首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2016—2017年武汉市城区大气PM2.5污染特征及来源解析   总被引:1,自引:0,他引:1  
利用2016年1月至2017年9月湖北省环境监测中心站大气复合污染自动监测站的在线监测数据,对武汉市城区PM2.5的污染特征及主要来源进行解析。结果表明,武汉市城区PM2.5质量浓度呈现出明显的季节差异,季节变化规律为冬季>春季>秋季>夏季。水溶性离子的主要成分SO42-、NO3-和NH4+占总离子质量浓度的82.0%。PM2.5中阴离子相对阳离子较为亏损,颗粒整体呈碱性。夏季气态污染物的氧化程度较高且SO2较NO2氧化程度高。后向轨迹分析结果表明,区域传输是武汉市PM2.5的一个重要来源,在4个典型重污染阶段,武汉市分别受到局地、东北、西北及西南方向气团传输的影响。PMF模型解析出武汉市PM2.5五大主要来源及平均贡献率:扬尘22.0%、机动车排放27.7%、二次气溶胶21.6%、重油燃烧14.9%和生物质燃烧13.8%。  相似文献   

2.
The Measurement of Pollution in the Troposphere (MOPITT) instrument is an eight-channel gas correlation radiometer, which was launched on the Earth Observing System (EOS) Terra satellite in 1999. Carbon monoxide (CO) is one of the important trace gases because its concentration in the troposphere directly influences the concentrations of tropospheric hydroxyl (OH), which controls the lifetimes of tropospheric trace gases. CO traces the transport of global and regional pollutants from industrial activities and large scale biomass burning. The global and regional distributions of CO were analyzed using the MOPITT data for East Asia, which were compared with the ozone distributions. In general, seasonal CO variations are characterized by a peak in the spring, which decrease in the summer. This work also revealed that the seasonal cycles for CO are at a maximum in the spring and a minimum in the summer, with average concentrations ranging from 118 to 170 ppbv. The monthly average for CO shows a similar profile to that for O3. This fact clearly indicates that the high concentration of CO in the spring is possibly due to one of two causes: the photochemical production of CO in the troposphere, or the transport of the CO into East Asia. The seasonal cycles for CO and O3 in East Asia are extensively influenced by the seasonal exchanges of different air mass types due to the Asian monsoon. The continental air masses contain high concentrations of O3 and CO, due to the higher continental background concentrations, and sometimes to the contribution from regional pollution. In summer this transport pattern is reversed, where the Pacific marine air masses that prevail over Korea bring low concentrations of CO and O3, which tend to give the apparent summer minimums.  相似文献   

3.
Water-soluble inorganic ions in aerosol samples have been studied. The sample collection took place during summer in 2003 at a European background site which is operating within the framework of the European Monitoring and Evaluation Program. Gent type PM10 stacked filter unit (SFU) samplers were operated in parallel on a day and night basis to collect particles in separate coarse (2.0-10 microm) and fine (<2.0 microm) size fractions. Particulate masses were measured gravimetrically; the filters from one of the SFU samplers were analyzed by particle-induced X-ray emission spectrometry (PIXE) and instrumental neutron activation analysis (INAA). Filters from the other SFU sampler were analyzed by ion chromatography (IC) for major inorganic anions (MSA-, NO2(-), NO3(-), Cl-, Br-, SO4(2-), oxalate) and cations (Na+, K+, NH4(+), Mg2+, Ca2+). The water-soluble inorganic ions measured were responsible for 44% and 16% of the total fine and coarse particulate mass, respectively. In the fine size fraction, the main ionic components were SO4(2-) and NH4(+) accounting for about 90% of fine ionic mass. In the coarse fraction the main ionic components were Ca2+ and NO3(-), followed by SO4(2-). Significant day and night difference in the mass concentrations was observed only for fine NO3(-). The molar ratios of fine NH4(+) to SO4(2-) indicated their complete neutralization to (NH4)2SO4. According to the cation-to-anion ratios the coarse particles were alkaline, while the fine particles were slightly acidic or neutral. By comparing the corresponding concentrations obtained from PIXE/INAA and IC, we determined the water-extractable part of the individual species. We also investigated the effect of long-range transported air masses on the local air concentrations, and we found that the air quality of this background monitoring station was affected by regional pollution sources.  相似文献   

