首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An Overview on the Mechanical Behaviour of Biodegradable Agricultural Films   总被引:3,自引:0,他引:3  
The mechanical behavior of various types of biodegradable materials depends, mainly, on their chemical composition and the application conditions. Various additives are added into the bioblends to improve their properties, which sometimes even reach the levels of the conventional plastics. It is well known that the environmental conditions during production, storage, and usage of these materials influence their mechanical properties. Ageing during the useful lifetime also causes great losses in the elongation. In the present paper, the overall mechanical behavior of biodegradable films, which may be considered suitable for agricultural applications, but also of partially biodegradable films, is reviewed and analyzed. Selected critical mechanical properties of films before their exposure to biodegradation are investigated and compared against those of conventional agricultural films.  相似文献   

2.
Cellulose Fiber/Bentonite Clay/Biodegradable Thermoplastic Composites   总被引:1,自引:0,他引:1  
Adding cellulose fiber reinforcement can improve mechanical properties of biodegradable plastics, but fiber must be well dispersed to achieve any benefit. The approach to dispersing fiber in this study was to use aqueous gels of sodium bentonite clay. These clay-fiber gels were combined with powdered compostable thermoplastics and calcium carbonate filler. The composite was dried, twin-screw extruded, and injection molded to make thin parts for tensile testing. An experimental design was used to determine the effect of fiber concentration, fiber length, and clay concentration. Polybutylene adipate/terephthalate copolymer (PBAT) and 70/30 polylactic acid (PLA)/PBAT blend were the biodegradable plastics studied. The composite strength decreased compared to the thermoplastics (13 vs. 19 MPa for PBAT, 27 vs. 38 MPa for the PLA/PBAT blend). The composite elongation to break decreased compared to the thermoplastics (170% vs. 831% for PBAT, 4.9% vs. 8.7% for the PLA/PBAT blend). The modulus increased for the composites compared to the thermoplastic standards (149 vs. 61 MPa for PBAT, 1328 vs. 965 MPa for the PLA/PBAT blend). All composite samples had good water resistance.  相似文献   

3.
Biodegradable Soy-Based Plastics: Opportunities and Challenges   总被引:3,自引:0,他引:3  
Today's plastics are designed with little consideration for their ultimate disposability or the effect of the resources (feedstocks) used in making them. This has resulted in mounting worldwide concerns over the environmental consequences of such materials when they enter the mainstream after their intended uses. This led to the concept of designing and engineering new biodegradable materials–materials that have the performance characteristics of today's materials but that undergo biodegradation along with other organic waste to soil humic materials. Hence, the production of biodegradable materials from annually renewable agricultural feedstocks has attracted attention in recent years. Agricultural materials such as starches and proteins are biodegradable and environmentally friendly. Soybean is a good candidate for manufacturing a large number of chemicals, including biodegradable plastics, as it is abundantly available and cheap. Soy protein concentrate, isolate, or flakes could be compounded with synthetic biodegradable plastics such as polycaprolactone or poly (lactic acid) to make molded products or edible films or shopping bags and make the environment cleaner and greener.  相似文献   

4.
Potato starch was blended with defatted milk in proportions providing a 4:1, 3:1, 2:1, 1:1, 1,:2, 1:3, and 1:4 starch/casein ratio. Precipitation was achieved by addition of either hydrochloric acid or leaven. Composition of precipitated products was determined based on elemental analysis for nitrogen. Generally, differences between attempted and achieved casein-to-starch proportions did not exceed 10%. Products coprecipitated with hydrochloric acid were slightly richer in casein than products obtained with leaven. Aqueous solubility, water binding capacity, IR spectra, and thermal analysis (thermogravimetry, TG, and differential thermogravimetry, DTG) were recorded for the precipitates. Analyses revealed that the precipitates were not simple physical mixtures of the components. Partial insolubility in 7 M aqueous urea showed that casein and potato starch are chemically bound. Comparison of the spectra and thermograms suggested that complexes of the 1:1 composition were formed constituting a nucleus of the aggregates carrying excessive amounts of either starch or casein.  相似文献   

