首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 557 毫秒
1.
An analysis of private potable water well data was conducted for seven single family residential developments in southern Chester County, Pennsylvania. Background data were available for 165 wells within the communities when the wells were first drilled in the 1980s and early 1990s. Sampling of 75 wells within these same communities was performed in 2006 to determine whether conversion of the land to residential housing along with the use of conventional on-lot septic systems had resulted in elevated concentration of nitrate-nitrogen in the drinking water aquifer. The data indicate that prior land use influenced the occurrence of nitrate-nitrogen in the drinking water aquifer. The median nitrate-nitrogen concentration for the 165 wells in the background dataset was 2.9 mg/L. One hundred-seven of those wells were drilled on land previously used for active agricultural purposes. The median nitrate concentration in these wells was 3.8 mg/L. Of 48 wells drilled on forested land, the median nitrate concentration was 1.1 mg/L, approximately 3.5 times lower than those drilled on active agricultural land. The median nitrate concentration in the 2006 sampling dataset was 3.6 mg/L, an increase of 0.7 mg/L. The data indicate that conversion of the land has not resulted in contamination of the drinking water aquifer with respect to nitrate-nitrogen. Likewise, the data suggest that the conversion has not resulted in significant improvements to overall water quality.  相似文献   

2.
Silurian–Ordovician (S–O) aquifer system is an important drinking water source of central and western Estonia. The fluoride and boron contents of groundwater in aquifer system vary considerably. The fluoride concentration in 60 collected groundwater samples ranged from 0.1 to 6.1 mg/l with a mean of 1.95 mg/l in the study area. Boron content in groundwater varied from 0.05 mg/l to 2.1 mg/l with a mean value of 0.66 mg/l. Considering the requirements of EU Directive 98/83/EC and the Estonian requirements for drinking water quality, the limit value for fluoride (1.5 mg/l) and for boron (1.0 mg/l) is exceeded in 47 and 28 % of wells, respectively. Groundwater with high fluoride and boron concentrations is found mainly in western Estonia and deeper portion of aquifer system, where groundwater chemical type is HCO3–Cl–Na–Mg–Ca, water is alkaline, and its Ca2+ content is low. Groundwater of the study area is undersaturated with respect to fluorite and near to equilibrium phase with respect to calcite. The comparison of TDS versus Na/(Na?+?Ca) and Cl/(Cl?+?HCO3) points to the dominance of rock weathering as the main process, which promotes the availability of fluoride and boron in the groundwater. The geological sources of B in S–O aquifer system have not been studied so far, but the dissolution of fluorides from carbonate rocks (F?=?100–400 mg/kg) and K-bentonites (F?=?2,800–4,500 mg/kg) contributes to the formation of F-rich groundwater.  相似文献   

3.
Our objective was to evaluate changes in water quality parameters during 1983–2007 in a subtropical drinking water reservoir (area: 7 km2) located in Lake Manatee Watershed (area: 338 km2) in Florida, USA. Most water quality parameters (color, turbidity, Secchi depth, pH, EC, dissolved oxygen, total alkalinity, cations, anions, and lead) were below the Florida potable water standards. Concentrations of copper exceeded the potable water standard of <30 μg?l?1 in about half of the samples. About 75 % of total N in lake was organic N (0.93 mg?l?1) with the remainder (25 %) as inorganic N (NH3-N: 0.19, NO3-N: 0.17 mg?l?1), while 86 % of total P was orthophosphate. Mean total N/P was <6:1 indicating N limitation in the lake. Mean monthly concentration of chlorophyll-a was much lower than the EPA water quality threshold of 20 μg?l?1. Concentrations of total N showed significant increase from 1983 to 1994 and a decrease from 1997 to 2007. Total P showed significant increase during 1983–2007. Mean concentrations of total N (n?=?215; 1.24 mg?l?1) were lower, and total P (n?=?286; 0.26 mg?l?1) was much higher than the EPA numeric criteria of 1.27 mg total N l?1 and 0.05 mg total P l?1 for Florida’s colored lakes, respectively. Seasonal trends were observed for many water quality parameters where concentrations were typically elevated during wet months (June–September). Results suggest that reducing transport of organic N may be one potential option to protect water quality in this drinking water reservoir.  相似文献   

