首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Removal of ammonia from contaminated air by trickle bed air biofilters   总被引:6,自引:0,他引:6  
A trickle bed air biofilter (TBAB) was evaluated for the oxidation of NH3 from an airstream. Six-millimeter Celite pellets (R-635) were used for the biological attachment medium. The efficiency of the biofilter in oxidizing NH3 was evaluated using NH3 loading rates as high as 48 mol NH3/m3 hr and empty-bed residence times (EBRTs) as low as 1 min. Excess biomass was controlled through periodic backwashing of the biofilter with water at a rate sufficient to fluidize the medium. The main goal was to demonstrate that high removal efficiencies could be sustained over long periods of operation. Ammonia oxidation efficiencies in excess of 99% were consistently achieved when the pH of the liquid nutrient feed was maintained at 8.5. Quick recovery of the biofilter after backwashing was observed after only 20 min. Evaluation of biofilter performance with depth revealed that NH3 did not persist in the gas phase beyond 0.3 m into the depth of the medium (26% of total medium depth).  相似文献   

2.
Three columns each with 770 cm2 of surface area and 60-105 cm effective depth were set up for this study. These columns were filled with compacted, stabilized refuse. High-strength brewery wastewaters were uniformly trickled down the medium. Overall, 16 runs with various organic loadings were tested and the results demonstrated that the stabilized refuse had excellent capability in removing chemical oxygen demand (COD). The COD removal efficiency reached 95% at a depth of 60 cm at Q = 8 L/day for the initial COD of approximately 6000 mg/L and the efficiency increased to >99% at a depth of 90 cm (organic loading of 0.69 kg/m3/day). As would be expected, the filter performance is a function of flow rate, influent COD concentration, and bed depth. The Schulze equation is able to predict the COD removal performance well. The variations of pH, oxidation reduction potential, and volatile fatty acids indicated that the acidogenesis reaction occurred in the upper layers.  相似文献   

3.
ABSTRACT

A trickle bed air biofilter (TBAB) was evaluated for the oxidation of NH3 from an airstream. Six-millimeter Celite pellets (R-635) were used for the biological attachment medium. The efficiency of the biofilter in oxidizing NH3 was evaluated using NH3 loading rates as high as 48 mol NH3/m3 hr and empty-bed residence times (EBRTs) as low as 1 min. Excess biomass was controlled through periodic backwashing of the biofilter with water at a rate sufficient to fluidize the medium. The main goal was to demonstrate that high removal efficiencies could be sustained over long periods of operation. Ammonia oxidation efficiencies in excess of 99% were consistently achieved when the pH of the liquid nutrient feed was maintained at 8.5. Quick recovery of the biofilter after backwashing was observed after only 20 min. Evaluation of biofilter performance with depth revealed that NH3 did not persist in the gas phase beyond 0.3 m into the depth of the medium (26% of total medium depth).  相似文献   

4.
The removal capacity of carbon and nitrogen from an artificial leachate was evaluated by using laboratory-scale columns, and a design was proposed to remove nitrogen more efficiently from a semiaerobic landfill. Five columns (i.e., two artificial municipal waste columns under anaerobic and semiaerobic conditions, an artificial construction waste column under semiaerobic conditions, and two crushed stone columns under anaerobic and semiaerobic conditions) were used. The influent load rates of organics [g chemical oxygen demand (COD)/m3 x day], NH4+, NO3- and aeration conditions for the columns were varied, and the removal capacities of the columns for COD, NH4+-N, and NO3--N were measured. Among the packed column materials, crushed stone was shown to be most effective in removing COD, NH4+ N, and NO3--N from artificial leachate. Average removal rates of crushed column under the semiaerobic condition (column D) for COD and NH4+-N were estimated at about 150 g COD/m3 x day and 20 g COD/m3 x day, while those of crushed column under anaerobic condition (column E) for COD and NO3--N at about 400 and 150 g COD/m3 x day, respectively. It also was found that denitrification and nitrification reactions in column D occurred at the same time, and the ratio of denitrification to nitrification was estimated to be about 80%. Therefore, an anaerobic structure, which could be attached to the bottom of a main pipe in a semiaerobic landfill, is suggested to remove nitrogen and organic substances more effectively.  相似文献   