5.
The aim of this work was to develop biodegradable films based on blends of gelatin and poly (vinyl alcohol) (PVA), without a plasticizer. Firstly, the effect of five types of PVA with different degree of hydrolysis (DH) on the physical properties of films elaborated with blends containing 23.1% PVA was studied. One PVA type was then chosen for the study of the effect of the PVA concentration on the mechanical properties, color, opacity, gloss, and water solubility of the films. The five types of PVA studied allowed for films with different characteristics, but with no direct relationship with the DH of the PVA. Therefore, the PVA Celvol®418 with a DH = 91.8% was chosen for the second part, because they produced films with greater tensile strength. The PVA concentration affected all studied properties of films. These results could be explained by the results of the DSC and FTIR analyses, which showed that some interactions between the gelatin and the PVA occurred depending on the PVA concentration, affecting the crystallinity of the films.  相似文献   

6.
Biodegradable film blends of chitosan with poly(lactic acid) (PLA) were prepared by solution mixing and film casting. The main goal of these blends is to improve the water vapor barrier of chitosan by blending it with a hydrophobic biodegradable polymer from renewable resources. Mechanical properties of obtained films were assessed by tensile test. Thermal properties, water barrier properties, and water sensitivity were studied by differential scanning calorimeter analysis, water vapor permeability measurements, and surface-angle contact tests, respectively. The incorporation of PLA to chitosan improved the water barrier properties and decreased the water sensitivity of chitosan film. However, the tensile strength and elastic modulus of chitosan decreased with the addition of PLA. Mechanical and thermal properties revealed that chitosan and PLA blends are incompatible, consistent with the results of Fourier transform infrared (FTIR) analysis that showed the absence of specific interaction between chitosan and PLA.  相似文献   

7.
The performance, the degradability in soil and the environmental impact of biodegradable starch-based soil mulching and low tunnel films were assessed by means of field and laboratory tests. The lifetime of the biodegradable mulches was 9 months and of the biodegradable low-tunnel films 6 months. The radiometric properties of the biodegradable films influenced positively the microclimate: air temperature under the biodegradable low tunnel films was 2 °C higher than under the low density polyethylene films, resulting in an up to 20% higher yield of strawberries. At the end of the cultivation period, the biodegradable mulches were broken up and buried in the field soil together with the plant residues. One year after burial, less than 4% of the initial weight of the biodegradable film was found in the soil. According to ecotoxicity tests, the kinetic luminescent bacteria test with Vibrio fischeri and the Enchytraeus albidus ISO/CD 16387 reproduction potential, there was no evidence of ecotoxicity in the soil during the biodegradation process. Furthermore, there was no change in the diversity of ammonia-oxidizing bacteria in the soil determined on the basis of the appearance of amoA gene diversity in denaturing gradient gel electrophoresis.  相似文献   

8.
Biodegradable cast films of about 50 m thickness were fabricated by blending oppositely charged biopolymers such as anionic starch–chitosan, and cationic starch–pectin. The tensile strength and elongation at break (%) of films were evaluated as well as their capacity to degrade in compost. Films recovered from soil every 48 h showed consistent degradation (weight loss), diminution of the polymers characteristic peak absorbance in the carbohydrate fingerprint region of the FTIR, and changes in the surface morphology via scanning electron microscopy (SEM). Anionic starch–chitosan films had much superior tensile strength and elongation compared to cationic starch–pectin, suggesting that the ionic bonds formed between anionic-starch and positively charged groups in chitosan polymer were much more stable and stronger. Initially, both films lost about 36% weight within 96 h, which also correlated well with the loss in the characteristic absorption peaks in the region of the infrared spectrum typical of biopolymers. The total mineralization of films by microorganisms in compost soil was also measured using respirometric techniques. Though the rate of mineralization differed for two formulations, total mineralization (extent) for both films were achieved within 45 days.  相似文献   