4.
Probable sources and mechanisms of arsenic (As) release in shallow aquifer in eastern Bangladesh are evaluated using statistical analysis of groundwater compositions. Dissolved As in 39 samples ranged from 8.05 to 341.5 μg/L with an average of 95.14 μg/L. Ninety seven percent of wells exceed the WHO limit (10 μg/L) for safe drinking water. Principal component analysis is applied to reduce 16 measured compositional variables to five significant components (principal components—PCs) that explain 86.63% of the geochemical variance. Two component loadings, namely PC 1 and PC 2 (45.31% and 23.05%) indicate the natural processes within the aquifers in which organic matter is a key reactant in the weathering reactions. Four groups of wells are defined by the PCA and each group of wells represents distinct physicochemical characteristics. Among them, group III groundwater shows higher As concentration together with high concentrations of Fe, Mn, dissolved organic carbon, $\text{PO}_{4}^{3-}$ and $\text{HCO}_{3}^{-}$ than groups I and II. Speciation calculations suggest that only wells of group III are saturated with respect to siderite, and all groups of samples are supersaturated with respect of rhodochrosite. The relationship of As with these parameters in the different groups of wells of the study area suggests that reductive dissolution of Fe–Mn oxyhydroxides with microbially mediated degradation of organic matter is considered to be the dominant processes to release As in groundwater.  相似文献   

5.
To evaluate boron contamination of public drinking water in China, both dissolved and total boron contents in 98 public drinking water sources from 49 cities, 42 brands of bottled water samples from supermarkets in several cities, and 58 water samples from boron industrial area were measured by inductively coupled plasma-mass spectrometry (ICP-MS). Our experimental results showed that boron existed in public drinking water sources mainly in dissolved status with total concentrations ranging from 0.003 to 0.337 mg/L (mean = 0.046 mg/L). The mean boron concentrations in mineral and pure bottled water were 0.052 and 0.028 mg/L, respectively. The results obtained in this work showed that there was no health risk on view of boron in public drinking water sources and bottled water. In boron industrial area, boron concentrations in surface water and ground water were 1.28 mg/L (range = 0.007–3.8 mg/L) and 18.3 mg/L (range = 0.015–140 mg/L), respectively, which indicated that boron industry caused boron pollution in local water system.  相似文献   

6.
This study was primarily aimed at investigating the physicochemical and microbial quality of water in 14 such dugouts from five districts in the northern region of Ghana. Results obtained suggest that except for colour, turbidity, total iron and manganese, many physicochemical parameters were either within or close to the World Health Organisation’s acceptable limits for drinking water. Generally, colour ranged from 5 to 750 Hz (mean 175 Hz), turbidity from 0.65 to 568 nephelometric turbidity units (NTU; mean 87.9 NTU), total iron from 0.07 to 7.85 mg/L (mean 1.0 mg/L) and manganese from 0.03 to 1.59 mg/L (mean 0.50 mg/L). Coliform counts in water from all the dugouts in both wet and dry seasons were, however, above the recommended limits for drinking water. Total and faecal coliforms ranged from 125 to 68,000 colony forming units (cfu)/100 mL (mean 10,623 cfu/100 mL) and <?1 to 19,000 cfu/100 mL (mean 1,310 cfu /100 mL), respectively. The poor microbial quality, as indicated by the analytically significant presence of coliform bacteria in all samples of dugout water, strongly suggests susceptibility and exposure to waterborne diseases of, and consequent health implications on, the many people who continuously patronise these vital water resources throughout the year. In particular, more proactive sustainable water management options, such as introduction to communities of simple but cost-effective purification techniques for water drawn from dugouts for drinking purposes, education and information dissemination to the water users to ensure environmentally hygienic practices around dugouts, may be needed.  相似文献   

