA98 in the presence and absence of metabolic activation system (S-9 mix). The average content levels (μg/g tar) of polycyclic aromatic hydrocarbons from gasoline engine cars were greater than those from diesel engine vehicles. However, the levels of nitro derivatives of PAHs and polycyclic quinones from the diesel engines were greater than from the gasoline engines. Mutagenic activity of the diesel acidic fraction was the highest among the diesel and gasoline fractions, and was significantly higher in the absence of the S-9 mix. Furthermore, the relative value (Rc = 0) of infrared absorption of carbonyl stretching vibration to that of methylene asymmetric stretching vibration of the diesel acidic fraction was the highest among the diesel and gasoline fractions. These results strongly suggest that highly direct-acting mutagens in the acidic fraction are at higher levels in diesel emission particulates than those from gasoline, and that these mutagens are carboxylic acid, aldehyde, and alcohol derivatives of PAHs and NPAHs.  相似文献   

11.
Both hot pipe and dilution chamber samples of the exhaust from a diesel (Oldsmobile 350) engine have been collected, extracted with methylene chloride and those extracts have been tested for mutagenicity in forward mutation assays in human lymphoblasts and S. typhimurium. In the absence of a metabolic activation system, the extract was significantly mutagenic to the bacteria in the range of 0 to 30 μg/ml, but introduced no mutations in human cells at concentrations up to 200 μg/ml under the same conditions of assay medium. However, when assayed in the presence of a postmitochondrial supernatant derived from rat liver, the the soot extracts were significantly mutagenic to both bacteria and human cells in the range of 50–100 μg/ml. Fractionation of the soot extract on the basis of polarity by sequential elution from a silicic acid column permitted concentration of the mutagenic activity in the alkane/toluene eluate, as determined by bacterial assays. Preliminary characterization of this fraction and preliminary studies of pure compounds leads us to suspect the alkyl substituted phenanthrenes as representing at least a significant fraction of the mutagenic activity of this alkane/toluene eluate.  相似文献   

12.
Biomonitoring studies have increased as a consequence of risks and effects to human health on exposure to environmental contaminants, mainly air pollutants. Genetic biomarkers are useful tools for the early assessment of exposure to occupational and environmental pollution. The objective of the present study was to investigate genotoxic effects on people residing and/or working downwind from an oil refinery in southern Brazil and the mutagenic activity of airborne particulate matter (PM10). Samples of peripheral blood and buccal mucosa cells were evaluated using the single-cell gel electrophoresis assay (comet assay) and the micronucleus (MN) assay, respectively. PM10 samples were collected in the target site and the organic matter extraced with dichloromethane was assessed for mutagenic activity in the Salmonella/microsome assay. The exposed group (n = 37) was compared to a reference group (n = 37) of subjects living in an urban area with limited traffic and industrial influence, located far from the main industrial areas. All PM10 organic extracts showed mutagenic positive responses and the effect decreased in the presence of S9 mix indicating that the predominant compounds present were direct-acting mutagens. The responses of YGs strains are consistent with aromatic amines and nitroarenes being present in the PM10 extracts. The group in the area under the influence of the oil refinery (exposed group) showed significantly higher DNA damage in lymphocytes than the reference group. The MN frequencies in buccal mucosa were very low for both groups and no difference between groups was observed. No association was found between age and tobacco smoking habit and level of DNA damages measured by the comet assay. The results indicate that the comet assay was a sensitive tool to detect DNA damage in subjects under the influence of an oil refinery, with marked genotoxic activity in the atmospheric environment.  相似文献   

13.
Alternative fuels have several advantages compared to fossil fuels as they are renewable, biodegradable, provide energy security, foreign exchange saving as well as help in addressing environmental concerns and socio-economic issues. Therefore, renewable fuels can be used predominantly as a fuel for transportation and for applications in power generation. Shaft power application is a key factor for economic growth and prosperity and depends crucially on the long-term availability of energy from sources that are affordable, accessible and environmentally friendly. In this context, the main objective of the present study was to implement the production of bioethanol from Calliandra calothyrsus, a potential lignocellulosic raw material for the cellulose-to-bioethanol conversion process that can be used as an alternative resource to starch- or sugar-containing feedstock. This study addresses a new pretreatment method known as hydrothermal explosion using C. calothyrsus for ethanol production. The present study also involves experimental investigations on a single-cylinder, four-stroke, direct-injection diesel engine operated with Honge oil methyl ester (biodiesel) and ethanol and its comparison with a neat diesel fuel mode of operation. The results revealed that optimal parameters for bioethanol production from C. calothyrsus were 2% acid concentration (HCl), 100°C temperature and 80 min retention time. For a diesel engine operated with a HOME–bioethanol blend, the experimental results showed a 3–4% decrease in brake thermal efficiency with a 8–10% increase in hydrocarbon and carbon monoxide emission levels and a 15–18% decrease in nitric oxide emission levels when compared with a neat diesel fuel mode of operation.  相似文献   

