首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ambient air samples were collected at two different locations between 2011 and 2012 in Zhengzhou, China in order to assess the concentration level, health risks, as well as the sources of polycyclic aromatic hydrocarbons (PAHs) in particulate matter (PM2.5). The mean annual levels of PM2.5 observed at industry site and residential site were 172?±?121 and 160?±?72 μg m?3, respectively, which were about five times the annual value of proposed PM2.5 standard (35 μg m?3) in China. The PM2.5 in all daily samples (n?=?47) exceeds the proposed PM2.5 standard in China (75 μg m?3) at both industrial and residential sites. Seasonal variations of PM2.5 showed a clear trend of winter?>?autumn?>?spring?>?summer at both sites. The total concentrations of 16 PM2.5-associated PAHs ranged from 61?±?51 to 431?±?281 and 38?±?25 to 254?±?189 ng m?3, with mean value of 176?±?233 and 111?±?146 ng m?3 at industry and residential sites, respectively. The major species were fluoranthene, pyrene, chrysene, benzo[b]fluoranthene and benzo[k]fluoranthene, and the concentration levels of PAHs in PM2.5 were higher in winter than those of other seasons at both sites. The annual mean values of toxicity equivalency concentrations of ∑16PAHs in PM2.5 were 22.8 and 13.5 ng m?3 in industry and residential area, respectively. In this study, the risk level of adult citizens through inhalation exposure to PAHs was calculated. The average estimates of lifetime inhalation cancer risks were approximately 8.9?×?10?7 and 6.3?×?10?7 for industry and residential sites, respectively. The main sources of 16 PAHs from both diagnostic ratios and principle component analysis identified as vehicular emissions and coal combustion.  相似文献   

2.
We investigated the contribution of volatile aerosols in light-absorption measurement by three filter-based optical instruments [aethalometer, continuous light-absorption photometer (CLAP), and continuous soot monitoring system (COSMOS)] at Gosan Climate Observatory (GCO) from February to June 2012. The aerosol absorption coefficient (σ abs) and the equivalent black carbon (BC) mass concentration (M BC) measured by the aethalometer and CLAP showed good agreement with a difference of 9 %, which is likely due to the instrumental uncertainty. However, σ abs and M BC measured by the COSMOS with a heated inlet were found to be approximately 44 and 49 % lower than those measured by the aethalometer and CLAP under ambient conditions, respectively. This difference can be attributed to the light absorption by the volatile aerosols coexisting with the BC. Even considering inherent observational uncertainty, it suggests that approximately 35–40 % difference in the σ abs and M BC can be contributed by volatile aerosols. Increase in the difference of M BC measured by the aethalometer and COSMOS with the increasing thermal organic carbon (OC) measured by Sunset OC/EC analyzer further suggests that the filter-based optical instruments without the use of a heater are likely to enhance the value of σ abs and M BC, because this sample air may contain both BC and volatile aerosols.  相似文献   

3.
The effective determination of heavy metals from environmental media is among the most important issues for many industrialized countries. The interaction between RS-N, as novel heavy metal probe, and metal ions was studied. RS-N shows selective color change from colorless to pink in the presence of Hg2+ in methanol/water solvent and the UV–Vis study shows peak at 560 nm. Fluorescence data revealed that the fluorescence enhance of RS-N by Hg2+ dramatically was the result of the formation of [Hg2+]RS-N complex. The effective association constants (K a ) were 3.97?×?105 and 0.204?×?105 M?1 for Hg2+ and Cu2+ to RS-N, respectively. The thermodynamic parameters, enthalpy change (ΔH 0) and entropy change (ΔS 0), were calculated to be ?6.431?±?0.226 kJ/mol and ?0.129?±?0.008 J/K/mol, respectively, according to van’t Hoff equation on the basis of Gibbs free energy (ΔG 0) ranged from ?33.8326 to ?28.5389 kJ/mol.  相似文献   

