首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Atmospheric mercury (Hg) emission from coal is one of the primary sources of anthropogenic discharge and pollution. China is one of the few countries in the world whose coal consumption constitutes about 70% of total primary energy, and over half of coals are burned directly for electricity generation. Atmospheric emissions of Hg and its speciation from coal-fired power plants are of great concern owing to their negative impacts on regional human health and ecosystem risks, as well as long-distance transport. In this paper, recent trends of atmospheric Hg emissions and its species split from coal-fired power plants in China during the period of 2000-2007 are evaluated, by integrating each plant's coal consumption and emission factors, which are classified by different subcategories of boilers, particulate matter (PM) and sulfur dioxide (SO2) control devices. Our results show that the total Hg emissions from coal-fired power plants have begun to decrease from the peak value of 139.19 t in 2005 to 134.55 t in 2007, though coal consumption growing steadily from 1213.8 to 1532.4 Mt, which can be mainly attributed to the co-benefit Hg reduction by electrostatic precipitators/fabric filters (ESPs/FFs) and wet flue gas desulfurization (WFGD), especially the sharp growth in installation of WFGD both in the new and existing power plants since 2005. In the coming 12th five-year-plan, more and more plants will be mandated to install De-NO(x) (nitrogen oxides) systems (mainly selective catalytic reduction [SCR] and selective noncatalytic reduction [SNCR]) for minimizing NO(x) emission, thus the specific Hg emission rate per ton of coal will decline further owing to the much higher co-benefit removal efficiency by the combination of SCR + ESPs/FFs + WFGD systems. Consequently, SCR + ESPs/FFs + WFGD configuration will be the main path to abate Hg discharge from coal-fired power plants in China in the near future. However advanced specific Hg removal technologies are necessary for further reduction of elemental Hg discharge in the long-term.  相似文献   

2.
Mercury wet deposition is dependent on both the scavenging of divalent reactive gaseous mercury (RGM) and atmospheric particulate mercury (Hg(p)) by precipitation. Estimating the contribution of precipitation scavenging of RGM and Hg(p) is important for better understanding the causes of the regional and seasonal variations in mercury wet deposition. In this study, the contribution of Hg(p) scavenging was estimated on the basis of the scavenging ratios of other trace elements (i.e., Cd, Cu, Mn, Ni, Pb and V) existing entirely in particulate form. Their wet deposition fluxes and concentrations in air, which were measured concurrently from April 2004 to March 2005 at 10 sites in Japan, were used in this estimation. The monthly wet deposition flux of mercury at each site correlated with the amount of monthly precipitation, whereas the Hg(p) concentrations in air tended to decrease during summer. There was a significant correlation (P<0.001) among the calculated monthly average scavenging ratios of trace elements, and the values in each month at each site were similar. Therefore, it is assumed the monthly scavenging ratio of Hg(p) is equivalent to the mean value of other trace elements. Using this scavenging ratio (W), the wet deposition flux (F) due to Hg(p) scavenging in each month was calculated by F=WKP, where K and P are the Hg(p) concentration and amount of precipitation, respectively. Relatively large fluxes due to Hg(p) scavenging were observed at a highly industrial site and at sites on the Japan Sea coast, which are strongly affected by the local sources and the long-range transport from the Asian continent, respectively. However, on average, at the 10 sites, the contribution of Hg(p) scavenging to the annual mercury deposition flux was 26%, suggesting that mercury wet deposition in Japan is dominated by RGM scavenging. This RGM should originate mainly from the in situ oxidation of Hg0 in the atmosphere.  相似文献   

3.
This paper presents a modeling analysis of airborne mercury (Hg) deposited on the Ochlockonee River watershed located in Georgia. Atmospheric deposition monitoring and source attribution data were used along with simulation models to calculate Hg buildup in the subwatershed soils, its subsequent runoff loading and delivery through the tributaries, and its ultimate fate in the mainstem river. The terrestrial model calculated annual watershed yields for total Hg ranging from 0.7 to 1.1 microg/m2. Results suggest that approximately two-thirds of the atmospherically deposited Hg to the watershed is returned to the atmosphere, 10% is delivered to the river, and the rest is retained in the watershed. A check of the aquatic model results against survey data showed a reasonable agreement. Comparing observed and simulated total and methylmercury concentrations gave root mean square error values of 0.26 and 0.10 ng/L, respectively, in the water column, and 5.9 and 1 ng/g, respectively, in the upper sediment layer. Sensitivity analysis results imply that mercury in the Ochlockonee River is dominated by watershed runoff inputs and not by direct atmospheric deposition, and that methylmercury concentrations in the river are determined mainly by net methylation rates in the watershed, presumably in wetted soils and in the wetlands feeding the river.  相似文献   

