首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
污灌土壤中氨氮转化及其转化速率研究   总被引:1,自引:0,他引:1  
本文对污灌土壤中的氨氮转化及其转化速率进行了模拟实验研究.结果表明,随污灌进入土壤中的氨氮迅速转化为硝酸盐氮和气态氮。其转化速率的影响因素主要是气温、土壤pH值和土壤通气条件。例如在气温19~35℃、土壤pH值8.2~8.6和土壤通气良好的条件下,氨氮在3天内转化80%;14天内转化98%。  相似文献   

2.
An extensive field survey was employed for assessing the impacts of long-term wastewater irrigation of forage crops and orange orchards in three suburban agricultural areas in Cyprus (areas I, II, and III), as compared to rainfed agriculture, on the soil geochemical properties and the bioaccumulation of heavy metals (Zn, Ni, Mn, Cu, Co) to the agricultural products. Both ryegrass fields and orange orchards in areas I and II were continuously wastewater irrigated for 10 years, whereas clover fields in area III for 0.5, 4, and 8 years. The results revealed that wastewater reuse for irrigation caused a slight increase in soil salinity and Cl? content in areas I and II, and a remarkable increase, having strong correlation with the period in which wastewater irrigation was practiced, in area III. Soil salinization in area III was due to the high electrical conductivity (EC) of the wastewater applied for irrigation, attributed to the influx of seawater to the sewage collection network in area III. In addition, the wastewater irrigation practice resulted in a slight decrease of the soil pH values in area III, while a subtle impact was identified regarding the CaCO3, Fe, and heavy metal content in the three areas surveyed. The heavy metal content quantified in the forage plants’ above-ground parts was below the critical levels of phytotoxicity and the maximum acceptable concentration in dairy feed, whereas heavy metals quantified in orange fruit pulp were below the maximum permissible levels (MPLs). Heavy metal phytoavailability was confined due to soil properties (high pH and clay content), as evidenced by the calculated low transfer factor (TF).  相似文献   

3.
Soil salinity in the Aral Sea Basin is one of the major limiting factors of sustainable crop production. Leaching of the salts before planting season is usually a prerequisite for crop establishment and predetermined water amounts are applied uniformly to fields often without discerning salinity levels. The use of predetermined water amounts for leaching perhaps partly emanate from the inability of conventional soil salinity surveys (based on collection of soil samples, laboratory analyses) to generate timely and high-resolution salinity maps. This paper has an objective to estimate the spatial distribution of soil salinity based on readily or cheaply obtainable environmental parameters (terrain indices, remote sensing data, distance to drains, and long-term groundwater observation data) using a neural network model. The farm-scale (∼15 km2) results were used to upscale soil salinity to a district area (∼300 km2). The use of environmental attributes and soil salinity relationships to upscale the spatial distribution of soil salinity from farm to district scale resulted in the estimation of essentially similar average soil salinity values (estimated 0.94 vs. 1.04 dS m−1). Visual comparison of the maps suggests that the estimated map had soil salinity that was uniform in distribution. The upscaling proved to be satisfactory; depending on critical salinity threshold values, around 70–90% of locations were correctly estimated.  相似文献   

4.
Medium (i.e. 15 years) and long-term (i.e. 20 years) impact of irrigation using secondary-treated municipal wastewater (TWW) was assessed on two agricultural soil samples, denoted by E and G, respectively, in the vicinity of El Hajeb region (Southern Tunisia). Soil pH, electrical conductivity particle size grading, potential risk of salinity, water holding capacity and chemical composition, as well as organic matter content, pathogenic microorganisms and heavy metal concentrations in the TWW-irrigated (E and G) and rainwater-irrigated (T) soils at various depths, were monitored and compared during a 5-year experiment. Our study showed that bacterial abundance is higher in sandy–clayey soil, which has an enhanced ability to retain moisture and nutrients. The high level of bacterial flora in TWW-irrigated soils was significantly (p?<?0.05) correlated (r?=?~0.5) with the high level of OM. Avoidance assays have been used to assess toxic effects generated by hazards in soils. The earthworms gradually avoided the soils from the surface (20 cm) to the depth (60 cm) of the G transect and then the E transect, preferring the T transect. The same behaviour was observed for springtails, but they seem to be less sensitive to the living conditions in transects G and E than the earthworms. The avoidance response test of Eisenia andrei was statistically correlated with soil layers at the sampling sites. However, the avoidance response test of Folsomia candida was positively correlated with silt-clay content (+0.744*) and was negatively correlated with sand content (?0.744*).  相似文献   