4.
The concentrations and composition of persistent organic pollutants (POPs) were determined in alluvial soils subjected to heavy flooding in a rural region of Poland. Soil samples (n?=?30) were collected from the upper soil layer from a 70-km2 area. Chemical determinations included basic physicochemical properties and the contents of polychlorinated biphenyls (PCBs), hexachlorocyclohexanes (HCHs), dichlorodiphenyltrichloroethanes (DDTs) and polycyclic aromatic hydrocarbons (PAHs, 16 compounds). The median concentrations of Σ7PCB (PCB28?+?PCB52?+?PCB101?+?PCB118?+?PCB138?+?PCB153?+?PCB180), Σ3HCH (α-HCH?+?β-HCH?+?γ-HCH) and Σ3pp′(DDT?+?DDE?+?DDD) were 1.60?±?1.03, 0.22?±?0.13 and 25.18?±?82.70 μg kg?1, respectively. The median concentrations of the most abundant PAHs, phenanthrene, fluoranthene, pyrene, benzo[b]fluoranthene and benzo[a]pyrene were 50?±?37, 38?±?27, 29?±?30, 45?±?36 and 24?±?22 μg kg?1, respectively. Compared with elsewhere in the world, the overall level of contamination with POPs was low and similar to the levels in agricultural soils from neighbouring countries, except for benzo[a]pyrene and DDT. There was no evidence that flooding affected the levels of POPs in the studied soils. The patterns observed for PAHs and PCBs indicate that atmospheric deposition is the most important long-term source of these contaminants. DDTs were the dominant organochlorine pesticides (up to 99 %), and the contribution of the parent pp′ isomer was up to 50 % of the ΣDDT, which indicates the advantage of aged contamination. A high pp′DDE/pp′DDD ratio suggests the prevalence of aerobic transformations of parent DDT. Dominance of the γ isomer in the HCHs implies historical use of lindane in the area. The effect of soil properties on the POP concentrations was rather weak, although statistically significant links with the content of the <0.02-mm fraction, Ctotal or Ntotal were observed for some individual compounds in the PCB group.  相似文献   

5.
A comprehensive attempt has been made to evaluate the diurnal and spatial pattern of CO2 exchange between the atmosphere and water along the estuarine track of Indian Sundarbans during the two summer months, April and May, 2011. Rigorous field observations were carried out which included the hourly measurements of total alkalinity, pH, fugacity of CO2 in ambient air and water surface, dissolved oxygen, and chlorophyll a. The estuarine water was found rich in total alkalinity and was oversaturated with CO2 throughout the diurnal cycle in the two stations situated at the inner and middle estuary, respectively, whereas an entirely reverse situation was observed in the outer fringes. The fugacity of CO2 in water ranged from 152 to 657 μatm during the study period. The percentage of over-saturation in inner and middle estuary varied from 103 to 168 and 103 to 176 %, respectively, whereas the degree of under-saturation in the outer estuary lied between 40 and 99 %. Chlorophyll a concentrations were found higher in the outer estuary (12.3?±?2.2 mg?m?3) compared to the middle (6.4?±?0.6 mg?m?3) and inner parts (1.6?±?0.2 mg?m?3), followed by a similar decreasing pattern in nutrient availability from the outer to inner estuary. The sampling stations situated at the inner and middle estuary acted as a net source of 29.69 and 23.62 mg?CO2?m?2 day?1, respectively, whereas the outer station behaved as a net sink of ?33.37 mg?CO2 m?2 day?1. The study of primary production and community respiration further supports the heterotrophic nature of the estuary in the inner region while the outer periphery was marked by dominant autotrophic character. These contrasting results are in parity with the source characters of many inner estuaries and sinking characters of the outer estuaries situated at the distal continental shelf areas.  相似文献   

