共查询到20条相似文献,搜索用时 15 毫秒
1.
The growing amount of waste rubber produced from used tires has resulted in an environmental problem. Recycling waste tires has been widely studied for the last 20 years in applications such as asphalt pavement, waterproofing systems and membrane liners. The aim of this study is to evaluate the feasibility of utilizing fly ash and rubber waste with Portland cement as a composite material for masonry applications. Class C fly ash and waste automobile tires in three different sizes were used with Portland cement. Compressive and flexural strength, dry unit weight and water absorption tests were performed on the composite specimens containing waste tire rubber. The compressive strength decreased by increasing the rubber content while increased by increasing the fly ash content for all curing periods. This trend is slightly influenced by particle size. For flexural strength, the specimens with waste tire rubber showed higher values than the control mix probably due to the effect of rubber fibers. The dry unit weight of all specimens decreased with increasing rubber content, which can be explained by the low specific gravity of rubber particles. Water absorption decreased slightly with the increase in rubber particles size. These composite materials containing 10% Portland cement, 70% and 60% fly ash and 20% and 30% tire rubber particles have sufficient strength for masonry applications. 相似文献
2.
R. del Valle-Zermeño J. Formosa J.M. Chimenos M. Martínez A.I. Fernández 《Waste management (New York, N.Y.)》2013,33(3):621-627
The main goal of this paper is to obtain a granular material formulated with Municipal Solid Waste Incineration (MSWI) bottom ash (BA) and air pollution control (APC) fly ash to be used as secondary building material. Previously, an optimum concrete mixture using both MSWI residues as aggregates was formulated. A compromise between the environmental behavior whilst maximizing the reuse of APC fly ash was considered and assessed. Unconfined compressive strength and abrasion resistance values were measured in order to evaluate the mechanical properties. From these results, the granular mixture was not suited for certain applications owing to the high BA/APC fly ash content and low cement percentages used to reduce the costs of the final product. Nevertheless, the leaching test performed showed that the concentrations of all heavy metals were below the limits established by the current Catalan legislation for their reutilization. Therefore, the material studied might be mainly used in embankments, where high mechanical properties are not needed and environmental safety is assured. 相似文献
3.
Behaviour of cement-treated MSWI bottom ash 总被引:5,自引:0,他引:5
MSWI bottom ash is the residue of combustion. The use of bottom ash in road construction is wide spread. French legislation forbids the disposal of resuable waste in special landfill from 2002. Moreover, "arrêté du 9 mai 1994" provides environmental criteria (leaching threshold, etc.), and evaluates this material according to utilisation in road construction. In such application, bottom ash is often treated with binder to improve its mechanical features. Nevertheless, bottom ash is subject to chemical problems. These problems induce an expansion which brings about cracking and finally road destruction. Therefore, it is necessary to estimate the swelling potential of MSWI bottom ash prior utilisation. This is one of the aims of the European contract "Mashroad" (contract BRST CT97-5150). This study involved 4 years of work on cement-treated MSWI bottom ash. It examined different tests that show the importance of oxidation of aluminium in the swelling reaction and the efficiency of different treatments. Different binders were used in order to have different proportions of clinker. The kinetic aspects of aluminium-binder reaction were also studied. Finally, we present a special cell to measure the swelling pressure of these materials is presented. 相似文献
4.
5.
Monteiro RC Figueiredo CF Alendouro MS Ferro MC Davim EJ Fernandes MH 《Waste management (New York, N.Y.)》2008,28(7):1119-1125
The characterization of the bottom ashes produced by two Portuguese municipal solid waste incinerators (MSWI) was performed with the aim of assessing the feasibility of using this waste as raw material in the production of glass that can be further processed as glass-ceramics for application in construction. Density and particle size distribution measurements were carried out for physical characterization. Chemical characterization revealed that SiO(2), a network glass former oxide, was present in a relatively high content (52-58wt%), indicating the suitability for this waste to be employed in the development of vitreous materials. CaO, Na(2)O and K(2)O, which act as fluxing agents, were present in various amounts (2-17wt%) together with several other oxides normally present in ceramic and glass raw materials. Mineralogical characterization revealed that the main crystalline phases were quartz (SiO(2)) and calcite (CaCO(3)) and that minor amounts of different alkaline and alkaline-earth aluminosilicate phases were also present. Thermal characterization showed that the decomposition of the different compounds occurred up to 1100 degrees C and that total weight loss was <10wt%. Heating both bottom ashes at 1400 degrees C for 2h resulted in a melt with suitable viscosity to be poured into a mould, and homogeneous black-coloured glasses with a smooth shiny surface were obtained after cooling. The vitrified bottom ashes were totally amorphous as confirmed by X-ray diffraction. The results from the present experimental work indicate that the examined bottom ashes can be a potential material to melt and to obtain a glass that can be further processed as glass-ceramics to be applied in construction. 相似文献
6.