5.
Soil organic carbon (SOC) has been assessed in three dimension (3D) in several studies, but little is known about the combined effects of land use and soil depth on SOC stocks in semi-arid areas. This paper investigates the 3D distribution of SOC to a depth of 1 m in a 4600-ha area in southeastern Iran with different land uses under the irrigated farming (IF), dry farming (DF), orchards (Or), range plants on the Gachsaran formation (RaG), and range plants on a quaternary formation (RaQ). Predictions were made using the artificial neural networks (ANNs), regression trees (RTs), and spline functions with auxiliary covariates derived from a digital elevation model (DEM), the Landsat 8 imagery, and land use types. Correlation analysis showed that the main predictors for SOC in the topsoil were covariates derived from the imagery; however, for the lower depths, covariates derived from both the DEM and imagery were important. ANNs showed more efficiency than did RTs in predicting SOC. The results showed that 3D distribution of SOC was significantly affected by land use types. SOC stocks of soils under Or and IF were significantly higher than those under DF, RaG, and RaQ. The SOC below 30 cm accounted for about 59% of the total soil stock. Results showed that depth functions combined with digital soil mapping techniques provide a promising approach to evaluate 3D SOC distribution under different land uses in semi-arid regions and could be used to assess changes in time to determine appropriate management strategies.  相似文献   

6.
The problems of different mapping units which hitherto formed the basis for irrigation soil surveys of the savanna landscapes in Nigeria are discussed. Using data from a semi-detailed soil survey, the possibility of establishing the major variations in soil properties which are relevant to irrigation by using a combination of parent material and slope position as mapping units are examined. In the mapping units considered, thirteen topsoil and eleven subsoil properties are significantly different between mapping units and have smaller variances within than between the mapping units. The variations of these topsoil and subsoil properties are also adequately accounted for by using parent material/slope position as a basis for mapping, suggesting that units based on parent material/slope position are of high utility for establishing the irrigation potentials of areas at the feasibility level of survey.  相似文献   

7.
8.
This study is planned to perform a sanitary survey of the largest sewage treatment plant in Riyadh, KSA, fortnightly for 6 months to examine its effluent quality as an example for the growing dependence on reuse of treated municipal wastewater in agricultural irrigation purposes to cope with increasing water shortage. The biological and physico-chemical parameters of 12 wastewater samples from the plant were examined using standard methods. The physico-chemical analysis indicated that the surveyed municipal wastewater treatment plant contained some of the studied parameters, such as turbidity, total suspended solids, biochemical oxygen demand, chemical oxygen demand and residual chlorine above the maximum permissible wastewater limits set by the Saudi Standards. However, heavy metal concentrations in all samples were lower than the recommended standards. Total and faecal coliform counts were above the permissible limits indicating poor sanitation level. Fifty percent of all wastewater samples were contaminated with faecal coliforms but, surprisingly, Escherichia coli were only detected in 8.3 % of the samples. Regular monitoring and enhancement of microbial and physico-chemical parameters of the wastewater quality served by different wastewater treatment plants for reuse in agricultural irrigation is recommended to preserve the environment and public health.  相似文献   