6.
Different biological variables of tadpoles, including survival, development and growth rates, and biomarkers [cholinesterases, glutathione-S-transferases (GST), and blood cell morphology] were evaluated in two anuran species, Scinax squalirostris (Hylidae) and Leptodactylus mystacinus (Leptodactylidae), using in situ experimental chambers in a rice field (RF) sprayed with insecticide Lambda-cyhalothrin (LTC) by aircraft in Santa Fe Province, Argentina. We found a significant decrease in body weight (0.62?±?0.04 g) of L. mystacinus and an increased development rate of S. squalirostris in individuals from RF (41?±?1; Gosner) with respect to individuals from the reference site (RS: 0.93?±?0.04 g and 37?±?0; respectively). In S. squalirostris, individuals from RF mean values of butyrylcholinesterase activities decreased at 48 (4.09?±?0.32 nmol min-1 mg-1 of TP) and 96 h (3.74?±?0.20 nmol min-1 mg-1 of TP), whereas inhibition of acetylcholinesterase was observed at 96 h (47.44?±?2.78 nmol min-1 mg-1 of TP). In L. mystacinus from RF, an induction of acetylcholinesterase activity was observed at 96 h (36.01?±?1.09 nmol min-1 mg-1 of TP). Glutathione-S-transferase levels varied between species, being higher in L. mystacinus individuals but lower in S. squalirostris from RF at 48 (272.29 ±11.78 and 71.87?±?1.70 nmol min-1 mg-1 of TP; respectively) and 96 h (279.25?±?13.06 and 57.62?±?4.58 nmol min-1 mg-1 of TP, respectively). Blood cell parameters revealed a lower number of mitotic cells (MC: 0.36?±?0.31%o for S. squalirostris and 0.08?±?0.05 %o for L. mystacinus) and higher number of eosinophils (E: 3.45?±?1.75 %o for S. squalirostris and 7.64?±?0.98 %o for L. mystacinus) in individuals from the RF than in individuals from the RS (MC: 2.55?±?0.74 %o for S. squalirostris and 1.87?±?0.72%o for L. mystacinus; and E: 0.13?±?0.09 for S. squalirostris and 3.20?±?0.80 for L. mystacinus). Overall, our results demonstrate the existence of apparent differences in sensitivity between species in a series of sublethal responses to short-term exposure in RF after the application of Lambda-cyhalothrin. We suggest that the integral use of biological endpoints (development and growth) together with biomarkers (cholinesterase, GST, and blood cell parameters) may be a promising integral procedure for investigating pesticide exposure in wild frog populations.  相似文献   

7.
Our objective was to evaluate changes in water quality parameters during 1983–2007 in a subtropical drinking water reservoir (area: 7 km2) located in Lake Manatee Watershed (area: 338 km2) in Florida, USA. Most water quality parameters (color, turbidity, Secchi depth, pH, EC, dissolved oxygen, total alkalinity, cations, anions, and lead) were below the Florida potable water standards. Concentrations of copper exceeded the potable water standard of <30 μg?l?1 in about half of the samples. About 75 % of total N in lake was organic N (0.93 mg?l?1) with the remainder (25 %) as inorganic N (NH3-N: 0.19, NO3-N: 0.17 mg?l?1), while 86 % of total P was orthophosphate. Mean total N/P was <6:1 indicating N limitation in the lake. Mean monthly concentration of chlorophyll-a was much lower than the EPA water quality threshold of 20 μg?l?1. Concentrations of total N showed significant increase from 1983 to 1994 and a decrease from 1997 to 2007. Total P showed significant increase during 1983–2007. Mean concentrations of total N (n?=?215; 1.24 mg?l?1) were lower, and total P (n?=?286; 0.26 mg?l?1) was much higher than the EPA numeric criteria of 1.27 mg total N l?1 and 0.05 mg total P l?1 for Florida’s colored lakes, respectively. Seasonal trends were observed for many water quality parameters where concentrations were typically elevated during wet months (June–September). Results suggest that reducing transport of organic N may be one potential option to protect water quality in this drinking water reservoir.  相似文献   