4.
利用SPAMS 0515于2015年1月在盘锦市兴隆台空气质量自动监测点位采集PM_(2.5)样品,并分析其污染特征和来源。研究结果表明,盘锦市冬季PM_(2.5)的颗粒类型主要以OC颗粒、富钾颗粒、EC颗粒组成。其中,OC颗粒占比最高,为52.5%;PM_(2.5)污染的主要贡献源为燃煤、生物质燃烧、机动车尾气排放,占比分别为33.2%、25.7%、17.5%,特别是在PM_(2.5)质量浓度较高时段,燃煤和机动车尾气排放对污染的贡献较大。  相似文献   

5.
基于2015年9月1日至2016年8月25日杭州城区观测点PM1、PM2.5、PM10小时浓度数据进行分析,利用HYSPLIT模型、潜在源贡献因子(PSCF)方法和浓度权重轨迹(CWT)方法,探讨了杭州城区PM1、PM2.5、PM10时间分布特征和PM2.5潜在来源。结果表明:研究期间PM1季节平均浓度表现为冬季 > 秋季、春季 > 夏季,PM1~2.5、PM2.5~10浓度则表现为冬季 > 春季 > 秋季 > 夏季;PM1浓度日变化呈现明显的双峰现象,而PM1~2.5和PM2.5~10在同一时段均无明显浓度峰值;杭州城区PM2.5受外源输送污染具有明显的季节性变化特征,夏季、秋季杭州城区PM2.5的潜在源区主要是浙江北部、安徽东南部等,春季PM2.5的潜在源区主要是浙江中部、江苏南部等,冬季PM2.5的潜在源区主要是山东南部、江苏西南部、浙江北部、安徽南部、江西中部等地区。  相似文献   

6.
长沙市大气中醛酮类化合物浓度变化特征   总被引:2,自引:1,他引:1  
参照美国环保署EPA-TO11标准方法,于2014年7—10月监测了长沙市大气中醛酮类化合物的质量浓度。主要监测到的醛酮类化合物为甲醛、乙醛、丙酮、丙醛、甲基丙烯醛,夏季质量浓度最高的是甲醛(13.86 mg/m3),其次是乙醛(7.28 mg/m3)、丙酮(7.14 mg/m3),秋季质量浓度最高的是甲醛(10.31 mg/m3),其次是丙酮(8.37 mg/m3)、乙醛(5.78 mg/m3)。夏季醛酮类化合物的总量高于秋季,甲醛、乙醛、丙酮的质量浓度最大值基本出现在13:00—15:00。C1/C2(甲醛/乙醛)、C2/C3(乙醛/丙醛)的平均值分别为2.02、10.19。分析了醛酮类化合物之间的相关性以及它们可能的来源。丙醛和甲醛、乙醛的相关性较好,三者有共同的人为来源。夏季大气中除丙酮外,其他醛酮类化合物的相关性均较好。夏季甲基丙烯醛和甲醛、乙醛、丙酮有相同的自然来源。综合分析可知,长沙大气中醛酮类化合物质量浓度受自然因素和人为因素的双重影响。  相似文献   

7.
为了解宜都市PM2.5与O3的污染特征及潜在来源,利用宜都市2020年3月至2022年2月在线监测数据及气象数据,对宜都市PM2.5与O3质量浓度变化特征、气象影响因素及潜在源区进行了分析,结果表明:宜都市PM2.5质量浓度冬高夏低,日变化呈双峰特征,O3质量浓度夏高冬低,日变化呈单峰特征。高湿、静稳的气象条件以及较强偏北风作用下的区域污染传输对PM2.5污染有重要影响,高温以及中湿度对O3污染过程有重要作用。春、夏、秋季偏南方向气流轨迹占主导,且携带较高的污染物浓度,冬季来自湖北东北及西南方向的气流占比较高且携带的PM2.5浓度较高;宜都市PM2.5、O3的潜在源区具有季节性差异,总体来看,主要分布在河南南部、湖北东部及湖南的北部区域。  相似文献   