4.
There are inadequate measurements of surface ambient concentrations of mercury species and their deposition rates for the UK deposition budget to be characterized. In order to estimate the overall mercury flux budget for the UK, a simple long-term 1D Lagrangian trajectory model was constructed that treats emissions (1998), atmospheric transformation and deposition across Europe. The model was used to simulate surface concentrations of mercury and deposition across Europe at a resolution of 50 km×50 km and across the UK at 20 km×20 km. The model appeared to perform adequately when compared with the few available measurements, reproducing mean concentrations of elemental gaseous mercury at particular locations and the magnitude of regional gradients. The model showed that 68% of the UK's mercury emissions are exported and 32% deposited within the UK. Of deposition to the UK, 25% originates from the Northern Hemisphere/global background, 41% from UK sources and 33% from other European countries. The total mercury deposition to the UK is in good agreement with other modelling, 9.9 tonne yr−1 cf. 9.0 tonne yr−1, for 1998. However, the attribution differs greatly from the results of other coarser-scale modelling, which allocates 55% of the deposition to the UK from UK sources, 4% from other European countries and 60% from the global background atmosphere. The model was found to be sensitive to the speciation of emissions and the dry deposition velocity of elemental gaseous mercury. The uncertainties and deficiencies are discussed in terms of model parameterization and input data, and measurement data with which models can be validated. There is an urgent requirement for measurements of removal terms, concentrations, and deposition with which models can be parameterized and validated.  相似文献   

5.
Changes in atmospheric mercury deposition are used to evaluate the effectiveness of regulations controlling emissions. This analysis can be complicated by seemingly incongruent data from different model runs, model types, and field measurements. Here we present a case study example that describes how to identify trends in regional scale mercury deposition using best-available information from multiple data sources. To do this, we use data from three atmospheric chemistry models (CMAQ, GEOS-Chem, HYSPLIT) and multiple sediment archives (ombrotrophic bog, headwater lake, coastal salt marsh) from the Bay of Fundy region in Canada. Combined sediment and modeling data indicate that deposition attributable to US and Canadian emissions has declined in recent years, thereby increasing the relative significance of global sources. We estimate that anthropogenic emissions in the US and Canada account for 28-33% of contemporary atmospheric deposition in this region, with the rest from natural (14-32%) and global sources (41-53%).  相似文献   

6.
The status of the current knowledge concerning the dry deposition of atmospheric mercury, including elemental gaseous mercury (Hg0), reactive gaseous mercury (RGM), and particulate mercury (Hgp), is reviewed. The air–surface exchange of Hg0 is commonly bi-directional, with daytime emission and nighttime deposition over non-vegetated surfaces and vegetated surfaces with small leaf area indices under low ambient Hg0 conditions. However, daytime deposition has also been observed, especially when the ambient Hg0 is high. Typical dry deposition velocities (Vd) for Hg0 are in the range of 0.1–0.4 cm s?1 over vegetated surfaces and wetlands, but substantially smaller over non-vegetated surfaces and soils below canopies. Meteorological, biological, and soil conditions, as well as the ambient Hg0 concentrations all play important roles in the diurnal and seasonal variations of Hg0 air–surface exchange processes. Measurements of RGM deposition are limited and are known to have large uncertainties. Nevertheless, all of the measurements suggest that RGM can deposit very quickly onto any type of surface, with its Vd ranging from 0.5 to 6 cm s?1. The very limited data for Hgp suggest that its Vd values are in the range of 0.02–2 cm s?1.A resistance approach is commonly used in mercury transport models to estimate Vd for RGM and Hgp; however, there is a wide range of complexities in the dry deposition scheme of Hg0. Although resistance-approach based dry deposition schemes seem to be able to produce the typical Vd values for RGM and Hg0 over different surface types, more sophisticated air–surface exchange models have been developed to handle the bi-directional exchange processes. Both existing and newly developed dry deposition schemes need further evaluation using field measurements and intercomparisons within different modelling frameworks.  相似文献   