7.
The present study was conducted to investigate drinking water quality (groundwater) from water samples taken from Qasim Abad, a locality of approximately 5,000 population, situated between twin cities Rawalpindi and Islamabad in Pakistan. The main sources of drinking water in this area are water bores which are dug upto the depth of 250–280 ft in almost every house. The study consists of the determination of physico-chemical properties, trace metals, heavy metals, rare earth elements and microbiological quality of drinking water. The data showed the variation of the investigated parameters in samples as follows: pH 6.75 to 8.70, electrical conductivity 540 to 855 μS/cm, total dissolved solids 325.46 to 515.23 ppm and dissolved oxygen 1.50 to 5.64 mg/L which are within the WHO guidelines for drinking water quality. The water samples were analysed for 30 elements (aluminium, iron, magnesium, manganese, silicon, zinc, molybdenum, titanium, chromium, nickel, tungsten, silver, arsenic, boron, barium, beryllium, cadmium, cobalt, copper, gallium, mercury, lanthanum, niobium, neodymium, lead, selenium, samarium, tin, vanadium and zirconium) by using inductively coupled plasma atomic emission spectroscopy. The organic contamination was detected in terms of most probable number (MPN) of faecal coliforms. Overall, elemental levels were lower than the recommended values but three water bores (B-1, B-6, B-7) had higher values of iron (1.6, 2.206, 0.65 ppm), two water bores (B-1, B-6) had higher values of aluminium (0.95, 1.92 ppm), respectively, and molybdenum was higher by 0.01 ppm only in one water bore (B-11). The total number of coliforms present in water samples was found to be within the prescribed limit of the WHO except for 5 out of 11 bore water samples (B-2, B-3, B-4, B-8, B-11), which were found in the range 5–35 MPN/100 mL, a consequence of infiltration of contaminated water (sewage) through cross connection, leakage points and back siphoning.  相似文献   

8.
In many regions around the globe, including India, degradation in the quality of groundwater is of great concern. The objective of this investigation is to determine the effect of recharge from a check dam on quality of groundwater in a region of Krishnagiri District of Tamil Nadu State, India. For this study, water samples from 15 wells were periodically obtained and analysed for major ions and fluoride concentrations. The amount of major ions present in groundwater was compared with the drinking water guideline values of the Bureau of Indian Standards. With respect to the sodium and fluoride concentrations, 38% of groundwater samples collected was not suitable for direct use as drinking water. Suitability of water for agricultural use was determined considering the electrical conductivity, sodium adsorption ratio, sodium percentage, permeability index, Wilcox and United States Salinity Laboratory diagrams. The influence of freshwater recharge from the dam is evident as the groundwater in wells nearer to the check dam was suitable for both irrigation and domestic purposes. However, the groundwater away from the dam had a high ionic composition. This study demonstrated that in other fluoride-affected areas, the concentration can be reduced by dilution with the construction of check dams as a measure of managed aquifer recharge.  相似文献   

9.
In 2010, a magnitude 7.0 earthquake struck Haiti, severely damaging the drinking and wastewater infrastructure and leaving millions homeless. Compounding this problem, the introduction of Vibrio cholerae resulted in a massive cholera outbreak that infected over 700,000 people and threatened the safety of Haiti’s drinking water. To mitigate this public health crisis, non-government organizations installed thousands of wells to provide communities with safe drinking water. However, despite increased access, Haiti currently lacks the monitoring capacity to assure the microbial safety of any of its water resources. For these reasons, this study was designed to assess the feasibility of using a simple, low-cost method to detect indicators of fecal contamination of drinking water that could be implemented at the community level. Water samples from 358 sources of drinking water in the Léogâne flood basin were screened with a commercially available hydrogen sulfide test and a standard membrane method for the enumeration of thermotolerant coliforms. When compared with the gold standard method, the hydrogen sulfide test had a sensitivity of 65 % and a specificity of 93 %. While the sensitivity of the assay increased at higher fecal coliform concentrations, it never exceeded 88 %, even with fecal coliform concentrations greater than 100 colony-forming units per 100 ml. While its simplicity makes the hydrogen sulfide test attractive for assessing water quality in low-resource settings, the low sensitivity raises concerns about its use as the sole indicator of the presence or absence of fecal coliforms in individual or community water sources.  相似文献   

10.
The present study deals with detailed hydrochemical assessment of groundwater within the Saq aquifer. The Saq aquifer which extends through the NW part of Saudi Arabia is one of the major sources of groundwater supply. Groundwater samples were collected from about 295 groundwater wells and analyzed for various physico-chemical parameters such as electrical conductivity (EC), pH, temperature, total dissolved solids (TDS), Na+, K+, Ca2+, Mg2+, CO3 ?, HCO3 ?, Cl?, SO4 2?, and NO3 ?. Groundwater in the area is slightly alkaline and hard in nature. Electrical conductivity (EC) varies between 284 and 9,902?μS/cm with an average value of 1,599.4 μS/cm. The groundwater is highly mineralized with approximately 30 % of the samples having major ion concentrations above the WHO permissible limits. The NO3 ? concentration varies between 0.4 and 318.2 mg/l. The depth distribution of NO3 ? concentration shows higher concentration at shallow depths with a gradual decrease at deeper depths. As far as drinking water quality criteria are concerned, study shows that about 33 % of samples are unfit for use. A detailed assessment of groundwater quality in relation to agriculture use reveals that 21 % samples are unsuitable for irrigation. Using Piper’s classification, groundwater was classified into five different groups. Majority of the samples show Mix-Cl-SO4- and Na-Cl-types water. The abundances of Ca2+ and Mg2+ over alkalis infer mixed type of groundwater facies and reverse exchange reactions. The groundwater has acquired unique chemical characteristics through prolonged rock-water interactions, percolation of irrigation return water, and reactions at vadose zone.  相似文献   