8.
A seasonal field campaign by passive sampling was conducted from February 2008 to February 2009, aiming to measure air concentrations of organochlorine pesticides (OCPs) in the urban and suburban areas in Dalian. At the urban site, similar annual average concentrations of α-endosulfan and α-HCH were found, both being approximately 4 times as high as those of p,p'-DDT and p,p'-DDE, while at the suburban site, the annual average concentration of α-endosulfan was 2.9 times as high as the average concentrations of α-HCH, p,p'-DDT and p,p'-DDE; concentrations of α-endosulfan, α-HCH and p,p'-DDE achieved annual peaks in summer. Back trajectory analysis revealed that the air concentration of α-endosulfan increased with the input of air masses from the land whereas decreasing air concentration of α-endosulfan at the urban site was associated with air masses from the sea. Pesticides used in local agriculture were identified to be major sources of α-endosulfan at both the urban and suburban sites, though long-range atmospheric transport from other sources might also contribute to atmospheric levels of this chemical over this coastal city. α-endosulfan, α-HCH, p,p'-DDT and p,p'-DDE in the air in Dalian might result from the atmospheric transport of the air masses from northeast area, Shandong peninsula and Korean peninsula. Emission due to "aged" DDT and HCH in contaminated local soils as well as atmospheric long-range transport were likely to be major sources of α-HCH, p,p'-DDT and p,p'-DDE at the suburban site. In addition, a fresh input of α-HCH and p,p'-DDT in the atmosphere could not be excluded in the urban area.  相似文献   

9.
对2012年郑州市大气中气态和颗粒态多环芳烃(PAHs)的分布特征与来源进行了分析。结果表明,ρ(∑PAHs)(包括气相与颗粒相)为23.27~194.61 ng/m3,气相中∑PAHs高于颗粒相,四环以下的PAHs大都存在于气态中;在夏、春2季,较小分子质量(≤178)的PAHs占比较高,冬季,较大分子质量(≥252)的PAHs占比明显较高;各功能区ρ(PAHs)排序为工业区交通密集区医疗、文化、行政混合区。郑州大气和颗粒物中PAHs可能主要来自煤和液体燃料(汽油柴油)的燃烧。  相似文献   

10.
不同气团来源对广州细颗粒物理化特性的影响   总被引:4,自引:2,他引:2  
利用2006年7月广州细颗粒物质量浓度、数谱分布与化学组成的观测数据与气团后向轨迹聚类分析结果,系统分析了不同气团来源对广州细颗粒物理化特性的影响。观测期间,广州气团来源可分成来自远海、近海、西面陆地和北面陆地4种类型。细颗粒物总数浓度水平在4种类型中基本相当。当气团来自远海时,二次转化影响较小,PM2.5质量浓度较低,颗粒物数浓度从大到小依次为老化爱根核模态新鲜爱根核模态度积聚模态;受到海洋气团的影响,Cl-在PM2.5中比例为4种类型中最大。气团来自近海时,颗粒物二次生成与老化现象突出,数谱峰值出现在积聚模态,而其他类型出现在爱根核模态;SO2-4、OC与NO-3之和在PM2.5中的比例大于50%,为4种类型中最高。气团来自西面陆地和北面陆地时,细颗粒物受陆地传输老化气团和本地来源影响均较明显。来自北面陆地时,250 nm以上颗粒物数浓度明显升高,是PM2.5平均浓度远高于其他类型的直接原因之一。  相似文献   