9.
The central objective of this project was to utilize geographical information systems and remote sensing to compare soil erosion models, including Modified Pacific South-west Inter Agency Committee (MPSIAC), Erosion Potential Method (EPM), and Revised Universal Soil Loss Equation (RUSLE), and to determine their applicability for arid regions such as Kuwait. The northern portion of Umm Nigga, containing both coastal and desert ecosystems, falls within the boundaries of the de-militarized zone (DMZ) adjacent to Iraq and has been fenced off to restrict public access since 1994. Results showed that the MPSIAC and EPM models were similar in spatial distribution of erosion, though the MPSIAC had a more realistic spatial distribution of erosion and presented finer level details. The RUSLE presented unrealistic results. We then predicted the amount of soil loss between coastal and desert areas and fenced and unfenced sites for each model. In the MPSIAC and EPM models, soil loss was different between fenced and unfenced sites at the desert areas, which was higher at the unfenced due to the low vegetation cover. The overall results implied that vegetation cover played an important role in reducing soil erosion and that fencing is much more important in the desert ecosystems to protect against human activities such as overgrazing. We conclude that the MPSIAC model is best for predicting soil erosion for arid regions such as Kuwait. We also recommend the integration of field-based experiments with lab-based spatial analysis and modeling in future research.  相似文献   

10.
Impact of wastewater irrigation on some biological properties was studied in an area where treated sewage water is being supplied to the farmers since 1979 in the western part of National Capital Territory of New Delhi under Keshopur Effluent Irrigation Scheme. Three fields were selected which had been receiving irrigation through wastewater for last 20, 10 and 5 years. Two additional fields were selected in which the source of irrigation water was tubewell. The soil bacterial and fungal population density was studied in soil layers of 0?C15, 15?C30, 30?C60 and 60?C120 cm depths. Groundwater samples were collected from the piezometers installed in the field irrigated with sewage water for last 20, 10 and 5 years. Results indicate that there was significant increase in bacterial and fungal count in sewage-irrigated soils as compared to their respective control. The population density of bacteria and fungi in waste water-irrigated soils increased with the duration of sewage water application and decreased with increasing depth. The bacterial and fungal count was also directly proportional to organic carbon, sand and silt content and negatively correlated to the clay content, electrical conductivity, pH and bulk density of the soil. Groundwater under sewage-irrigated fields had higher values of most probable number (MPN) index as compared to that of tubewell water-irrigated fields. All the shallow and deep groundwaters were found to be contaminated with faecal coliforms. The vadose zone had filtered the faecal coliform to the tune of 98?C99%, as the MPN index was reduced from ??18,000 per 100 ml of applied waste water to 310 per 100 ml of groundwater under 20 years sewage-irrigated field. The corresponding values of MPN were 250 and 130 per 100 ml of shallow groundwater under 10 and 05 years sewage-irrigated fields, respectively. Rapid detection of faecal contamination suggested that the Citrobacter freundii and Salmonella were dominant in shallow groundwater, while Escherichia coli was dominant in deep groundwater collected from sewage-irrigated field.  相似文献   

11.
12.
The reuse of treated municipal wastewater should be one of the new water resource target areas. The suitability of the reuse of wastewater for agricultural irrigation has to consider health risk, soil contamination and the influence of the reclaimed water on crop growth. In this work the aim is to use quantitative risk analysis to assess the health effects related to reclaimed water quality and to calculate the loading capacity of reclaimed wastewater in terms of the heavy metal accumulation. The results of chemical risk assessment show there would be slightly significant health risk and what risk there is can be limited within an acceptable level. The following exposure pathway: reclaimed water-->surface water-->fish (shellfish)-->human, and arsenic risks are of more concern. In terms of reuse impact in soil contamination, the most possible heavy metal caused accumulation is arsenic. The irrigative quantity has to reach 13,300 m(3)/ha to cause arsenic accumulation. However, only 12,000 m(3)/ha is essential for rice paddy cropland. The high total nitrogen of reclaimed water from secondary treatment makes it unfavorable for crop growth. The recommended dilution ratio is 50% during the growth period and 25% during the maturity period.  相似文献   