14.
Owing to the ever-increasing vehicle population, the consumption of diesel fuel in the transportation, agricultural and industrial sectors has increased at an alarming rate. This has led to rapid fossil fuel depletion, ozone depletion and environmental degradation, which have become a serious concern. Search for alternative renewable and clean energy fuel sources to mitigate the emissions of greenhouse gases is continuing, and attempts to find different techniques for efficient utilization of these fuels are also undertaken. Biodiesel being an oxygenated fuel obtained from vegetable oils has received greater attention over the years as a promising alternative to diesel fuel. However, vegetable oils exhibit high viscosity, poor volatility and poor cold-flow characteristics. These characteristics can cause the following problems in the engine when run for a longer duration: injector coking, severe engine deposits, filter gumming, piston ring sticking and thickening of lubrication. These problems can be eliminated or minimized by adopting suitable fuel processing techniques to obtain biodiesels from vegetable oils. The fuel processing techniques vary widely, which include transesterification, supercritical methanolysis, ultrasonic and continuous microwave-assisted transesterification methods. In the present study, the transesterification method is effectively used to obtain biodiesels from non-edible oils of honne and cotton seed. The biodiesels obtained from these oils were used in the unmodified diesel engine to check their feasibility as diesel engine alternatives. Different thermal barrier coatings (TBCs) were applied on the piston, cylinder head, and inlet and exhaust valve surfaces of the diesel engine in order to make it a fully adiabatic engine. The engine with such TBCs is called a low heat rejection engine. For the present study, the TBC of partially stabilized zirconia (PSZ) and aluminium oxide (Al2O3) were selected. Finally, the performance of the diesel engine fuelled with different biodiesels in both conventional and thermal barrier-coated modes was compared. The thermal barrier-coated engine with the PSZ version showed better performance with increased nitric oxide emissions when compared with the Al2O3 coating.  相似文献   

15.
Female Swiss mice were exposed 8 h/day to diesel exhaust for 1, 3, and 7 weeks. Urine was collected overnight for 4 days prior to sacrifice while the mice continued to be exposed for eight hours during the day. The presence of mutagens was determined by the Ames Salmonella test. One hour prior to sacrifice each mouse received 1 mg/kg colcemide. After sacrifice, the marrow from each femur was obtained. The marrow from one femur was used to prepare slides for metaphase analysis and the other for micronuclei assay. Other mice received IP 50 mg/kg cyclophosphamide 24 h prior to sacrifice or 1 μmole/kg benzo(a)pyrene in each of four daily doses prior to sacrifice and served as positive controls. The Ames Salmonella assay of the unconcentrated urine after 1, 3, and 7 weeks and concentrated urine after 7 weeks exposure to diesel exhaust did not significantly vary from clean air controls. In the micronucleus test, and metaphase analysis, cyclophosphamide produced a strong positive response and the 7 week diesel exposure was not different from clean air controls.  相似文献   

16.
The Saccharomyces cerevisiae D3 recombinogenic assay, the assay for forward mutagenesis in L5178Y mouse lymphoma cells, and the sister chromatid exchange (SCE) assay using Chinese hamster ovary cells were used to evaluate the in vitro mutagenic and DNA-damaging effects of eight samples of diesel engine emissions and related environmental emissions. The recombinogenic assay was not sufficiently sensitive for this evaluation, but mutagenicity was detected in the L5178Y mutagenesis assay following exposures of the cells to all of the emission samples, and DNA damage in the SCE assay was induced by most of the emission samples in the presence and absence of metabolic activation. The observation of positive results in the absence of activation indicated that the samples contained substances that were direct-acting mutagens and DNA-damaging agents.  相似文献   

17.
Diesel exhaust particles were used to compare methods and techniques used in the preparation of particulate matter for microbial mutagenesis testing. Investigated in this study were extraction, concentration, and solvent exchange methodologies as they affected recovery of mutagenic material from diesel samples using a Salmonella typhimurium plate incorporation assay. Solvent removal methods applicable for use in determining the mass concentration of extracts were also evaluated. Results indicated that particle samples Soxhlet extracted with dichloromethane yielded higher levels of mutagenic activity than did comparative samples utilizing sonication. No difference was seen between rotary evaporation or Kuderna-Danish macro concentration of extracts to volumes > 50 mL. In comparison of micro concentration techniques to volumes < 10 mL, vortex evaporation was found to be more efficient than a modified micro Kuderna-Danish method in recovery of mass and mutagenicity. Solvent exchanged samples were found to yield higher recoveries of mutagenic activity than samples taken to dryness and then reconstituted in the bioassay solvent. A dry mass weighing procedure utilizing desiccation was found to be more acceptable than either the use of an infrared heat lamp or nitrogen blowdown for solvent removal.  相似文献   