11.
During a monitoring campaign concentrations of volatile organic compounds (VOCs) were measured in indoor air of 79 dwellings where occupants had not complained about health problems or unpleasant odour. Parameters monitored were the individual concentration of 68 VOCs and the total concentration of all VOCs inside the room. VOCs adsorbed by Tenax TA were then analysed by means of thermal desorption, gas chromatography and mass spectrometry. The analytical procedure and quantification was done according to the recommendation of the ECA-IAQ Working Group 13 which gave a definition of the total volatile organic compound (TVOC) concentration. Using this recommendation TVOC-concentrations ranged between 33 and 1600 microg m(-3) with a median of 289 microg m(-3). Compounds found in every sample and with the highest concentrations were 2-propanol, alpha-pinene and toluene. Save for a few samples, all concentrations measured have been a factor 2 to 10 lower, compared to data from similar studies. Only a few terpenes and aldehydes were found exceeding published reference data or odour threshold concentrations. However, it has been found that sampling and analysing methods do have a considerable impact on the results, making direct comparisons of studies somewhat questionable. 47% of all samples revealed concentrations exceeding the threshold value of 300 microg TVOC m(-3) set by the German Federal Environmental Agency as a target for indoor air quality. Using the TVOC concentration as defined in the ECA-IAQ methodology is instrumental in assessing exposure to VOCs and identifying sources of VOCs. The background concentrations determined in this study can be used to discuss and interpret target values for individual and total volatile organic compounds in indoor air.  相似文献   

12.
By extending the method of Stedman (1998), daily dataof atmospheric concentrations of gravimetricPM10, black smoke (BS) and sulphate aerosol (SA)from national networks were analysed to determine thetrends in time of the contribution of different sources of particulate matter to total PM10 measured in central Edinburgh. Since BS is an indicator of combustion-related primary sources of particulate matter, the quantity obtained by subtraction of daily BS from daily PM10 is indicative of the contribution to total PM10 from other primary sources and from secondary aerosol. This PM10-BS statistic was regressed on SA, since SA is an indicator of variation in secondary aerosol source. For Edinburgh, SA is a considerably better indicator of PM10-BS during summer than winter (reflecting the much greater photochemical generation of secondary aerosol in summer) and there is evidence that the contribution of other secondary aerosol (presumably nitrate aerosol) has increased relative to SA between 1992 and 1997. The concentration of non-combustion primary particulate material (marine aerosol, suspended dust) to PM10 in Edinburgh has not changed over this period but is about twice that calculated as the U.K. national average. The increasing input to PM10 from secondary aerosol sources at regional rather than urban scale has important implications for ensuring local air quality compliance. The method should have general applicability to other locations.  相似文献   

13.
多年来,临汾市多次名列我国生态环境部公布的空气质量最差的重点城市之列,对其大气污染的时间分布特征和潜在源区进行分析对其环境管理与污染防治具有重要意义。利用2015—2019年临汾市5个国控空气环境质量监测站点的6种空气污染物(SO2、NO2、CO、O3、PM2.5和PM10)浓度数据和气象观测数据,使用HYSPLIT模型研究了该市空气污染物的时间变化特征、轨迹输送特征和可能的来源。结果表明,PM2.5和PM10的年均浓度均超过了《环境空气质量标准》(GB 3095—2012)Ⅱ级标准,SO2仅在2016—2017年超过该标准,其余3种污染物的年均浓度均低于该标准。6种污染物2015—2019年的月均浓度的变化特征表现为O3浓度呈以6、7月为中心的近似正态分布,SO2、NO2和CO以及PM2.5和PM10浓...  相似文献   