5.
为了研究堆肥+零价铁混合可渗透反应墙(PRB)修复黄土高原地下水中铬铅复合污染的可行性,分别用堆肥、零价铁、堆肥+ 零价铁、堆肥+ 零价铁+活性炭为反应介质,通过模拟柱实验考察PRB修复铬铅复合污染黄土高原地下水的效果。结果表明,在实验进行30 d后当反应柱1和2对六价铬的去除率接近于零,而且对二价铅的去除率迅速下降时,反应柱3对2种污染物仍保持较高的去除率;反应介质质量比为10:2:1的反应柱4和质量比为10:1:2的反应柱5对污染物的去除效果均优于质量比为10:1:1的反应柱3;反应50 d后,添加活性炭的反应柱6对2种污染物的去除率仍在90%。这说明使用堆肥+零价铁混合可渗透反应墙修复黄土高原地下水中铬铅复合污染是可行的;且以堆肥+零价铁作为介质的反应柱去除效果优于单独以堆肥或铁粉为介质的反应柱;增加铁粉或堆肥的用量有利于铬铅复合污染的去除;且同时添加活性炭更有助于污染物的去除。  相似文献   

6.
采用生物滤床处理NO模拟废气,研究了停留时间(EBRT)、有机物浓度等在生物硝化去除NO技术中的作用过程.实验结果表明,EBRT和有机物含量是影响NO硝化去除效率的主要因素,NO去除效果随着有机物含量和EBRT的增大而提高;当进口浓度50 mg/m3,营养液中葡萄糖40 mg/L,EBRT>3 min时,NO去除率达95%以上.比较自养菌和异养菌对NO硝化去除的效果,异养菌的去除效率提高20%~30%,具有广泛应用前景.  相似文献   

7.
The ability of Pycnoporus sanguineus to adsorb heavy metals from aqueous solution was investigated in fixed-bed column studies. The experiments were conducted to study the effect of important design parameters such as column bed height, flow rate and initial concentration of solution. The breakthrough profiles were obtained in these studies. A mathematical model based on external mass transfer and pore diffusion was used for the prediction of mass transfer coefficient and effective diffusivity of metals in macro-fungi bed. Experimental breakthrough profiles were compared with the simulated breakthrough profiles obtained from the mathematical model. Bed Depth Service Time (BDST) model was used to analyse the experimental data and evaluated the performance of biosorption column. The BDST model parameters needed for the design of biosorption columns were evaluated for lead, copper and cadmium removal in the column. The columns were regenerated by eluting the metal ions using 0.1 M hydrochloric acid solution after the adsorption studies. The columns were subjected to repeated cycles of adsorption of same metal ions and desorption to evaluate the removal efficiency after adsorption-desorption.  相似文献   

8.
Particulate emission sampling was conducted at Dofasco’s No. 2 Coke Want Quench Tower in August 1977. The sampling was performed by York Research Corporation using EPA developed quench tower sampling techniques. Particulate emissions averaged 0.245 lb/ton of coal over 17 tests. The mist eliminator in the tower consists of two rows of zig-zag baffles inclined at 20° from the vertical. Particle size data indicated that the majority of the particulate emissions were less than 10 microns in diameter. A mathematical model was used to predict the effect of particle size and gas velocity on collection efficiency. Pressure drop and re-entrainment are two restrictions which are considered in baffle design. Quench towers are the largest contributor to Dofasco’s allowable off-the-property suspended particulate impingement concentration.  相似文献   

9.
Development of a biobarrier for the remediation of PCE-contaminated aquifer   总被引:2,自引:0,他引:2  
Kao CM  Chen SC  Liu JK 《Chemosphere》2001,43(8):1071-1078
The industrial solvent tetrachloroethylene (PCE) is among the most ubiquitous chlorinated compounds found in groundwater contamination. The objective of this study was to develop a biobarrier system, which includes a peat layer to enhance the anaerobic reductive dechlorination of PCE in situ. Peat was used to supply primary substrate (electron donor) continuously. A laboratory-scale column experiment was conducted to evaluate the feasibility of this proposed system or PCE removal. This experiment was performed using a series of continuous-flow glass columns including a soil column, a peat column, followed by two consecutive soil columns. Anaerobic acclimated sludges were inoculated in all three soil columns to provide microbial consortia for PCE biodegradation. Simulated PCE-contaminated groundwater with a flow rate of 0.25 l/day was pumped into this system. Effluent samples from each column were analyzed for PCE and its degradation byproducts (trichloroethylene (TCE), cis-dichloroethylene (cis-DCE), vinyl chloride (VC), ethylene (ETH), and ethane). Results show that the decrease in PCE concentrations and production of PCE byproducts were observed over a 65-day operating period. Up to 98% of PCE removal efficiency was obtained in this passive system. Results indicate that the continuously released organics from peat column enhanced PCE biotransformation. Thus, the developed biobarrier treatment scheme has the potential to be developed into a cost-effective in situ PCE-remediation technology, and can be utilized as an interim step to aid in system scale-up.  相似文献   