9.
Carbon-black-filled, biodegradable, copolyester mulch film (Eastar®, or EA, Tennessee Eastman, Kingsport, TN) and commercial carbon-black-filled, high-density polyethylene (HDPE) mulch film were exposed for 12 weeks to commercial vegetable crop growing conditions by being placed directly on irrigated soil in the field of the University of Tennessee Alcoa Highway State Agriculture Experiment Station (Knoxville, TN) and by being placed on a plywood exposure rack as described by the American Society of Testing and Materials (ASTM) Standard Test Method 1435: Outdoor Weathering of Plastics. Mechanical properties and weather information were collected in order to evaluate the feasibility of using the newly developed biodegradable EA mulch film to replace the nonbiodegradable HDPE mulch film. Results indicate that the EA mulch film exhibited favorable tensile strength and elongation-at-break during outdoor exposure rack testing and outdoor, in-field, placed directly on the soil, exposure testing, suggesting biodegradable EA could be a substitute for the HDPE nonbiodegradable material.  相似文献   

10.
Moisture sorption characteristics of microbial polysaccharide (Ps.C101) from Pseudomonas caryophilli and polyvinyl alcohol (PVA) blends have been carried out at 27°C for water activity from 0.1 to 0.9. The sorption data was used to fit six different sorption isotherm models proposed in literature. The model constants were determined by linear fitting of the sorption equations. The ranges of applicability of water activity for isotherm models reported in this paper lie in between 0.1 and 0.4 for Brunaur–Emmet–Teller (BET) model (monolayer), and in between 0.2 and 0.9 for other models. The value of the coefficient of determination (R2 = 0.97 ± 0.02) confirms the applicability of the equations studied.  相似文献   

11.
A new biodegradable synthetic polyesteramid (PEA) was characterized by means of thermogravimetry (TG) differential scanning calorimetry (DSC) and dynamic rheological measurements. Two glass transition ranges at about –33 and 38°C and a melting enthalpy of 33 J/g were measured, indicating that PEA is an immiscible blend of two components with a small crystalline part. The material was spun in a high-speed spinning process within the range of 2,000–6,000 M/min and an underpressure spunbonding process within the range of 3,600–7,700 M/min. The textile physical properties of the fibers were 100 MPa tenacity at an elongation at break of 30%, and an E-modulus of 0.5 GPa. The mass per unit area of the spunbonded nonwovens ranged from 70–159 g/M 2. The strength of the spunbonded nonwovens was 28–51 N and 42–74 N in machine and cross direction, respectively. The air permeability of the nonwovens decreased at high air velocities and more fineness of the filaments from 1240–380 l/M 2 s.  相似文献   

12.
The creation of metal parts via casting uses molds that are generally made from sand and phenolic resin. The waste generated after the casting process is called waste foundry sand (WFS). Depending on the mold composition and the casting process, WFS can contain substances that prevent its direct emission to the environment. In Brazil, this waste is classified according to the Standard ABNT NBR 10004:2004 as a waste Class II (Non-Inert). The recycling of this waste is limited because its characteristics change significantly after use. Although the use (or reuse) of this byproduct in civil construction is a technically feasible alternative, its effects must be evaluated, especially from mechanical and environmental points of view. Thus, the objective of this study is to investigate the effect of the use of WFS in the manufacture of cement artifacts, such as masonry blocks for walls, structural masonry blocks, and paving blocks. Blocks containing different concentrations of WFS (up to 75% by weight) were produced and evaluated using compressive strength tests (35 MPa at 28 days) and toxicity tests on Daphnia magna, Allium cepa (onion root), and Eisenia foetida (earthworm). The results showed that there was not a considerable reduction in the compressive strength, with values of 35 ± 2 MPa at 28 days. The toxicity study with the material obtained from leaching did not significantly interfere with the development of D. magna and E. foetida, but the growth of the A. cepa species was reduced. The study showed that the use of this waste in the production of concrete blocks is feasible from both mechanical and environmental points of view.  相似文献   