14.
The seasonal variations of concentrations of PAHs in the soil and the air were measured in urban and rural region of Dalian, China in 2007. In soil, mean concentrations of all PAHs in summer were larger than those in winter, whereas the concentrations of heavier weight PAHs in winter were larger than those in summer. Winter/summer concentration ratios for individual PAHs (R(W/S)) increased with the increase of molecular weight of PAHs in soil, indicating that PAHs with high molecular weight were more easily deposited to soil in winter than summer. In air, mean concentrations of all PAHs in winter were larger than those in summer. In comparison with the R(W/S) in soil, all the values of R(W/S) in air were larger than one indicating that the entire individual PAH concentrations in winter were larger than those in summer. The average concentration composition for each PAH compound in soil and air samples was determined and the seasonal change of PAH profile was very small. It was suggested that PAHs in soils and air had the same or similar sources both in winter and summer. The approach to the soil-air equilibrium was assessed by calculating fugacity quotients between soil and air using the soil and air concentrations. The calculated soil-air fugacity quotients indicated that soil acted as a secondary source to the atmosphere for all lighter weight PAHs (two-three rings) and it will continue to be a sink for heavier weight PAHs (five-six rings) in the Dalian environment, both in winter and summer. Medium weight PAHs (four-five rings) were close to the soil-air equilibrium and the tendency shifted between soil and air when season or function region changed. The fugacity quotients of PAHs in summer (mean temperature 298 K) were larger than those in winter (mean temperature 273 K), indicating a higher tendency in summer than winter for PAHs to move from soil to air. The variation of ambient conditions such as temperature, rainfall, etc. can influence the movement of PAHs between soil and air. Most of the fugacity quotients of PAHs for the urban sites were larger than that for the rural site both in winter and summer. This phenomenon may be related with that the temperatures in urban sites were higher than those in the rural site because of the urban heat island effect.  相似文献   

15.
采用LGR-密闭式动态通量箱法对城市绿地生态系统温室气体(CO2、CH4)通量的日变化、季节变化特征及其影响因子等进行了较为系统的研究。城市绿地花草CO2通量有明显的日变化和季节变化特征,白天通量值为负,是CO2的净吸收汇;夜晚为正值,是CO2的净释放源;7:00左右由源转为汇,17:00左右由汇转为源,不同花卉24 h总通量有正负2种结果。冬季草坪作为源的时间延长,而作为汇的时间缩短。光强和温度是影响CO2通量日变化和季节变化的主要因素。城市绿地CH4通量较小,不足以对温室气体总量产生显著影响。从减少温室气体排放的角度对城市绿地花草的选择提出了建议。  相似文献   

16.
Concentrations of formaldehyde, acetaldehyde, acetone, propionaldehyde, i-pentanal, and butyraldehyde in residential indoor air in Hangzhou were determined. The mean concentration of the total carbonyl compounds in summer was 222.6 μg/m3, higher than that in winter (68.5 μg/m3). The concentration of a specific carbonyl in indoor air was higher than the outdoor air measurement, indicating the release of carbonyls from the indoor sources. Formaldehyde and acetone were the most abundant carbonyls detected in summer and winter, respectively. Multiple regression analysis indicated that carbonyl concentrations in residential indoor air depended on the age of decoration and furniture, as well as their concentrations in outdoor air. In addition, a primary estimation showed that the health risks of carbonyls in summer were higher than those in winter.  相似文献   

17.
Continuous measurements of black carbon (BC) aerosol mass concentration were performed at a background site Preila (55°55'N, 21°00'E, 5 m a.s.l., Lithuania) during the period 2008-2009. The data were used to characterize the BC mass concentration distribution over the East Baltic region. High increase in aerosol BC concentration was associated with the change in air mass characteristics and biomass burning during the winter heating season and spring wildfires. Monthly means of BC concentration ranged from 212 to 1268 ng m(-3) and the highest hourly means of concentration were from 4800 to 6300 ng m(-3), predominantly in spring and winter months. During the October-April period the BC mass concentrations were about twice as high as those in the summertime. The BC diurnal pattern in winter was typically different from that in spring indicating the seasonal variation of the atmospheric boundary layer height. The weekday/weekend difference was not strongly pronounced because the BC concentrations in Preila are mainly affected by long-range transport or local sources. Typical periodicities caused by anthropogenic and meteorological influences have been identified using Fourier analysis. It was shown that domestic heating appears as a 365 day periodicity; traffic slightly contributes 5-7 day peaks in the spectrum and elevated long-range BC can be identified as characteristic peaks with periodicities in the range from 16 to 29 days.Temporal evolution and transport of BC aerosols were interpreted by the air mass backward trajectory analysis in conjunction with the examination of the wavelength dependence on the aethalometer data. Air masses originated from the North Atlantic Ocean and Scandinavia were favourable for lower BC concentrations (350 ng m(-3)), while the BC level associated with the Western Europe airflows was significantly higher (970 ng m(-3)). The mean values of ?ngstr?m exponent of the absorption coefficient (monthly means 1.45 ± 0.25 and 0.84 ± 0.50 over January and June, respectively) revealed that the BC concentration observed over the East Baltic is influenced by submicron sized particles as a result of incomplete biomass combustion during the winter season.  相似文献   