11.
Probability-based nitrate contamination map of groundwater in Kinmen   总被引:1,自引:0,他引:1  
Groundwater supplies over 50 % of drinking water in Kinmen. Approximately 16.8 % of groundwater samples in Kinmen exceed the drinking water quality standard (DWQS) of NO3 ?-N (10 mg/L). The residents drinking high nitrate-polluted groundwater pose a potential risk to health. To formulate effective water quality management plan and assure a safe drinking water in Kinmen, the detailed spatial distribution of nitrate–N in groundwater is a prerequisite. The aim of this study is to develop an efficient scheme for evaluating spatial distribution of nitrate–N in residential well water using logistic regression (LR) model. A probability-based nitrate–N contamination map in Kinmen is constructed. The LR model predicted the binary occurrence probability of groundwater nitrate–N concentrations exceeding DWQS by simple measurement variables as independent variables, including sampling season, soil type, water table depth, pH, EC, DO, and Eh. The analyzed results reveal that three statistically significant explanatory variables, soil type, pH, and EC, are selected for the forward stepwise LR analysis. The total ratio of correct classification reaches 92.7 %. The highest probability of nitrate–N contamination map presents in the central zone, indicating that groundwater in the central zone should not be used for drinking purposes. Furthermore, a handy EC–pH-probability curve of nitrate–N exceeding the threshold of DWQS was developed. This curve can be used for preliminary screening of nitrate–N contamination in Kinmen groundwater. This study recommended that the local agency should implement the best management practice strategies to control nonpoint nitrogen sources and carry out a systematic monitoring of groundwater quality in residential wells of the high nitrate–N contamination zones.  相似文献   

12.
Multivariate statistical techniques were applied to evaluate spatial/temporal variations, and to interpret water quality data set obtained at Alqueva reservoir (south of Portugal). The water quality was monitored at nine different sites, along the water line, over a period of 18 months (from January 2006 to May 2007) using 26 water quality parameters. The cluster analysis allowed the formation of five different similarity groups between sampling sites, reflecting differences on the water quality at different locations of the Alqueva reservoir system. The PCA/FA identified six varifactors, which were responsible for 64% of total variance in water quality data set. The principal parameters, which explained the variability of quality water, were total phosphorus, oxidability, iron, parameters that at high concentrations indicate pollution from anthropogenic sources, and herbicides indicative of an intensive agricultural activity. The spatial analysis showed that the water quality was worse in the north of the reservoir.  相似文献   

13.
The ground water quality of District Nainital (Uttarakhand, India) has been assessed to see the suitability of ground water for drinking and irrigation applications. This is a two-part series paper and this paper examines the suitability of ground water including spring water for drinking purposes. Forty ground water samples (including 28 spring samples) were collected during pre- and post-monsoon seasons and analyzed for various water quality constituents. The hydrochemical and bacteriological data was analyzed with reference to BIS and WHO standards and their hydrochemical facies were determined. The concentration of total dissolved solids exceeds the desirable limit of 500 mg/L in about 10% of the samples, alkalinity values exceed the desirable limit of 200 mg/L in about 30% of the samples, and total hardness values exceed the desirable limit of 300 mg/L in 15% of the samples. However, no sample crosses the maximum permissible limit for TDS, alkalinity, hardness, calcium, magnesium, chloride, sulfate, nitrate, and fluoride. The concentration of chloride, sulfate, nitrate, and fluoride are well within the desirable limit at all the locations. The bacteriological analysis of the samples does not show any sign of bacterial contamination in hand pump and tube-well water samples. However, in the case of spring water samples, six samples exceed the permissible limit of ten coliforms per 100 ml of sample. It is recommended that water drawn from such sources should be properly disinfected before being used for drinking and other domestic applications. Among the metal ions, the concentration of iron and lead exceeds the permissible limit at one location whereas the concentration of nickel exceeds the permissible limit in 60 and 32.5% of the samples during pre- and post-monsoon seasons, respectively. The grouping of samples according to their hydrochemical facies indicates that majority of the samples fall in Ca–Mg–HCO3 hydrochemical facies.  相似文献   