7.
The fate and behavior of mercury in coal-fired power plants   总被引:8,自引:0,他引:8  
For the past 22 years in the Netherlands, the behavior of Hg in coal-fired power plants has been studied extensively. Coal from all over the world is fired in Dutch power stations. First, the Hg concentrations in these coals were measured. Second, the fate of the Hg during combustion was established by performing mass balance studies. On average, 43 +/- 30% of the Hg was present in the flue gases downstream of the electrostatic precipitator (ESP; dust collector). In individual cases, this figure can vary between 1 and 100%. Important parameters are the Cl content of the fuel and the flue gas temperature in the ESP. On average, 54 +/- 24% of the gaseous Hg was removed in the wet flue-gas desulfurization (FGD) systems, which are present at all Dutch coal-power stations. In individual cases, this removal can vary between 8% (outlier) and 72%. On average, the fate of Hg entering the power station in the coal was as follows: <1% in the bottom ash, 49% in the pulverized fuel ash (ash collected in the ESP), 16.6% in the FGD gypsum, 9% in the sludge of the wastewater treatment plant, 0.04% in the effluent of the wastewater treatment plant, 0.07% in fly dust (leaving the stack), and 25% as gaseous Hg in the flue gases and emitted into the air. The distribution of Hg over the streams leaving the FGD depends strongly on the installation. On average, 75% of the Hg was removed, and the final concentration of Hg in the emitted flue gases of the Dutch power stations was only -3 microg/m3(STP) at 6% O2. During co-combustion with biomass, the removal of Hg was similar to that during 100% coal firing. Speciation of Hg is a very important factor. An oxidized form (HgCl2) favors a high degree of removal. The conversion from Hg0 to HgCl2 is positively correlated with the Cl content of the fuel. A catalytic DENOX (SCR) favors the formation of oxidized Hg, and, in combination with a wet FGD, the total removal can be as high as 90%.  相似文献   

8.
Most studies on the atmospheric behaviour of mercury in North America have excluded a detailed treatment of natural mercury emissions. The objective of this work is to report a detailed simulation of the atmospheric mercury in a domain that covers a significant part of North America and includes not only anthropogenic mercury emissions but also those from natural sources including vegetation, soil and water.The simulations were done using a natural mercury emission model coupled with the US EPA's SMOKE/CMAQ modelling system. The domain contained 132×90 grid cells at a resolution of 36 km, covering the continental United States, and major parts of Canada and Mexico. The simulation was carried out for 2002, using boundary conditions from a global mercury model. Estimated total natural mercury emission in the domain was 230 tonnes (1 tonne=1000 kg) and the ratio of natural to anthropogenic emissions varied from 0.7 in January to 3.2 in July. Average total gaseous mercury (TGM) concentration ranged between 1 and 4 ng m−3. Good agreement was found between the modelled results and measurements at three Ontario sites for ambient mercury concentrations, and at 72 mercury deposition network sites in the domain for wet deposition. The correlation coefficient between the simulated and the measured values of the daily average TGM at three monitoring sites varied between 0.48 and 0.64. When natural emissions were omitted, the correlation coefficients dropped to between 0.15 and 0.40. About 335 tonnes of mercury were deposited in the domain during the simulation period but overall, it acted as a net source of mercury and contributed about 21 tonnes to the global pool. The net deposition of mercury to the Great Lakes was estimated to be about 2.4 tonnes. The estimated deposition values were similar to those reported by other researchers.  相似文献   