The landfills of fly ash are the problem of all power plants because this disposed fly ash is not used in any work. This research studies the potential of using disposed fly ashes which have disposal time of 6-24 months from the landfill of Mae Moh power plants in Thailand to replace Portland cement type I. Median particle sizes of disposed fly ashes between 55.4 and 99.3 microm were ground to reduce the sizes to about 7.1-8.4 microm. Both original and ground disposed fly ashes were investigated on physical and chemical properties. Compressive strengths of disposed fly ash mortars were determined when Portland cement type I was replaced by disposed fly ashes at the rate of 10%, 20%, and 30% by weight of cementitious material (Portland cement type I and disposed fly ash). The results presented that most particles of original disposed fly ashes were solid and sphere with some irregular shape while those of ground disposed fly ashes were solid and irregular shape. CaO and LOI contents of disposed fly ashes with different disposal times had high variation. The compressive strengths of original disposed fly ash mortars were low but those of ground disposed fly ash mortars at the age of 7 days were higher than 75% of the standard mortar and increased to be higher than 100% after 60 days. From the results, it could be concluded that ground disposed fly ashes were excellent pozzolanic materials and could be used as a partial replacement of cement in concrete, even though they were exposed to the weather for 24 months. 相似文献
7.
Production of cement clinkers from municipal solid waste incineration (MSWI) fly ash 总被引:4,自引:0,他引:4
This communication reports the laboratory scale study on the production of cement clinkers from two types of municipal solid waste incineration fly ash (MSW ash) samples. XRD technique was used to monitor the phase formation during the burning of the raw mixes. The amount of trace elements volatilized during clinkerization and hydration, as well as leaching behaviours of the clinkers obtained from optimum compositions, were also evaluated. From the results it is observed that all of the major components of ordinary Portland cement (OPC) clinkers are present in the produced clinkers. Results also show the volatilization of considerable amounts of Na, K, Pb, Zn and Cd during the production of clinkers. However, major parts of the toxic elements remaining in the clinkers appear to be immobilized in the clinkers phases. Hydration studies of the clinkers obtained from optimum compositions show that the clinkers prepared from raw MSW ash are more reactive than the washed MSW ash based clinkers. TG/DTA analyses of the hydrated pastes show the formation of hydration products, which are generally found in OPC and OPC derived cements. The initial study, therefore, shows that more than 44% of MSW ash with the addition of very small amounts of silica and iron oxide can be used to produce cement clinkers. The amount of CaCO3 necessary to produce clinkers (approximately 50%) is also smaller than the same required for the conventional process (more than 70%). 相似文献
8.
Roberta Onori Alessandra PolettiniRaffaella Pomi 《Waste management (New York, N.Y.)》2011,31(2):298-310
In the present study the evolution of mechanical strength and the leaching behavior of major and trace elements from activated incinerator bottom ash/Portland cement mixtures were investigated. Chemical and mechanical activation were applied with the purpose of improving the reactivity of bottom ash in cement blends. Chemical activation made use of NaOH, KOH, CaCl2 or CaSO4, which were selected for the experimental campaign on the basis of the results from previous studies. The results indicated that CaCl2 exhibited by far the best effects on the evolution of the hydration process in the mixtures; a positive effect on mechanical strength was also observed when CaSO4 was used as the activator, while the gain in strength produced by KOH and NaOH was irrelevant. Geochemical modeling of the leaching solutions provided information on the mineral phases responsible for the release of major elements from the hardened materials and also indicated the important role played by surface sorption onto amorphous Fe and Al minerals in dictating the leaching of Pb. The leaching of the other trace metal cations investigated (Cu, Ni and Zn) could not be explained by any pure mineral included in the thermodynamic database used, suggesting they were present in the materials in the form of complex minerals or phase assemblages for which no consistent thermodynamic data are presently available in the literature. 相似文献
9.
Manufacture of artificial aggregate using MSWI bottom ash 总被引:1,自引:0,他引:1
R. Cioffi F. ColangeloF. Montagnaro L. Santoro 《Waste management (New York, N.Y.)》2011,31(2):281-288
This paper reports the results of an investigation on material recovery by stabilization/solidification of bottom ash coming from a municipal solid waste incineration plant. Stabilization/solidification was carried out to produce artificial aggregate in a rotary plate granulator by adding hydraulic binders based on cement, lime and coal fly ash. Different mixes were tested in which the bottom ash content ranged between 60% and 90%. To avoid undesirable swelling in hardened products, the ash was previously milled and then granulated at room temperature. The granules were tested to assess their suitability to be used as artificial aggregate through the measurement of the following properties: density, water absorption capacity, compressive strength and heavy metals release upon leaching. It was demonstrated that the granules can be classified as lightweight aggregate with mechanical strength strongly dependent on the type of binder. Concrete mixes were prepared with the granulated artificial aggregate and tested for in-service performance, proving to be suitable for the manufacture of standard concrete blocks in all the cases investigated. 相似文献
10.