10.
Activated carbon (AC) filters are used widely in air cleaning to remove volatile organic compounds (VOCs) and ozone (O(3)). This paper investigates the O(3) removal efficiency of AC filters after previous exposure to VOCs. Filter performance was tested using coconut shell AC and two common indoor VOCs, toluene and d-limonene, representing low and high reactivities with O(3). AC dosed with low, medium and high loadings (28-100% of capacity) of VOCs were exposed to humidified and ozonated air. O(3) breakthrough curves were measured, from which O(3) removal capacity and parameters of the Elovich chemisorption equation were determined. VOC-loaded filters were less efficient at removing O(3) and had different breakthrough behavior than unloaded filters. After 80 h of exposure, VOC-loaded AC samples exhibited 75-95% of the O(3) removal capacity of unloaded samples. O(3) breakthrough and removal capacity were not strongly influenced by the VOC-loading rate. Toluene-loaded filters showed rapid O(3) breakthrough due to poisoning of the AC, while pseudo-poisoning (initially higher O(3) adsorption rates that rapidly decrease) is suggested for limonene-loaded filters. Overall, VOC loadings provide an overall reduction in chemisorption rates, a modest reduction in O(3) removal capacity, and sometimes dramatic changes in breakthrough behavior, important considerations in filter applications in environments where both O(3) and VOCs are present.  相似文献   

11.
Kurt U  Avsar Y  Talha Gonullu M 《Chemosphere》2006,64(9):1536-1540
Water-based paint wastewater which is formed during the coating step of metal surfaces performed with various spray processes include binders, pigments and additives. Binders and other additives may also affect the toxicity of the paint depending on the specific characteristics of the paint. This study deals with Water-based paint wastewater, which is hard to treat. Fenton oxidation process was principally used to treat the wastewater. Treatability runs were carried out by using rust (oxidized iron) particles obtained as a waste of the metal rolling process, as the Fenton's catalyst. In order to change the variables such as dimensions of the column, packing material size, reactive dosage, pH value and reaction time, the experiments on the basis of packed columns and mixed reactors were carried out to increase the COD removal. COD eliminations with pH adjustment were about 20%. With the contribution of Fenton process in both column and mixed-reactor studies, the COD removal was improved by about 80%.  相似文献   

12.
To help improve the prediction of bacteria travel distances in aquifers laboratory experiments were conducted to measure the distant dependent sticking efficiencies of two low attaching Escherichia coli strains (UCFL-94 and UCFL-131). The experimental set up consisted of a 25 m long helical column with a diameter of 3.2 cm packed with 99.1% pure-quartz sand saturated with a solution of magnesium sulfate and calcium chloride. Bacteria mass breakthrough at sampling distances ranging from 6 to 25.65 m were observed to quantify bacteria attachment over total transport distances (α(L)) and sticking efficiencies at large intra-column segments (α(i)) (>5m). Fractions of cells retained (F(i)) in a column segment as a function of α(i) were fitted with a power-law distribution from which the minimum sticking efficiency defined as the sticking efficiency of 0.001% bacteria fraction of the total input mass retained that results in a 5 log removal were extrapolated. Low values of α(L) in the order 10(-4) and 10(-3) were obtained for UCFL-94 and UCFL-131 respectively, while α(i)-values ranged between 10(-6) to 10(-3) for UCFL-94 and 10(-5) to 10(-4) for UCFL-131. In addition, both α(L) and α(i) reduced with increasing transport distance, and high coefficients of determination (0.99) were obtained for power-law distributions ofα(i) for the two strains. Minimum sticking efficiencies extrapolated were 10(-7) and 10(-8) for UCFL-94 and UCFL-131, respectively. Fractions of cells exiting the column were 0.19 and 0.87 for UCFL-94 and UCL-131, respectively. We concluded that environmentally realistic sticking efficiency values in the order of 10(-4) and 10(-3) and much lower sticking efficiencies in the order 10(-5) are measurable in the laboratory, Also power-law distributions in sticking efficiencies commonly observed for limited intra-column distances (<2m) are applicable at large transport distances(>6m) in columns packed with quartz grains. High fractions of bacteria populations may possess the so-called minimum sticking efficiency, thus expressing their ability to be transported over distances longer than what might be predicted using measured sticking efficiencies from experiments with both short (<1m) and long columns (>25 m). Also variable values of sticking efficiencies within and among the strains show heterogeneities possibly due to variations in cell surface characteristics of the strains. The low sticking efficiency values measured express the importance of the long columns used in the experiments and the lower values of extrapolated minimum sticking efficiencies makes the method a valuable tool in delineating protection areas in real-world scenarios.  相似文献   