9.
10.
Hg species (total mercury, methylmercury, reactive mercury) in precipitation were investigated in the vicinity of the Lehigh Hanson Permanente Cement Plant in the San Francisco Bay Area, CA., USA. Precipitation was collected weekly between November 29, 2007 and March 20, 2008, which included the period in February and March 2008 when cement production was minimized during annual plant maintenance. When the cement plant was operational, the volume weighted mean (VWM) and wet depositional flux for total Hg (HgT) were 6.7 and 5.8 times higher, respectively, compared to a control site located 3.5 km east of the cement plant. In February and March, when cement plant operations were minimized, levels were approximately equal at both sites (the ratio for both parameters was 1.1). Due to the close proximity between the two sites, meteorological conditions (e.g., precipitation levels, wind direction) were similar, and therefore higher VWM HgT levels and HgT deposition likely reflected increased Hg emissions from the cement plant. Methylmercury (MeHg) and reactive Hg (Hg(II)) were also measured; compared to the control site, the VWM for MeHg was lower at the cement plant (the ratio = 0.75) and the VWM for Hg(II) was slightly higher (ratio = 1.2), which indicated the cement plant was not likely a significant source of these Hg species to the watershed.  相似文献   

11.
This paper reviews the information on trends of past emissions of mercury, lead, and cadmium in Europe, as well as examines current levels and future scenarios of these emissions. The impact of various factors on emission changes is discussed including the implementation of various strategies of emission controls in Europe. Future emissions are forecasted on the basis of various scenarios of economy growth in Europe, implementation of European and global legislation (e.g. the Kyoto agreement), population changes, etc.Changes of emissions of mercury, lead, and cadmium are then related to the changes of concentrations of these contaminants in air and precipitation samples at selected stations in Europe. It can be concluded that the reduction trends of anthropogenic emissions of cadmium and lead in Europe are similar to the reduction trends of air concentrations of these metals during the last 2 decades. Somewhat different relationship has been noted for changes in emissions and precipitation. In general for Europe, 60% reduction of Cd emissions was met by about 45% reductions of Cd concentrations in precipitation at the studied stations during the last 2 decades.There is a potential for further reduction of these emissions until the year 2010 up to about 37% for Cd, 51% for Pb, and 49% for Hg as estimated within various emission scenarios presented in the paper.  相似文献   

12.
At Mt. Amiata (Italy) geothermal energy is used, since 1969, to generate electricity in five plants with a nominal capacity of 88 MW. Anomalous levels of mercury characterise geothermal fluids of Mt. Amiata, an area renowned for its vast cinnabar deposits and for the mercury production carried out in the past. Mercury emission rates range from 300 to 400 g/h, or 3-4 g/h per MW electrical installed capacity. These emissions are coupled with a release of 7-8 kg/(h MW) of hydrogen sulphide (H2S). Mercury is discharged as Hg0 gaseous species and reaches the atmosphere with the non-condensable gas fraction. In this fraction, CO, is the major component (94-98%), H2S is around 1% and mercury concentration is as high as 1-10 mg/Nm3. Leaves of a spontaneous grass (Avena sterilis), at the end of the vegetative cycle, were used as mercury bioconcentrators to map deposition near geothermal power plants and to calculate the corresponding average levels of Hg0 in the air. Direct measurements of mercury and hydrogen sulphide vapours in the air reached by power plant emissions showed a ratio of about 1-2000. This ratio was applied to calculate average levels of hydrogen sulphide starting from mercury deposition mapping: typical concentrations of mercury and hydrogen sulphide were of the order of 10-20 ng/m3 and 20-40 microg/m3, respectively.  相似文献   

13.
This study investigated the tempospatial variation of atmospheric mercury and its gas-particulate partition in the vicinity of a semiconductor manufacturing complex, where a plenty of flat-monitor manufacturing plants using elemental mercury as a light-initiating medium to produce backlight fluorescence tubes and may fugitively emit mercury-containing air pollutants to the atmosphere. Atmospheric mercury speciation, concentration, and the partition of total gaseous mercury (TGM) and particulate mercury (Hgp) were measured at four sites surrounding the semiconductor manufacturing intensive district/complex. One-year field measurement showed that the seasonal averaged concentrations of TGM and Hgp were in the range of 3.30–6.89 and 0.06–0.14 ng/m3, respectively, whereas the highest 24-h TGM and Hgp concentrations were 10.33 and 0.26 ng/m3, respectively. Atmospheric mercury apportioned as 92.59–99.01 % TGM and 0.99–7.41 % Hgp. As a whole, the highest and lowest concentrations of TGM were observed in the winter and summer sampling periods, respectively, whereas the concentration of Hgp did not vary much seasonally. The highest TGM concentrations were always observed at the downwind sites, indicating that the semiconductor manufacturing complex was a hot spot of mercury emission source, which caused severe atmospheric mercury contamination over the investigation region.  相似文献   