8.
The study aims to establish denitrification potential of the Northern Arabian Gulf (NAG), as nitrogen critically affects the ocean productivity, obliterates acidity, oxidative capacity and radiative transfer capability of atmosphere. The experimental study was conducted by taking cores from intertidal zones from two different sites in North and South, referred as sites N and S; representing two distinct environmental milieu. The experiment was conducted in controlled laboratory conditions simulating the tidal cycles. Multiple cores were taken and loaded with seawater with different N concentrations, the redox potential was established for each condition. Redox potential was significantly lower at 10?cm depth compared to the surface in all cores (P?<?0.001). The redox potential at surface and at 10?cm depth was significantly lower at site S compared to site N (P?<?0.001; F?=?714.2), suggesting anaerobic sediments at site S. Effects of nitrate spiked seawater on denitrification under nonflooded and flooded conditions at the two sites were also studied. Three-way ANOVA analysis indicated that site, nitrate concentration, and flooding had significant main and interactive effects on the rate of denitrification. The results suggest that under ambient nitrate concentrations (0.03?mg NO3-N?l?1), 6.3?±?2.1?g NO3-N?ha?day can be denitrified by inter-tidal zone sediments. At a nitrate concentration of 1?mg NO3-N?l?1, 92?±?16?g NO3-N?ha?day may be denitrified whilst at a very high nitrate load of 10?mg NO3-N?l?1, the sediments may attain a rate of denitrification close to 404?±?78?g NO3-N?ha?day.  相似文献   

9.
Air quality in Hyderabad, India, often exceeds the national ambient air quality standards, especially for particulate matter (PM), which, in 2010, averaged 82.2?±?24.6, 96.2?±?12.1, and 64.3?±?21.2 μg/m3 of PM10, at commercial, industrial, and residential monitoring stations, respectively, exceeding the national ambient standard of 60 μg/m3. In 2005, following an ordinance passed by the Supreme Court of India, a source apportionment study was conducted to quantify source contributions to PM pollution in Hyderabad, using the chemical mass balance (version 8.2) receptor model for 180 ambient samples collected at three stations for PM10 and PM2.5 size fractions for three seasons. The receptor modeling results indicated that the PM10 pollution is dominated by the direct vehicular exhaust and road dust (more than 60 %). PM2.5 with higher propensity to enter the human respiratory tracks, has mixed sources of vehicle exhaust, industrial coal combustion, garbage burning, and secondary PM. In order to improve the air quality in the city, these findings demonstrate the need to control emissions from all known sources and particularly focus on the low-hanging fruits like road dust and waste burning, while the technological and institutional advancements in the transport and industrial sectors are bound to enhance efficiencies. Andhra Pradesh Pollution Control Board utilized these results to prepare an air pollution control action plan for the city.  相似文献   

10.
Aircraft measurements were used to estimate the CO2 emission rates of the city of Rome, assessed against high-resolution inventorial data. Three experimental flights were made, composed of vertical soundings to measure Planetary Boundary Layer (PBL) properties, and circular horizontal transects at various altitudes around the city area. City level emissions and associated uncertainties were computed by means of mass budgeting techniques, obtaining a positive net CO2 flux of 14.7?±?4.5, 2.5?±?1.2, and 10.3?±?1.2 μmol m?2 s?1 for the three flights. Inventorial CO2 fluxes at the time of flights were computed by means of spatial and temporal disaggregation of the gross emission inventory, at 10.9?±?2.5, 9.6?±?1.3, and 17.4?±?9.6 μmol m?2 s?1. The largest differences between the two dataset are associated with a greater variability of wind speed and direction in the boundary layer during measurements. Uncertainty partitioned into components related to horizontal boundary flows and top surface flow, revealed that the latter dominates total uncertainty in the presence of a wide variability of CO2 concentration in the free troposphere (up to 7 ppm), while it is a minor term with uniform tropospheric concentrations in the study area (within 2 ppm). Overall, we demonstrate how small aircraft may provide city level emission measurements that may integrate and validate emission inventories. Optimal atmospheric conditions and measurement strategies for the deployment of aircraft experimental flights are finally discussed.  相似文献   