13.
Soy isolate was treated with formaldehyde and glyoxal at 1.0, 2.5, and 5.0% (w/w isolate) and with adipic and acetic anhydrides. The materials were then compression-molded into plastic tensile bars and tested for tensile and yield strength, percentage elongation, Young's modulus, and water absorption. Treatment with 5% formaldehyde increased the tensile strength significantly, to 4.9 kg/mm2, compared with the untreated sample (3.7 kg/mm2). The yield strength increased slightly, to 0.68 kg/mm2. Elongation was significantly less after treatment with formaldehyde. Young's modulus increased after treatment and leveled off at 174 kg/mm2. Water absorption decreased as the formaldehyde concentration increased. Treatment with either glyoxal or adipic/acetic anhydride had a detrimental effect on the mechanical properties of the plastic specimens. Water absorption was decreased by glyoxal treatment but was not affected by adipic/acetic anhydride treatment. Long-fiber (lf), short-fiber (sf), and microcrystalline (mc) cellulose were incorporated into soy isolate at various levels. Cellulose addition decreased the percentage elongation and increased the rigidity of the plastic. All three cellulose additions increased Young's modulus. The tensile strength increased with the addition of sf-cellulose to soy isolate; lf-cellulose decreased the tensile strength, whereas the incorporation of mc-cellulose did not have a significant effect. The yield strength increased slightly with the addition of sf-cellulose and was less affected by the addition of lf- or mc-cellulose. All three types of cellulose slightly decreased water absorption at ca. 15% content.Journal Paper No. J-15563 of the Iowa Agriculture and Home Economics Experiment Station, Ames; Project No. 2863.  相似文献   

14.
The primary biodegradability of polyethylene (PE) films containing different percentages of cornstarch (0–50%) and other additives (prooxidant, oxidized polyethylene) was tested using four species of earthworms (Eisenia fetida, Lumbricus terrestris, Aporectodea trapezoides, Aporectodea tuberculata), three species of cockroaches (Periplaneta americana, Blaberus sp.,Blattella germanica), termites (Reticulotermes flavipes), sowbugs (Porcellio laevis), and crickets (Acheta domesticus). These studies were conducted to elucidate the potential role of soil macroinvertebrates in degrading starch/PE biodegradable plastics. The results of the macroinvertebrate bioassays indicate that crickets, cockroaches, and sowbugs consumed starch-containing PE films most readily. In addition, the degree to which the films were attacked and consumed was directly related to the starch content of the film. Films with oxidized polyethylene and those containing prooxidant (vegetable oil and a transition metal catalyst) were also consumed. None of the four species of earthworms tested or the termites showed any activity toward the starch/polyethylene films. These results have important implications for determining the fate of novel plastic formulations which claim to be biodegradable in natural environments. Studies such as these, coupled with studies on microbial degradation, will help provide the type of information needed to assess the environmental fate of biodegradable starch/PE plastics and fill the voids in the scientific database regarding this rapidly developing field.  相似文献   

15.
Starch/Poly(vinylalcohol) blends in two different ratios (60:40 and 50:50) were prepared with glycerol as a plasticizer. Films were cast by a solution casting method. One set of films were filled with 10 wt% of bentonite clay and another set of films were crosslinked with epichlorohydrin in an alkaline medium. The prepared film samples were characterized with dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA). The presence of clay and crosslinking with epichlorohydrin was found to have considerable effect on the dynamic mechanical properties and thermal stability of the films. Intercomponent H-bonding between starch, Poly(vinylalcohol) and glycerol enhanced the thermal stability of the films. But incorporation of clay and crosslinking with epichlorohydrin enhanced the steric crowding and lowered the thermal stability of the films.  相似文献   

16.
Fabrication of complex injection molded parts often involves the use of multiple gates. In such situations, polymer melts from different gates meld to form the molded part (weld line). This paper reports on the fabrication and characterization of the mechanical and morphological properties of short fiber reinforced jute/poly butylene succinate (PBS) biodegradable composites. The effect of a dual gated mold in the fabrication of welded specimens was a key focus of the investigation. It was observed that incorporation of jute fiber (10 wt%) conferred drastic changes on the stress–strain properties of the matrix as the elongation at break (EB), dropped from 160% in the matrix to just 10% in the composite. The tensile strength of the composite was lower than that of the matrix. However, it is noteworthy that the tensile modulus of the composite increased. Bending test also revealed that both bending strength and modulus increased with the incorporation of jute. Morphological studies of the tensile fracture surface using SEM revealed two types of failure mode. Ductile failure was indicated by plastic deformation at the initiation of fracture followed by brittle failure. The good interfacial bonding indicated between jute and PBS was attributed to positive interaction between the two polar polymers. A comparison of the non-weld and weld-line samples revealed that the weld-line composites have better mechanical integrity than the corresponding polymer matrix with weld line. The results also revealed that elongation at break and toughness are most sensitive to the presence of the weld-line whereas flexural properties are least sensitive.  相似文献   