13.
Cosolvent flushing is a technique that has been proposed for the removal of hydrophobic organic contaminants in the subsurface. Cosolvents have been shown to dramatically increase the solubility of such compounds compared to the aqueous solubility; however, limited data are available on the effectiveness of cosolvents for field-contaminated media. In this work, we examine cosolvent flushing for the removal of polycyclic aromatic hydrocarbons (PAHs) in soil from a former manufactured gas plant (FMGP). Batch studies confirmed that the relationship between the soil-cosolvent partitioning coefficient (K(i)) and the volume fraction of cosolvent (f(c)) followed a standard log-linear equation. Using methanol at an fc of 0.95, column studies were conducted at varying length scales, ranging from 11.9 to 110 cm. Removal of PAH compounds was determined as a function of pore volumes (PVs) of cosolvent flushed. Despite using a high f(c), rate and chromatographic effects were observed in all the columns. PAH effluent concentrations were modeled using a common two-site sorption model. Model fits were improved by using MeOH breakthrough curves to determine fitted dispersion coefficients. Fitted mass-transfer rates were two to three orders of magnitude lower than predicted values based on published data using artificially contaminated sands.  相似文献   

14.
Gong Z  Wilke BM  Alef K  Li P  Zhou Q 《Chemosphere》2006,62(5):780-787
Laboratory column experiments were performed to remove PAHs (polycyclic aromatic hydrocarbons) from two contaminated soils using sunflower oil. Two liters of sunflower oil was added to the top of the columns (33 cm x 21 cm) packed with 1 kg of PAH-contaminated soil. The sunflower oil was applied sequentially in two different ways, i.e. five additions of 400 ml or two additions of 1l. The influence of PAH concentration and the volume of sunflower oil on PAH removal were examined. A soil respiration experiment was carried out and organic carbon contents of the soils were measured to determine degradability of remaining sunflower oil in the soils. Results showed that the sunflower oil was effective in removing PAHs from the two soils, more PAHs were removed by adding sunflower oil in two steps than in five steps, probably because of the slower flow rate in the former method. More than 90% of total PAHs was removed from a heavily contaminated soil (with a total 13 PAH concentration of 4721 mg kg(-1)) using 4 l of sunflower oil. A similar removal efficiency was obtained for another contaminated soil (with a total 13 PAH concentration of 724 mg kg(-1)), while only 2l was needed to give a similar efficiency. Approximately 4-5% of the sunflower oil remained in the soils. Soil respiration curves showed that remaining sunflower oil was degraded by allowing air exchange and supplying with nutrients. Organic carbon content of the soil was restored to original level after 180 d incubation. These results indicated that the sunflower oil had a great capacity to remove PAHs from contaminated soils, and sunflower oil solubilization can be an alternative technique for remediation of PAH contaminated soils.  相似文献   

15.
16.
在以焦炭为填料的生物滴滤塔对挥发性脂肪酸臭气的处理研究中考察了空床停留时间、臭气浓度、体积负荷以及进气温度等参数对净化效果的影响。结果表明,空床停留时间较长时对臭气降解有利。在停留时间超过97 s时,能实现完全降解;此外,净化率随臭气浓度和体积负荷的不断增加呈先增加后降低的趋势。当臭气浓度为24.29 mg/m3即臭气的体积负荷为3 g/(m3·h)时,去除率约为96%;当臭气浓度增至1 345.74 mg/m3即体积负荷增至18 g/(m3·h),去除率达100%;然而,当臭气浓度增至4 934.38 mg/m3即体积负荷增至66 g/(m3·h)时,去除率降至73.1%。另外,进气温度对净化率也有一定程度影响。当进气温度较低时,净化效率相对较高。  相似文献   