14.
The atmospheric fate of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) was simulated for the year 2000 in North America using a SMOKE/CMAQ-based chemical transport model that was modified for this purpose. The 1999 USEPA emission inventories of PCDD/Fs and criteria pollutants were used. The 1995 Canadian emission inventory of criteria pollutants and the 1995 Canadian area source emissions for PCDD/Fs were used with the 2000 Canadian point source emissions. Modifications to CMAQ involved coupling it with dual organic matter (OM) absorption and black carbon (BC) adsorption models to calculate PCDD/F gas–particle partitioning. The model satisfactorily reproduced the particle bound fractions at all rural sites for which there were measured data and across the whole domain, the modeled vs. measured differences in particle bound fractions were less than 20% for nearly all congeners. The model predicted ambient air PCDD/F concentrations were also consistent with measurements. Simulated deposition fluxes were within 58% of direct measurements. PCDD/F atmospheric depositions to each of the Great Lakes were estimated for the year 2000. The results indicate that approximately 76% of the total deposition of PCDD/Fs to the Great Lakes (in W-TEQ, or toxic equivalent units as defined by the World Health Organization) is attributed to PCDD/Fs absorbed into OM in aerosol. For all of the lakes, more than 92% of all deposition is particle phase wet deposition and only 5–8% is particle phase dry deposition. Wet deposition from the gas phase is negligible. Of the 17 toxic PCDD/F congeners, the Cl4–5DD/F compounds contribute approximately 70% to the total atmospheric deposition to the Great Lakes. The seasonal changes in the PCDD/F deposition flux track variations in ambient temperature.  相似文献   

15.
Mt. Gongga area in southwest China was impacted by Hg emissions from industrial activities and coal combustion, and annual means of atmospheric TGM and PHg concentrations at a regional background station were 3.98 ng m−3 and 30.7 pg m−3, respectively. This work presents a mass balance study of Hg in an upland forest in this area. Atmospheric deposition was highly elevated in the study area, with the annual mean THg deposition flux of 92.5 μg m−2 yr−1. Total deposition was dominated by dry deposition (71.8%), and wet deposition accounted for the remaining 28.2%. Forest was a large pool of atmospheric Hg, and nearly 76% of the atmospheric input was stored in forest soil. Volatilization and stream outflow were identified as the two major pathways for THg losses from the forest, which yielded mean output fluxes of 14.0 and 8.6 μg m−2 yr−1, respectively.  相似文献   

16.
A kinetic model for predicting the amount of mercury (Hg) oxidation across selective catalytic reduction (SCR) systems in coal-fired power plants was developed and tested. The model incorporated the effects of diffusion within the porous SCR catalyst and the competition between ammonia and Hg for active sites on the catalyst. Laboratory data on Hg oxidation in simulated flue gas and slipstream data on Hg oxidation in flue gas from power plants were modeled. The model provided good fits to the data for eight different catalysts, both plate and monolith, across a temperature range of 280-420 degrees C, with space velocities varying from 1900 to 5000 hr(-1). Space velocity, temperature, hydrochloric acid content of the flue gas, ratio of ammonia to nitric oxide, and catalyst design all affected Hg oxidation across the SCR catalyst. The model can be used to predict the impact of coal properties, catalyst design, and operating conditions on Hg oxidation across SCRs.  相似文献   