13.
Soil conservation planning often requires estimates of the spatial distribution of soil erosion at a catchment or regional scale. This paper applied the Revised Universal Soil Loss Equation (RUSLE) to investigate the spatial distribution of annual soil loss over the upper basin of Miyun reservoir in China. Among the soil erosion factors, which are rainfall erosivity (R), soil erodibility (K), slope length (L), slope steepness (S), vegetation cover (C), and support practice factor (P), the vegetative cover or C factor, which represents the effects of vegetation canopy and ground covers in reducing soil loss, has been one of the most difficult to estimate over broad geographic areas. In this paper, the C factor was estimated based on back propagation neural network and the results were compared with the values measured in the field. The correlation coefficient (r) obtained was 0.929. Then the C factor and the other factors were used as the input to RUSLE model. By integrating the six factor maps in geographical information system (GIS) through pixel-based computing, the spatial distribution of soil loss over the upper basin of Miyun reservoir was obtained. The results showed that the annual average soil loss for the upper basin of Miyun reservoir was 9.86 t ha(-1) ya(-1) in 2005, and the area of 46.61 km(2) (0.3%) experiences extremely severe erosion risk, which needs suitable conservation measures to be adopted on a priority basis. The spatial distribution of erosion risk classes was 66.9% very low, 21.89% low, 6.18% moderate, 2.89% severe, and 1.84% very severe. Thus, by using RUSLE in a GIS environment, the spatial distribution of water erosion can be obtained and the regions which susceptible to water erosion and need immediate soil conservation planning and application over the upper watershed of Miyun reservoir in China can be identified.  相似文献   

14.
The dissipation of ethofenprox in cabbage and soil under open conditions was investigated at two primary cabbage-growing regions, Beijing and Kunming in China. Samples were extracted with acetonitrile and determined by ultra-performance liquid chromatography with a single quadrupole detector. Dissipation of ethofenprox from cabbage and soil can be best explained by a first-order decay process. The half-lives of ethofenprox were 1.9 and 2.3 days in cabbage and 20.0 and 13.0 days in soil at Beijing and Kunming, respectively. The concentration of ethofenprox residue was reduced by 90% taking 7 and 60 days in cabbage and soil. Dissipation rates in cabbage and soil at two geographically separated experimental fields differed, suggesting that this was affected by complicated factors, such as local climate and soil characteristics. These data could provide guidance for the proper and safe use of this pesticide on cabbage in China.  相似文献   

15.
The present study was conducted to determine the heavy metal contamination in soil with accumulation in edible parts of plants and their subsequent changes in biochemical constituents due to wastewater irrigation. Though the wastewater contains low levels of the heavy metals (Fe, Mn, Pb, Cd, and Cr), the soil and plant samples show higher values due to accumulation. The trend of metal accumulation in wastewater-irrigated soil is in the order: Fe > Pb > Mn > Cr > Cd. Of the three species Colocasia esculentum, Brassica nigra, and Raphanus sativus that are grown, the order of total heavy metal accumulation in roots is Raphanus sativus > Colocasia esculentum, while in shoots the order is Brassica nigra > Colocasia esculentumRaphanus sativus. The enrichment factor (EF) of the heavy metals in contaminated soil is in the sequence of Cd (3) > Mn (2.7) > Cr (1.62) > Pb (1.46) > Fe (1.44), while in plants EF varies depending upon the species and plant part. C. esculentum and R. sativus show a higher EF for Cr and Cd. All plants show a high transfer factor (TF > 1) for Cd signifying a high mobility of Cd from soil to plant whereas the TF values for Pb are very low as it is not bioavailable. Results of the biochemical parameters show decrease in total chlorophyll and total amino acid levels in plants and an increase in amounts of soluble sugars, total protein, ascorbic acid, and phenol except B. nigra for protein in plants grown in soil irrigated with wastewater as compared to control site.  相似文献   

16.
Soil heavy metal pollution due to wastewater reuse was assessed by means of the concentration factor (CF) and/or pollution load index (PLI).In this respect, a greenhouse pot experiment was conducted, using a completely randomized block design, including five treatments of treated municipal wastewater (0%, 25%, 50%, 75%, and 100%), in four replications. Brassica oleracea var. Capitata was used as a test crop. The optimum CFs were expressed as a function of maximum dry matter of cabbage plant parts yield, and the values obtained per plant part were as follows: stems-Zn-CF 2.96, Co-CF 0.85, Ni-CF 0.92; whole plant-Cu-CF 3.90, Ni-CF 0.87, and Pb-CF 11.52; and leaves-Pb-CF 11.78. The PLI was calculated as the geometric mean of the CF of each metal, and was related to the maximum dry mater yield of cabbage stems and heads. The optimum values found were: stems PLI 1.99-2.55 and heads 2.25.  相似文献   