17.
脉冲电晕反应器结构对乙硫醇消除效果的影响   总被引:2,自引:1,他引:1  
李战国  胡真  曹鹏  李颖  安艳 《环境工程学报》2009,3(6):1065-1068
研究了脉冲电晕等离子体反应器结构的变化对乙硫醇消除效果的影响规律。结果表明,在反应器内设置折流板,可以增加气流的湍动程度,有利于活性粒子与污染物的充分接触,从而提高消除率。高压电极间距对电晕区范围及消毒效果有较大影响,间距较小将导致各电极产生的电场相互干扰明显,消除率减小;而电极间距过大,虽然电极间电场分布相互干扰小,但是反应器内可排布的电极数减少,总电晕区减少,消除率也减小。根据实验结果,电极间距设置为50 mm比较合理。另外,在相同的电场强度和脉冲频率下,毛刺形高压电极比线电极结构能耗低,能量利用率高。  相似文献   

18.
土壤柴油污染修复的抽气提取去除实验研究   总被引:2,自引:1,他引:1  
陈家军  田亮  李玮  金岚 《环境工程学报》2008,2(10):1416-1420
为得到土壤气相抽提(SVE)去除柴油的优化条件,进行了一维土柱抽气提取去除柴油污染物的实验研究,研究不同初始含水率、不同抽气量对污染土壤中柴油去除率的影响及不同深度残留柴油的变化规律。结果表明:在本实验模拟的范围内,抽气量越大,SVE处理效果越好;初始含水率越低,处理效果越好;此外,不同深度去除率变化的规律基本上是随深度的增大而减小。实验结果可为土壤轻油污染实际治理提供实验数据基础。  相似文献   

19.
Abstract

The removal capacity of carbon and nitrogen from an artificial leachate was evaluated by using laboratory-scale columns, and a design was proposed to remove nitrogen more efficiently from a semiaerobic landfill. Five columns (i.e., two artificial municipal waste columns under anaerobic and semiaerobic conditions, an artificial construction waste column under semiaerobic conditions, and two crushed stone columns under anaerobic and semiaerobic conditions) were used. The influent load rates of organics [g chemical oxygen demand (COD)/m3 ·day], NH4 +, NO3 ?, and aeration conditions for the columns were varied, and the removal capacities of the columns for COD, NH4 +-N, and NO3 ?-N were measured.

Among the packed column materials, crushed stone was shown to be most effective in removing COD, NH4 +-N, and NO3 ?-N from artificial leachate. Average removal rates of crushed column under the semiaerobic condition (column D) for COD and NH4 +-N were estimated at about 150 g COD/m3·day and 20 g COD/m3 ·day, while those of crushed column under anaerobic condition (column E) for COD and NO3 ?-N at about 400 and 150 g COD/m3 ·day, respectively. It also was found that denitrification and nitrification reactions in column D occurred at the same time, and the ratio of denitrification to nitrification was estimated to be about 80%. Therefore, an anaerobic structure, which could be attached to the bottom of a main pipe in a semiaerobic landfill, is suggested to remove nitrogen and organic substances more effectively.  相似文献   

20.
Lead removal in fixed-bed columns by zeolite and sepiolite   总被引:1,自引:0,他引:1  
Turan M  Mart U  Yüksel B  Celik MS 《Chemosphere》2005,60(10):1487-1492
The removal efficiency of zeolite (clinoptilolite) and sepiolite from lead containing aqueous solutions was investigated. A series of experiments were conducted in batch-wise and fixed-bed columns. Synthetic wastewaters containing lead (50 mg l (-1)) and acetic acid (0.001 N) along with untreated and regenerated clinoptilolites and sepiolites were used in the adsorption studies. Batch tests were mainly conducted to isolate the magnitude of lead precipitation from real adsorption. Adsorption isotherms for both abstraction and adsorption were constructed. The removal of lead is found to be a sum of adsorption induced by ion exchange and precipitation of lead hydroxide. The breakthrough curves were obtained under different conditions by plotting the normalized effluent lead concentration (C/C0) versus bed volume (BV). The ion exchange capacity of sepiolite and clinoptilolite for lead removal showed good performance up to approximately 100 and 120 BV where the C/C0 remained below 0.1, respectively. The lead removal capacity of clinoptilolite bed from wastewater containing only lead yielded 45% higher performance compared to that of acetic acid partly due to a decrease in the effluent pH and consequently in precipitation. Also, the presence of acetic acid in the sepiolite column decreased the bed volumes treated by about 40%. Removal efficiency of lead-acetic system both in untreated clinoptilolite and sepiolite columns was found higher than that in regenerated columns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号