14.
The study aimed to assess the quality and health aspects of water intended for human and livestock consumption in two rural districts of the Rift Valley of Ethiopia. The study involved two parts: the first consisted of a questionnaire survey and farmers’ group discussions, complemented by secondary health data, and the second part determined the chemical (total dissolved solids, pH, manganese, hexa-valent chromium, fluoride) and microbiological quality of different water sources during dry and wet seasons. The result showed a lack of sustainable access to safe water in the communities. Industrial pollution and mismanagement of water sources by human and livestock was found to be a source of potential health risk. Potentially linked human health problems like malaria, diarrhoea and gastrointestinal parasites were common in the districts. Overall, 76 % of the assessed water sources (n?=?25) failed to comply with World Health Organization guidelines for human drinking water, for at least one assessed parameter, mostly irrespective of the season. The non-compliance was mainly attributed to Escherichia coli contamination and/or high fluoride concentration. At least 20 % of the water samples were also found to be unfit for livestock consumption based on assessed chemical parameters in both dry and wet seasons. To minimize the health risk associated with mismanagement and poor quality of water sources in the area, targeted action in the protection of surface water sources should be given priority.  相似文献   

15.
Arsenic groundwater contamination exceeding 0.05 mg/l affecting the Newer Alluvial tracts of Patna and Bhojpur, the two worst affected districts located in the Middle Ganga Plain in the Bihar state, has been studied The area is underlain by two-tier Quaternary aquifer systems within a depth of 300 m below ground level, separated by a 15?C32-m-thick clay/sandy clay aquitard. The upper part (<50 m depth) of the shallow aquifer system is arsenic-contaminated. The deeper aquifer system (lying below 120?C130 m depth) exhibits low arsenic load (max 0.0035 mg/l), having hydraulic conductivity between 64.88 and 82.04 m/day. Groundwater in the deeper aquifer occurs under semi-confined to confined condition due to poor hydraulic conductivity of the middle clay (4.7 × 10???2???7.2 × 10???3 m/day). Hydraulic head of the deeper aquifer remains close to the surface than the shallow aquifer. The two aquifer systems in the Newer Alluvium are replaced by a thick single aquifer system in the adjoining Older Alluvium, within a depth of 330 m below ground. In the arsenic-contaminated area, deeper aquifer is protected by a middle clay, which may be developed for community drinking water supply by deep tube wells having a yield capacity of 150 m3/h.  相似文献   

16.
The spatiotemporal presence of eight N-nitrosamines in the water of seven supply systems in Quebec considered to be susceptible to these emerging disinfection by-products was evaluated. This is the first study on the presence of N-nitrosamines in drinking water utilities in Quebec. Seven sampling campaigns were carried out at several sampling points in each of the systems over a period of 1 year. The results show that N-nitrosamines, primarily N-nitrosodimethylamine (NDMA), were not commonly detected in the water of the facilities under study (10 % of samples). The concentrations measured were lower than those reported in recent North American studies. None of the 195 samples taken exceeded the Ontario standard of 9 ng/L for NDMA (maximum value observed of 3.3 ng/L). N-nitrosomethylethylamine and N-nitrosopiperidine were detected once, with concentrations of 3.7 and 6.0 ng/L, respectively. Chloramination was identified as being the main risk factor regarding the presence of N-nitrosamines, but water quality and some operating parameters, in particular disinfectant residual, also seem to be related to their presence. NDMA concentrations at the end of the distribution systems were generally higher than water leaving the plant. No seasonal trends were observed for the formation of N-nitrosamines in the investigated supply systems. Finally, an association between the presence of N-nitrosamines and the levels of trihalomethanes and haloacetic acids was observed in some facilities.  相似文献   