11.
This study focused on Pb isotope ratios of sediments in areas around an abandoned mine to determine if the ratios can be used as a source tracer. For pretreatment, sediment samples were dissolved with mixed acids, and a multi-collector inductively coupled plasma mass spectrometer (MC-ICP-MS, Nu plasma II) was used to investigate the Pb isotopic composition of the samples. The measured isotope ratios were then corrected for instrumental mass fractionation by measuring the 203Tl/205Tl ratio. Repeated measurements with the NIST SRM 981 reference material showed that the precision of all ratios was below 104 ppm (±2σ) for 50 ng/g. The isotope ratios (207Pb/206Pb) found were 0.85073?±?0.0004~0.85373?±?0.0003 for the main stream, while they were 0.83736?±?0.0010 for the tributary and 0.84393?±?0.0002 for the confluence. A binary mixing equation for isotope ratios showed that the contributions of mine lead to neighboring areas were up to 60 %. Therefore, Pb isotope ratios can be a good source tracer for areas around abandoned mines.  相似文献   

12.
Field experiments were conducted in open top chamber during rabi seasons of 2009–10 and 2010–11 at the research farm of the Indian Agricultural Research Institute, New Delhi to study the effect of tropospheric ozone (O3) and carbon dioxide (CO2) interaction on yield and nutritional quality of Indian mustard (Brassica juncea (L.) Czern.). Mustard plants were grown from emergence to maturity under different treatments: charcoal-filtered air (CF, 80–85 % less O3 than ambient O3 and ambient CO2), nonfiltered air (NF, 5–10 % less O3 than ambient O3 and ambient CO2 ), nonfiltered air with elevated carbon dioxide (NF?+?CO2, NF air and 550?±?50 ppm CO2), elevated ozone (EO, NF air and 25–35 ppb elevated O3), elevated ozone along with elevated carbon dioxide (EO?+?CO2, NF air, 25–35 ppb O3 and 550?±?50 ppm CO2), and ambient chamber less control (AC, ambient O3 and CO2). Elevated O3 exposure led to reduced photosynthesis and leaf area index resulting in decreased seed yield of mustard. Elevated ozone significantly decreased the oil and micronutrient content in mustard. Thirteen to 17 ppm hour O3 exposure (accumulated over threshold of 40 ppm, AOT 40) reduced the oil content by 18–20 %. Elevated CO2 (500?±?50 ppm) along with EO was able to counter the decline in oil content in the seed, and it increased by 11 to 13 % over EO alone. Elevated CO2, however, decreased protein, calcium, zinc, iron, magnesium, and sulfur content in seed as compared to the nonfiltered control, whereas removal of O3 from air in the charcoal-filtered treatment resulted in a significant increase in the same.  相似文献   

13.
To assess metal mobility in pruning waste and biosolids compost (pH?6.9 and total concentration of metals in milligram per kilogram of Cd 1.9, Cu 132, Fe 8,513, Mn 192, Pb 81, and Zn 313), shrubs species Atriplex halimus and Rosmarinus officinalis were transplanted in this substrate and irrigated with citric acid (4 g?L?1, pH?2.9) and nutrient solution daily for 60 days. Citric acid significantly increased the concentrations of soluble Mn and Fe in the nutrient substrate solution measured by suction probes, while other metals did not vary in concentration (Cu and Zn) or were not observed at detectable levels (Cd and Pb). In plants, citric acid significantly increased the concentrations of Cu (2.7?±?0.1–3.3?±?0.1 mg?kg?1), Fe (49.2?±?5.2–76.8?±?6.8 mg?kg?1), and Mn (7.2?±?1.1–11.4?±?0.7 mg?kg?1) in leaves of R. officinalis, whereas the concentration of only Mn (25.4?±?0.3–42.2?±?2.9 mg?kg?1) was increased in A. halimus. Increasing Fe and Mn solubility by citric acid addition indicates the possibility of using it to improve plant nutrition. The mobility of metals in this substrate was influenced for the concentration of the metal, the degree of humification of organic matter and its high Fe content.  相似文献   