Li Jingruo Liu Ruiquan Tang Boming Zhang Dongchang Feng Junliang Wang Huoming Zhao Mengzhen 《Journal of Material Cycles and Waste Management》2023,25(3):1581-1593
Journal of Material Cycles and Waste Management - In order to realize the recovery and stabilization of detoxified municipal solid waste incineration fly ash (DIFA) in roadbases, the synergetic... 相似文献
11.
By utilising MSW fly ash from the Shanghai Yuqiao municipal solid waste (MSW) incineration plant as the main raw material, diopside-based glass-ceramics were successfully synthesized in the laboratory by combining SiO(2), MgO and Al(2)O(3) or bottom ash as conditioner of the chemical compositions and TiO(2) as the nucleation agent. The optimum procedure for the glass-ceramics is as follows: melting at 1500 degrees C for 30 min, nucleating at 730 degrees C for 90 min, and crystallization at 880 degrees C for 10h. It has been shown that the diopside-based glass-ceramics made from MSW fly ash have a strong fixing capacity for heavy metals such as lead (Pb), chromium (Cr), cadmium (Cd) etc. 相似文献
12.
To recycle municipal solid waste incinerator (MSWI) bottom ash, synthesis of hydrothermal minerals from bottom ash was performed to stabilize heavy metals. MSWI bottom ash was mixed with SiO(2), Al(OH)(3), and Mg(OH)(2) so its chemical composition was similar to that of hydrothermal clay minerals. These solid specimens were mixed with water at a liquid/solid ratio of 5. The reaction temperature was 200 degrees C, and reactions were performed for 24-240h. Generation of kaolinite/smectite mixed-layer clay mineral was found in the samples after the reaction of the mixture of bottom ash, SiO(2), and Mg(OH)(2). Calcium silicate hydrate minerals such as tobermorite and xonotlite were also generated. X-ray powder diffraction suggested the presence of amorphous materials. Leaching tests at various pHs revealed that the concentration of heavy metals in the leachates from MSWI bottom ash hydrothermally treated with SiO(2) and Mg(OH)(2) was lower than that in leachates from non-treated bottom ash, especially under acid conditions. Hydrothermal treatment with modification of chemical composition may have potential for the recycling of MSWI bottom ash. 相似文献
13.
Chimenos JM Fernández AI Miralles L Segarra M Espiell F 《Waste management (New York, N.Y.)》2003,23(10):887-895
The chemical and material composition of MSWI bottom ash depends on the particle size; this suggests that the mechanisms and kinetics of natural weathering are also a function of particle size. This paper reports the effects of short-term natural weathering on the leaching of heavy metals (mainly Pb, Cu and Zn) from MSWI bottom ash. Initial concentrations of heavy metals were higher for the smallest particle size fractions, but these levels fell dramatically during the first 50 days of weathering before levelling off. The main differences between size fractions were in the pH and the solubility of calcium and aluminium. For the initial stages of weathering and small size fractions, portlandite solubility seemed to control the pH. In contrast, for fractions bigger than 6 mm, the formation of ettringite was the reaction controlling the pH and the solubility of sulphates, aluminium and calcium. 相似文献
14.
Investigation of MSWI fly ash melting characteristic by DSC-DTA 总被引:1,自引:0,他引:1
The melting process of MSWI (Municipal Solid Waste Incineration) fly ash has been studied by high-temperature DSC-DTA experiments. The experiments were performed at a temperature range of 20-1450 degrees C, and the considerable variables included atmosphere (O(2) and N(2)), heating rates (5 degrees C/min, 10 degrees C/min, 20 degrees C/min) and CaO addition. Three main transitions were observed during the melting process of fly ash: dehydration, polymorphic transition and fusion, occurring in the temperature range of 100-200 degrees C, 480-670 degrees C and 1101-1244 degrees C, respectively. The apparent heat capacity and heat requirement for melting of MSWI fly ash were obtained by DSC (Differential Scanning Calorimeter). A thermodynamic modeling to predict the heat requirements for melting process has been presented, and it agrees well with the experimental data. Finally, a zero-order kinetic model of fly ash melting transition was established. The apparent activation energy of MSWI fly ash melting transition was obtained. 相似文献
15.