17.
This study analyzes the concentrations and health risks of fluoride in 249 drinking water samples collected from different regions of Anhui Province in China. Results indicated that fluoride content in drinking water ranged from 0.12 to 1.94 mg L?1 (mean?=?0.57 mg L?1) in the following order: Huaibei plain region > Jianghuai hill region ≈ Dabieshan mountainous region > plain along the Yangtze River region > southern Anhui mountainous region. The fluoride contents were less than 0.50 mg L?1 in 66.66 % of the drinking water samples, 0.51–1.0 mg L?1 in 23.29 %, and higher than 1.0 mg L?1 in 12.04 %. The fluoride levels in some samples were lower than the recommended values for controlling dental caries (0.50–1.0 mg L?1). The total fluoride intake from drinking water was between 0.14 and 2.33 mg per day in different regions of the province, supposing an individual consumes 1.2 L of water per day. Therefore, measures should be taken to increase fluoride intake in the Jianghuai hill region, Dabieshan mountainous region, plain along the Yangtze River, and southern Anhui mountainous region to control dental caries. On the other hand, the fluoride levels must be reduced in the Huaibei plain region to decrease endemic fluorosis. The results serve as crucial guidelines for managing fluoride safety in drinking water and controlling endemic fluorosis in different regions of Anhui Province.  相似文献   

18.
The chemical, physical and biological characteristics of water with respect to its suitability describe its quality. Concentration of pesticides or fertilisers degrades the water quality and affects marine life. A comprehensive environmental data information system helps to perform and complete common tasks in less time with less effort for data verification, data calculations, graph generation, and proper monitoring, which helps in the further mitigation step. In this paper, focus is given to a web-based system developed to express the quality of water in the imprecise environment of monitoring data. Water samples were analyzed for eight different surface water parameters, in which four parameters such as pH, dissolved oxygen, biochemical oxygen demand, and fecal coliform were used for the water quality index calculation following MPCB Water Quality Standards of class A-II for best designated use. The analysis showed that river points in a particular year were in very bad category with certainty level of 0–38 % which is unsuitable for drinking purposes; samples in bad category had certainty level that ranged from 38 to 50 %; samples in medium to good category had certainty levels from 50 to 100 %, and the remaining samples were in good to excellent category, suitable for drinking purposes, with certainty levels from 63 to 100 %.  相似文献   

19.
The aim of this study was to estimate the risk for caries and fluorosis in a desertification area, applying the calcium/fluoride concentration ratio of underground water and the quality of water in a selected geographical region. This study was performed in the municipality of São João do Rio do Peixe, located in the tropical semiarid lands of Brazil. A total of 111 groundwater samples were collected. Fluoride concentration varied from 0.11 to 9.33 mg/L. Thirty percent of all samples analyzed showed values above 1.5 mg/L, while 64 % were above the ideal limit of 0.7 mg/L. Mean calcium concentration was 47.6 mg/L, and 14.4 % of all samples presented values above the WHO acceptable limits. The proportional value of calcium/fluoride in water showed that only 12 % of the samples were suitable for dental caries prevention with minimal risk for dental fluorosis. Mapping of the fluoride distribution indicated that approximately 2,465 people could be affected by dental fluorosis and 1,057 people might be affected by skeletal fluorosis. It can be concluded that, in addition to fluoride, many water parameters were not suitable for the drinking water. Mapping out calcium/fluoride ratio may indicate areas of water suitability for caries control, whereas the fluoride concentration solely can indicate the areas with the risk for fluorosis. This approach can be relevant for health authorities for identifying communities where dental caries or dental fluorosis is prevalent.  相似文献   

20.
The objective of this study was to determine the bacterial contaminations in drinking water in Nyala city, South Darfur, Sudan with special reference to the internally displaced people camps (IDPs). Two hundred and forty water samples from different sites and sources including bore holes, hand pumps, dug wells, water points, water reservoir and household storage containers were collected in 2009. The most probable number method was used to detect and count the total coliform, faecal coliform and faecal enterococci. Results revealed that the three indicators bacteria were abundant in all sources except water points. Percentages of the three indicators bacteria count above the permissible limits for drinking water in all samples were 46.4% total coliform, 45.2% faecal coliform and 25.4% faecal enterococci whereas the highest count of the indicators bacteria observed was 1,600 U/100 ml water. Enteric bacteria isolated were Escherichia coli (22.5%), Enterococcus faecalis (20.42%), Klebsiella (15.00%), Citrobacter (2.1%) and Enterobacter (3.33%). The highest contamination of water sources was observed in household storage containers (20%) followed by boreholes (11.25%), reservoirs (6.24%), hand pumps (5.42%) and dug wells (2.49%). Contamination varied from season to season with the highest level in autumn (18.33%) followed by winter (13.75%) and summer (13.32%), respectively. All sources of water in IDP camps except water points were contaminated. Data suggested the importance of greater attention for household contamination, environmental sanitation control and the raise of awareness about water contamination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号