17.
In this study an assessment is made of the negative impacts of wastewater irrigation on soils and crops sampled along the Khoshk River channel in suburban area of Shiraz City, SW Iran. For this purpose, samples of soil profiles (0–60 cm in depth) and crops were collected from two wastewater irrigated sites and a tube well-irrigated (control) site. Total concentrations of the five heavy metals (Ni, Pb, Cd, Zn and Cr) and their phytoavailable contents were determined. The Pollution Load Indexes (PLIs) and Contamination Factors (CFs) for soils and Hazard quotients (ΣHQ) for some vegetables were also calculated. The results showed the use of untreated wastewater has caused the following changes as compared to control site: (1) a 20–30% increase in organic matter content of soil; (2) increase in pH by 2–3 units; (3) significant concentration increase in Ex-Ca especially in top layers of soil resulting in high CEC; (4) build up of heavy metals (notably Pb and Ni) in topsoil above Maximum Permissible Limits (MPLs) indicating a moderate contamination (PLI > 1, CF > 2.5); (5) contamination of some vegetables (spinach and lettuce) with Cd due to its high phytoavailability in topsoil causing a HQ > 1; (6) excessive accumulation of Ni and Pb in wheat due to continual addition of heavy metals through long-term wastewater application. The study concludes that strict protection measures, stringent guidelines and an integrated system for the treatment and recycling of wastewater are needed to minimize the negative impacts of wastewater irrigation in the study area.  相似文献   

18.
19.
Freshwater resources are increasingly scarce due to human activities, and the understanding of water quality variations at different spatial and temporal scales is necessary for adequate management. Here, we analyze the hypotheses that (1) the presence of a wastewater treatment plant (WWTP) and (2) a polluted tributary that drains downstream from the WWTP change the spatial patterns of physicochemical variables (pH, turbidity, dissolved oxygen, and electrical conductivity) and nutrient concentrations (reactive soluble phosphorus, total phosphorus, nitrogen series, total nitrogen, and total dissolved carbon) along a mid-order river in SE Brazil and that these effects depend on rainfall regime. Six study sites were sampled along almost 4 years to evaluate the impacts of human activities, including sites upstream (1–3) and downstream (5–6) from the WWTP. The impacts were observed presenting an increasing trend from the source (site 1) towards Água Quente stream (site 4, the polluted tributary), with signs of attenuation at site 5 (downstream from both WWTP and site 4) and the river mouth (site 6). Input of nutrients by rural and urban runoff was observed mainly at sites 2 and 3, respectively. At sites 4 and 5, the inputs of both untreated and treated wastewaters increased nutrient concentrations and changed physicochemical variables, with significant impacts to Monjolinho River. Seasonal variations in the measured values were also observed, in agreement with the pluviometric indexes of the region. Univariate analyses suggested no effect of the WWTP for most variables, with continued impacts at sites downstream, but non-parametric multivariate analysis indicated that these sites were recovering to chemical characteristics similar to upstream sites, apparently due to autodepuration. Therefore, multivariate methods that allow rigorous tests of multifactor hypotheses can greatly contribute to determine effects of both point and non-point sources in river systems, thus contributing to freshwater monitoring and management.  相似文献   

20.
Spatial and temporal variations of sediment quality in Matanzas Bay (Cuba) were studied by determining a total of 12 variables (Zn, Cu, Pb, As, Ni, Co, Al, Fe, Mn, V, CO3 2?, and total hydrocarbons (THC). Surface sediments were collected, annually, at eight stations during 2005–2008. Multivariate statistical techniques, such as principal component (PCA), cluster (CA), and lineal discriminant (LDA) analyses were applied for identification of the most significant variables influencing the environmental quality of sediments. Heavy metals (Zn, Cu, Pb, V, and As) and THC were the most significant species contributing to sediment quality variations during the sampling period. Concentrations of V and As were determined in sediments of this ecosystem for the first time. The variation of sediment environmental quality with the sampling period and the differentiation of samples in three groups along the bay were obtained. The usefulness of the multivariate statistical techniques employed for the environmental interpretation of a limited dataset was confirmed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号