14.
Cattle grazing nearby coal-fired power stations are exposed to fly ash. The present investigation aims to assess the environmental and health impacts of fly ash containing mercury emitted from thermal power plant. The health effect of fly ash were studied using 20 lactating cattle reared within a 5-km radius of s thermal power plant for the possible effect of fly ash such as the alterations in hematological and biochemical parameters of blood, milk, and urine. Results indicated that the hemoglobin levels (6.65?±?0.40?g/dl) were significantly reduced in all the exposed animals. Biochemical parameters viz., blood urea nitrogen (27.35?±?1.19?mg/dl), serum glutamate oxaloacetate transaminase (43.39?±?3.08?IU/l), albumin, and creatinine were found to be increased, whereas serum glutamate pyruvic transaminase (29.26?±?2.02) and Ca2+ were observed to be statistically insignificant in exposed animals. Mercury concentrations estimated in the blood, milk, and urine of exposed (n?=?20) and control (n?=?20) animals were 7.41?±?0.86, 4.75?±?0.57, 2.08?±?0.18, and 1.05?±?0.07, 0.54?±?0.03, 0.20?±?0.02?μg/kg, respectively. The significant increase (P?<?0.01) in the levels of mercury in blood, milk, and urine of exposed animals in comparison to control indicated that the alterations of biochemical parameters in exposed cattle could be due to their long term exposure to fly ash mercury which may have direct or indirect impact on human populations via food chain.  相似文献   

15.
The leaching behavior of nitrogen was studied in single rice paddy production ecosystems in Tsukuba, Japan after 75 years of consistent fertilization regimes (no fertilizer, ammonium sulfate, a combination of composted rice straw with soybean cake, and fresh clover). During the 75-year period, management was unchanged with respect to rice planting density, irrigation, and net N fertilization for each field to which an N-source was added. Percolation water was collected, from May 2001 to April 2002, using porous suction cups installed in the fields at depths of 15, 40, and 60 cm. All water samples were taken to the laboratory for the measurement of both NH4 ?+??CN and NO3 ????CN concentrations using a continuous-flow nitrogen analyzer. The result indicated that there were significant differences in N leaching losses between treatments during the rice growing season. Total N leaching was significantly lower with the application of composted rice straw plus soybean cake (0.58 kg N ha???1) than with ammonium sulfate (2.41 kg N ha???1), which resulted in N leaching at a similar level to that with the fresh clover treatment (no significant difference). The majority of this N leaching was not due to NO3 ????CN loss, but to that of NH4 ?+??CN. The mean N leaching for all fertilizer treatments during the entire rice growing season was 1.58 kg N ha???1. Composted rice straw plus soybean cake produced leaching losses which were 65?C75% lower than those with the application of fresh clover and ammonium sulfate. N accumulation resulting from nitrification in the fallow season could be a key source of nitrate?CN leaching when fields become re-flooded before rice transplanting in the following year; particular attention should be paid to this phenomenon.  相似文献   

16.
This study was designed to evaluate the measuring range and lowest limit of detection of Bacillus endospores in the ambient room air when the Sartorius MD8 sampler, and two different culture methods for bacterial enumeration were used. Different concentrations of bioaerosol were generated inside the test chamber filled with either the high-efficiency particulate air (HEPA)-filtered air or with the ambient room air. The detection of endospores in the HEPA-filtered air was achievable: (1) when they were aerosolized at a concentration above 7.56?×?103 CFU/m3 and analyzed with spread plate method, and (2) when they were aerosolized at a concentration above 4.00?×?102 CFU/m3 and analyzed with pour plate method. The detection of endospores in the ambient room air was possible: (1) when they were aerosolized at a concentration above 9.1?×?103 CFU/m3 and analyzed with spread plate method, and (2) when they were aerosolized at a concentration above 5.6?×?102 CFU/m3 and analyzed with pour plate method. The microorganisms present in the ambient room air interfere with precise quantification of Bacillus endospores when their concentration is relatively low. The results of this study may be helpful in critical assessment of the results obtained from monitoring the air for bacterial endospores.  相似文献   