18.
利用气相色谱/燃烧/同位素比值质谱(GC/C/IRMS)分析技术,采用NaHSO3与半胱胺衍生化方法,测定了气态乙醛在衍生化反应过程中的碳同位素效应,探讨了采用该方法测定大气乙醛碳同位素组成的可行性。试验测定了乙醛、衍生剂半胱胺及相应衍生物的碳同位素比值,结果表明,乙醛衍生物的δ13C测量值与理论值的偏差范围为0.11‰~0.35‰,在仪器精密度范围内(<0.50‰),即在衍生化过程中基本不会发生碳同位素分馏。采用该方法初步测定了大气中乙醛的碳同位素组成,实测数据显示,广州地化所和肇庆鼎湖山大气乙醛δ13C平均值分别为(-34.21±0.27)‰和(-31.23±0.16)‰,相同采样点的大气乙醛碳同位素组成基本不变,可见该方法可作为研究大气乙醛不同排放源的一种有效方法。  相似文献   

19.
Polycyclic Aromatic Hydrocarbon (PAH) concentrations were measured in Total Suspended Particulate Matter (TSPM) from December 2005 to August 2006 at Nunhai, an industrial site in Agra (India). Particulate matter samples were collected on glass fibre filters using High Volume Sampler (HVS-430) and were extracted using dichloromethane with ultrasonication and analyzed by GC. Total PAH concentration varies between 0.04 to 2.5 microg m(-3) accounting only 1.6 x 10(-3)% of TSPM. The mass distribution in air was dominated by high molecular weight DbA, BghiP, BaP, BkF and IP. Combustion PAH (CPAH) except BeP represents 58% of the total PAH mass and IARC classified total carcinogenic PAH accounting 63% of TPAH concentration. Correlation studies between PAH revealed the contribution of low molecular weight PAH was mainly due to primary emission from diesel exhaust while high molecular weight PAH were formed during combustion. The presence of specific tracers and calculation of characteristic molecular diagnostic ratios Fla/(Fla + Pyr), BaP/(BaP + Chy), BaA/(BaA + Chy), IP/(IP + BghiP), BaP/BghiP and IP/BghiP) were used to identify the sources of the emissions of PAHs in the atmospheric samples. Seasonal variation in atmospheric PAH showed four fold increase in winter concentration than summer. The BaP and relative BaP amount calculated from the measurements suggested that photo-oxidation may also be responsible for the variation in PAH concentrations during winter and summer. Seasonal trends in atmospheric PAH concentration in the study area were influenced by fossil fuel usage for domestic heating, boundary height and temperature.  相似文献   

20.
A method has been developed for the speciation and quantitative determination of hydrocarbons in urban air in the city of Leeds. Hydrocarbons were pre-concentrated by adsorbent tube air sampling and analyzed using thermal desorption and gas chromatography with flame ionization detection and structural confirmation by mass spectrometric detection. While automated volatile organic compound (VOC) analyzers produced data for a maximum of about 30 compounds simultaneously, with the method described here, a total of 68 C6-C12 hydrocarbons were measured simultaneously in one analysis at parts per billion (ppb) levels. Several monitoring surveys were performed, one during the winter of 1993 and the other in the summer of 1994, at a number of sites to investigate the levels of VOCs identified in the urban air of Leeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号