17.
Atmospheric Mercury Depletion Events (AMDE) occur in Arctic and Antarctic regions during polar sunrise. During AMDE, reactive gaseous Hg is rapidly formed through in-situ oxidation of gaseous Hg0 by halogens, notably atomic Br and radical BrO. This leads to high Hg deposition fluxes yet an unknown fraction of deposited Hg is reemitted to the atmosphere through subsequent photo-reduction, so that the net deposition flux related to AMDE is not well constrained. Here, Hg and halogens were measured in lichens hanging in tree branches around Hudson Bay where AMDE were reported. Hg concentrations are strongly correlated to halogen elements Br, Cl and I (r2 of 0.91, 0.76, 0.81) and decrease with distance from Hudson Bay. We interpret this trend as the result of AMDE, supported by a 1D numerical Br and BrO oxidation model for Hg0. Organic carbon normalized Hg contents of down-core lake sediments reported in the literature also show a decreasing trend away from Hudson Bay. Combined observations suggest that at least 50% of Hg deposited during AMDE is reemitted to the atmosphere. Finally, the latitudinal Hg gradient observed in lake sediments suggests that AMDE were active in the Hudson Bay area during the last 90 to 200 years.  相似文献   

18.
Method 30B and the Ontario Hydro Method (OHM) were used to sample the mercury in the flue gas discharged from the seven power plants in Guizhou Province, southwest China. In order to investigate the mercury migration and transformation during coal combustion and pollution control process, the contents of mercury in coal samples, bottom ash, fly ash, and gypsum were measured. The mercury in the flue gas released into the atmosphere mainly existed in the form of Hg°. The precipitator shows a superior ability to remove Hgp (particulate mercury) from flue gas. The removal efficiency of Hg2+ by wet flue gas desulfurization (WFGD) was significantly higher than that for the other two forms of mercury. The synergistic removal efficiency of mercury by the air pollution control devices (APCDs) installed in the studied power plants is 66.69–97.56%. The Hg mass balance for the tested seven coal-fired power plants varied from 72.87% to 109.67% during the sampling time. After flue gas flowing through APCDs, most of the mercury in coal was enriched in fly ash and gypsum, with only a small portion released into the atmosphere with the flue gas. The maximum discharge source of Hg for power plants was fly ash and gypsum instead of Hg emitted with flue gas through the chimney into the atmosphere. With the continuous upgrading of APCDs, more and more mercury will be enriched in fly ash and gypsum. Extra attention should be paid to the re-release of mercury from the reutilization of by-products from APCDs.

Implications: Method 30B and the Ontario Hydro Method (OHM) were used to test the mercury concentration in the flue gas discharged from seven power plants in Guizhou Province, China. The concentrations of mercury in coal samples, bottom ash, fly ash, and gypsum were also measured. By comparison of the mercury content of different products, we found that the maximum discharge source of Hg for power plants was fly ash and gypsum, instead of Hg emitted with flue gas through the chimney into the atmosphere. With the continuous upgrading of APCDs, more and more mercury will be enriched in fly ash and gypsum. Extra attention should be paid to the re-release of mercury from the reutilization of by-products from APCDs.  相似文献   


19.
20.
An intensive 1-month atmospheric sampling campaign was conducted concurrently at eight monitoring sites in central Illinois, USA, from June 9 to July 3, 2011 to assess spatial patterns in wet and dry deposition of mercury and other trace elements. Summed wet deposition of mercury ranged from 3.1 to 5.4 μg/m2 across sites for the total study period, while summed dry deposition of reactive mercury (gaseous oxidized mercury plus particulate bound mercury) ranged from 0.7 to 1.6 μg/m2, with no statistically significant differences found spatially between northern and southern sites. Ratios of summed wet to summed dry mercury deposition across sites ranged from 2.2 to 4.9 indicating that wet deposition of mercury was dominant during the study period. Volume-weighted mean mercury concentrations in precipitation were found to be significantly higher at northern sites, while precipitation depth was significantly higher at southern sites. These results showed that substantial amounts of mercury deposition, especially wet deposition, occurred during the study period relative to typical annual wet deposition levels. Summed wet deposition of anthropogenic trace elements was much higher, compared to summed dry deposition, for sulfur, selenium, and copper, while at some sites summed dry deposition dominated summed wet deposition for lead and zinc. This study highlights that while wet deposition of Hg was dominant during this spring/summer-season study, Hg dry deposition also contributed an important fraction and should be considered for implementation in future Hg deposition monitoring studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号