18.
Over a number of years, the work of exploring different biodiesels as an alternative to diesel fuel has been carried out worldwide. Not much focus on the use of combination of different biodiesels and their behaviour in diesel engines has been reported. This work is an attempt in this direction, which reports on the use of combination of biodiesels derived from jatropha and karanja oils. Jatropha oil methyl ester (JOME) and honge oil methyl ester (HOME) represent the respective biodiesels derived from these non-edible oils. Experiments were conducted on a four-stroke, single-cylinder diesel engine using these biodiesel combinations in order to check their feasibility as alternative fuels to diesel. Initially, experiments were conducted on each biodiesel and their blends with diesel and engine parameters were optimised in terms of injection pressure and injection timing. Advancing the injection timing improved the overall performance of the engine fuelled with JOME while retarding the injection timing favoured the HOME. Both biodiesels performed better with an injector opening pressure of 230 bar. Finally, experiments were conducted with the combination of both biodiesels with different blend ratios. It was observed that increasing the JOME content in the biodiesels blend improved the performance with reduced emissions of smoke, hydrocarbons and carbon monoxide emissions. However NO x emission increased.  相似文献   

19.
The fine and ultra fine size of diesel particulate mater (DPM) are of great health concern and significantly contribute to the overall cancer risk. In addition, diesel particles may contribute a warming effect on the planet's climate. The composition of these particles is composed principally of elemental carbon (EC) with adsorbed organic compounds, sulfate, nitrate, ammonia, metals, and other trace elements. The purpose of this study was to depict the seasonality and modeling of particulate matter in the Southeastern US produced by the diesel fueled sources (DFSs). The modeling results came from four one-month cases including March, June, September, and December to represent different seasons in 2003 by linking Models-3/CMAQ and SMOKE. The 1999 National Emissions Inventory Version 3 (NEI99) was used in this analysis for point, area, and non-road sources, whereas the National Mobile Inventory Model (NMIM) was used to create the on-road emissions. Three urban areas, Atlanta, Birmingham, and Nashville were selected to analyze the DPM emissions and concentrations. Even though the model performance was not very strong, it could be considered satisfactory to conduct seasonal distribution analysis for DPM. Important hourly DPM seasonality was observed in each city, of which higher values occurred at the morning traffic rush hours. The EC contributions of primary DPM were similar for all three sites (~ 74%). The results showed that there is no significant daily seasonality of DPM contribution to PM2.5 for any of these three cities in 2003. The annual DPM contribution to total PM2.5 for Atlanta, Nashville, and Birmingham were 3.7%, 2.5%, and 2.2%, respectively.  相似文献   

20.
Alternative and renewable fuels have numerous advantages compared with fossil fuels as they are renewable and biodegradable, besides providing food and energy security and foreign exchange savings and addressing environmental and socio-economic issues. Therefore, these renewable fuels can be used predominantly in compression ignition (CI) engines for transportation purposes and power generation applications. Today, the use of biomass-derived producer gas is more relevant for addressing rural power generation and is also a promising technique for controlling both NOx and soot emission levels. Although a producer gas–biodiesel-operated dual-fuel diesel engine exhibits lower performance, they are independent from the use of fossil fuels. The lower performance of the engine could be due to the slow-burning and lower calorific value of producer gas. For this purpose, exhaustive experiments on the use of Honge oil methyl ester (HOME)–producer gas in a dual-fuel CI engine were carried out for the improvement of its fuel efficiency. This paper presents the effect of the compression ratio (CR) on the performance, combustion and exhaust emission characteristics of a single-cylinder, four-stroke, direct injection stationary diesel engine operated using HOME and producer gas in a dual-fuel mode. The results indicated that the HOME–producer gas combination exhibited lower brake thermal efficiency (BTE) with comparable emission levels with the diesel–producer gas combination at different CRs. Comparative measures of BTE, peak pressure, pressure–crank angle variation, heat release rate, smoke opacity, and hydrocarbon (HC), carbon monoxide (CO) and nitric oxide (NOx) emission levels are presented and analysed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号