17.
Obtaining and analyzing the specific inherent optical properties (SIOPs) of water bodies is necessary for bio-optical model development and remote sensing-based water quality retrievals and, further, for related ecological studies of aquatic ecosystems. This study aimed to measure and analyze the specific absorption and backscattering coefficients of the main water constituents in Poyang Lake, China. The specific absorption and/or backscattering coefficients of the main water constituents at 85 sampling sites (47 in 2010 and 38 in 2011) were measured and analyzed as follows: (1) the concentrations of chlorophyll a (C CHL), suspended particulate matter (C SPM) (including suspended particulate inorganic matter (C SPIM) and suspended particulate organic matter (C SPOM)), and the absorption coefficients of total particulate (a p), phytoplankton (a ph), and non-pigment particulate (a d) were measured in the laboratory; (2) the total backscattering coefficients at six wavelengths of 420, 442, 470, 510, 590, and 700 nm, including the contribution of pure water, were measured in the field with a HydroScat-6 backscattering sensor, and the backscattering coefficients without the contribution of pure water (b b) were then derived by subtracting the backscattering coefficients of pure water from the total backscattering coefficients; (3) the specific absorption coefficients of total particulate ( $ a_{\mathrm{p}}^{ * } $ ), phytoplankton ( $ {a_{{\mathrm{ph}}}}^{ * } $ ), and non-pigment particulate ( $ a_{\mathrm{d}}^{ * } $ ) were calculated by dividing a p, a ph, and a d by C SPM, C CHL, and C SPIM, respectively, while the specific backscattering coefficients of total suspended particulate matter ( $ b_{\mathrm{b}}^{ * } $ ) were calculated by dividing b b by C SPM; and (4) the $ {a_{{\mathrm{ph}}}}^{ * } $ , $ a_{\mathrm{d}}^{ * } $ , $ a_{\mathrm{p}}^{ * } $ and $ b_{\mathrm{b}}^{ * } $ of the remaining samples (46 in 2010 and 36 in 2011) were visualized and analyzed, and their relations to C CHL, C SPIM or C SPM were studied, respectively. The main results are summarized as follows: (1) the $ {a_{{\mathrm{ph}}}}^{ * } $ values at 440 nm were 0.0367–0.7203 m2?mg?1 with a mean of 0.1623?±?0.1426 m2?mg?1 in 2010 and 0.0319–0.7735 m2?mg?1 with a mean of 0.3145?±?0.1961 m2?mg?1 in 2011; there existed significant, negative, and moderate correlations between $ {a_{{\mathrm{ph}}}}^{ * } $ and C CHL at 400–700 nm in 2010 and 2011 (p?<?0.05); (2) The $ a_{\mathrm{d}}^{ * } $ values at 440 nm were 0.0672–0.2043 m2?g?1 with a mean of 0.1022?±?0.0326 m2?g?1 in 2010 and 0.0559–0.1347 m2?g?1 with a mean of 0.0953?±?0.0196 m2?g?1 in 2011; there existed negative correlations between $ a_{\mathrm{d}}^{ * } $ and C SPIM, while the correlations showed overall decreasing and increasing trends before and after around 575 nm with increasing wavelengths, respectively; (3) The $ a_{\mathrm{p}}^{ * } $ values at 440 nm were 0.0690–0.1929 m2?g?1 with a mean of 0.1036?±?0.0298 m2?g?1 in 2010 and 0.0571–0.1321 m2?g?1 with a mean of 0.1014?±?0.0191 m2?g?1 in 2011, and the negative correlations between $ a_{\mathrm{p}}^{ * } $ and C SPM were found in both years; (4) The $ b_{\mathrm{b}}^{ * } $ at the six wavelengths generally decreased with increasing wavelengths, while the $ b_{\mathrm{b}}^{ * } $ values at 420 nm were lower than those at 442 nm for some samples; the correlation between $ b_{\mathrm{b}}^{ * } $ and C SPM increased with increasing wavelength. Such results can only represent the SIOPs during the sampling time periods, and more measurements and analyses considering different seasons need to be carried out in the future to comprehensively understand the SIOPs of Poyang Lake.  相似文献   