17.
Chitosan films were prepared from dried prawn shell via chitin and then tensile properties like tensile strength (TS) and elongation at break (Eb) of the films were evaluated. Six formulations were developed using methyl methacylate (MMA) monomer and aliphatic urethane diacrylate oligomer (M-1200) in methanol along with photoinitator (Darocur-1664). Then the films were soaked in the formulations and irradiated under UV radiation at different doses for the improvement of physico-mechanical properties of chitosan films. The cured films were characterized by measuring TS, Eb, polymer loading (PL), water absorption and gel content properties. The formulation containing 43% MMA and 15% oligomer in methanol solution showed the best performance at 20th UV pass for 4 min soaking time.  相似文献   

18.
In the paper the results of a geotechnical investigation carried on Municipal Solid Waste (MSW) materials retrieved from the “Cozzo Vuturo” landfill in the Enna area (Sicily, Italy) are reported and analyzed. Mechanical properties were determined both by in situ and laboratory large-scale one dimensional compression tests.While among in situ tests, Dilatomer Marchetti Tests (DMT) is used widely in measuring soil properties, the adoption of the DMT for the measurements of MSW properties has not often been documented in literature. To validate its applicability for the estimation of MSW properties, a comparison between the seismic dilatometer (SDMT) results and the waste properties evaluated by laboratory tests was carried out.Parameters for “fresh” and “degraded waste” have been evaluated. These preliminary results seems to be promising as concerns the assessment of the friction angle of waste and the evaluation of the S-wave in terms of shear wave velocity. Further studies are certainly required to obtain more representative values of the elastic parameters according to the SDMT measurements.  相似文献   

19.
The use of synthetic and natural bioabsorbable plastics has been severely limited due to their low stiffness and strength properties as well as their strong tendency to absorb moisture. This research focused on the development of bioabsorbable polyphosphate filler/soy protein plastic composites with enhanced stiffness, strength, and water resistance. Bioabsorbable polyphosphate fillers, biodegradable soy protein isolate, plasticizer, and adhesion promoter were homogenized and compression-molded. Physical, mechanical, and water absorption testing was performed on the molded specimens. Results showed improvements in stiffness, strength, and water resistance with increasing polyphosphate filler content up to 20% by weight. Application of a coupling agent produced further mechanical property enhancements and a dramatic improvement in water resistance, interpreted by an interfacial chemical bonding model. Examination of the fracture surfaces of the materials revealed that the addition of the polyphosphate fillers changed the failure mode from brittle to pseudo-ductile. These results suggest that these materials are suitable for many load-bearing applications in both humid and dry environments where current soy protein plastics are not usable.  相似文献   

20.
Organically modified montmorillonite clays were incorporated at a 5% loading level into film grade of poly-L-lactic acid (PLLA) using a variety of masterbatches based on either semi-crystalline or amorphous poly-(lactic acid), as well as biodegradable aromatic aliphatic polyester. The PLLA masterbatches and compounded formulations were prepared using a twin screw compounding extruder, while the films were prepared using a single screw cast film extruder. The thermal and mechanical properties of the films were examined in order to determine the effect of the clay and different carriers on the polymer–clay interactions. In the optimal case, when a PLLA-based masterbatch was used, the tensile modulus increased by 30%, elongation increased by 40%, and the cold crystallization temperature decreased by 15 °C, compared to neat PLLA. The properties improvement of PLLA films containing nano clays demonstrated the possibility to extend the range of biodegradable film applications, especially in the field of packaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号