18.
The water quality of the Akyatan Lagoon was characterized using hydrochemical methodology. The lagoon is located on the Mediterranean coast and is the largest wetland ecosystem in Turkey. In addition, the lagoon is classified as a hyper-salinity wetland. Water samples were collected monthly between December 2007 and November 2008. Eleven stations within the lagoon were determined, and triplicate grab samples were obtained from each station to characterize water quality as follows: T °C, pH, total alkalinity (TAlk), dissolved oxygen (DO), total dissolved solids (TDS), salinity, electrical conductivity (EC), and main anions, including chloride (Cl?), nitrates (NO3 ?), and sulfate (SO4 2?). Results from selected stations indicated varying TDS, EC, salinity, and Cl? concentrations, from 20,892 to 175,824 mg/L, from 35.7 to 99.6 mS/cm, from 22.3 to 71.0 ppt, and from 14,819 to 44,198 mg Cl?/L, respectively. Data indicated that the spatial distribution of water quality parameters was significantly affected by freshwater input via the constructed drainage channels which collect water from a catchment area and discharge water into the lagoon as a point source, thus preventing drainage water to reach the lagoon as a nonpoint source.  相似文献   

19.
The present study showed that irrigation of soil with different effluent concentrations (10, 25, 50, 75, and 100 %) of distillery effluent (DE) for 60 days resulted in significant (P?<?0.001) changes in moisture content; electrical conductivity (EC), pH, chlorides (Cl?), total organic carbon (TOC), exchangeable sodium (Na+), available potassium (K+), calcium (Ca2+), magnesium (Mg2+), iron (Fe2+), total Kjeldahl nitrogen (TKN), available phosphorus (P), and sulfate (SO4 2?) of soil. The non-significant (P?>?0.05) changes were observed for water-holding capacity and bulk density of the soil. Among various concentrations of DE irrigation, irrigation with 100 % effluent concentration increased moisture content, (24.85 %), EC (77.88 %), Cl? (285.95 %), TOC (3,171.42 %), exchangeable Na+ (241.04 %), available K+ (52.49 %), Ca2+ (990.37 %), Mg2+ (1,751.72 %), TKN (1,417.00 %), available P (305.00 %), and SO4 2? (75.32 %) in the soil and decreased pH (?20.22 %). The more stimulation in agronomical parameters such as shoot length, root length, number of leaves, flowers, pods, dry weight, fresh weight, chlorophyll content, leaf area index, and crop yield of A. esculentus were observed to be inversely proportional to the concentration of effluent water, with the best results being obtained at a dilution of 25 % of DE concentration.  相似文献   

20.
Risk assessment of metal-contaminated soil depends on how precisely one can predict the solubility of metals in soils. Responses of plants and soil organisms to metal toxicity are explained by the variation in free metal ion activity in soil pore water. This study was undertaken to predict the free ion activity of Zn, Cu, Ni, Cd, and Pb in metal-contaminated soil as a function of pH, soil organic carbon, and extractable metal content. For this purpose, 21 surface soil samples (0–15 cm) were collected from agricultural lands of various locations receiving sewage sludge and industrial effluents for a long period. One soil sample was also collected from agricultural land which has been under intensive cropping and receiving irrigation through tube well water. Soil samples were varied widely in respect of physicochemical properties including metal content. Total Zn, Cu, Ni, Cd, and Pb in experimental soils were 2,015?±?3,373, 236?±?286, 103?±?192, 29.8?±?6.04, and 141?±?270 mg kg?1, respectively. Free metal ion activity, viz., pZn2+, pCu2+, pNi2+, pCd2+, and pPb2+, as estimated by the Baker soil test was 9.37?±?1.89, 13.1?±?1.96, 12.8?±?1.89, 11.9?±?2.00, and 11.6?±?1.52, respectively. Free metal ion activity was predicted by pH-dependent Freundlich equation (solubility model) as a function of pH, organic carbon, and extractable metal. Results indicate that solubility model as a function of pH, Walkley–Black carbon (WBC), and ethylenediaminetetraacetic acid (EDTA)-extractable metals could explain the variation in pZn2+, pCu2+, pNi2+, pCd2+, and pPb2+ to the extent of 59, 56, 46, 52, and 51 %, respectively. Predictability of the solubility model based on pH, KMnO4-oxidizable carbon, and diethylenetriaminepentaacetic acid-extractable or CaCl2-extractable metal was inferior compared to that based on EDTA-extractable metals and WBC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号