Andini S Cioffi R Colangelo F Grieco T Montagnaro F Santoro L 《Waste management (New York, N.Y.)》2008,28(2):416-423
In this work coal fly ash has been employed for the synthesis of geopolymers. Two different systems with silica/alumina ratios stoichiometric for the formation of polysialatesiloxo (PSS, SiO2/Al2O3=4) and polysialatedisiloxo (PSDS, SiO2/Al2O3=6) have been prepared. The alkali metal hydroxide (NaOH or KOH) necessary to start polycondensation has been added in the right amount as concentrated aqueous solution to each of the two systems. The concentration of each alkali metal solution has been adjusted in order to have the right liquid volume to ensure constant workability. The systems have been cured at four different temperatures (25, 40, 60, and 85 degrees C) for several different times depending on the temperature (16-672 h at 25 degrees C; 72-336 h at 40 degrees C; 16-120 h at 60 degrees C and 1-6h at 85 degrees C). The products obtained in the different experimental conditions have been submitted to the quantitative determination of the extent of polycondensation through mass increase and loss on ignition, as well as to qualitative characterization by means of FT-IR spectroscopy. Furthermore, physico-structural and mechanical characterization has been carried out through microscopic observations and the determination of unconfined compressive strength, elasticity modulus, apparent density, porosity and specific surface area. The results have indicated that the systems under investigation are suited for the manufacture of pre-formed building blocks at room temperature. 相似文献
16.
Olsson S Gustafsson JP Kleja DB Bendz D Persson I 《Waste management (New York, N.Y.)》2009,29(2):506-512
In order to manage municipal solid waste incineration (MSWI) bottom ash safely, risk assessments, including the prediction of leaching under different field conditions, are necessary. In this study, the influence of salt or dissolved organic matter (DOM) in the influent on metal leaching from MSWI bottom ash was investigated in a column experiment. The presence of salt (0.1M NaCl) resulted in a small increase of As leaching, whereas no impact on leachate concentration was found when lakewater DOM (35.1mg/l dissolved organic carbon) was added. Most of the added DOM was retained within the material. Further, X-ray spectroscopy revealed that Cu(II) was the dominating form of Cu and that it probably occurred as a CuO-type mineral. The Cu(2+) activity in the MSWI bottom ash leachate was most likely determined by the dissolution of CuO together with the formation of Cu-DOM complexes and possibly also by adsorption to (hydr)oxide minerals. The addition of lake DOM in the influent resulted in lower saturation indices for CuO in the leachates, which may be due to slow CuO dissolution kinetics in combination with strong Cu-DOM complexation. 相似文献
17.
Laura Biganzoli Aamir Ilyas Martijn van Praagh Kenneth M. Persson Mario Grosso 《Waste management (New York, N.Y.)》2013,33(5):1174-1181
Waste incineration bottom ash fine fraction contains a significant amount of aluminium, but previous works have shown that current recovery options based on standard on-step Eddy Current Separation (ECS) have limited efficiency. In this paper, we evaluated the improvement in the efficiency of ECS by using an additional step of crushing and sieving. The efficiency of metallic Al recovery was quantified by measuring hydrogen gas production. The ash samples were also tested for total aluminium content with X-ray fluorescence spectroscopy (XRF). As an alternative to material recovery, we also investigated the possibility to convert residual metallic Al into useful energy, promoting H2 gas production by reacting metallic Al with water at high pH. The results show that the total aluminium concentration in the <4 mm bottom ash fraction is on average 8% of the weight of the dry ash, with less than 15% of it being present in the metallic form. Of this latter, only 21% can be potentially recovered with ECS combined with crushing and sieving stages and subsequently recycled. For hydrogen production, using 10 M NaOH at 1 L/S ratio results in the release of 6–11 l of H2 gas for each kilogram of fine dry ash, equivalent to an energy potential of 118 kJ. 相似文献
18.
Municipal solid waste incinerator (MSWI) bottom ash may be used as a road construction material; it potentially contains however a sizable quantity of heavy metals, which under the effect of rainfall infiltration through the road structure can be leached out from the material and infiltrate into the underlying soil. An eco-compatibility assessment of MSWI bottom ash reuse in road construction applications necessitates examining the solubility and retention of heavy metals in road soils. This study is dedicated to Pb transfer, sorption and desorption (NEN 7341 standard test) within various soils. These experiments yield results relative to the interaction between road soils and an MSWI bottom ash leachate representative of a "fresh" product, with a high leaching potential. For the soils investigated, the sorption of lead varies between 90% and 99%. For an extraction at pH 7, Pb release is very low (<2%) for all soils, while at pH 4 leaching varies between 4% and 47%. This work shows that Pb may be fixed by some types of road soil in mostly stable forms. 相似文献
19.
20.
The waste input and the process technology of waste incineration plants appear to have a great influence on bottom ash quality. To better understand how these parameters can affect the characteristics of residues, bottom ash from six plants were tested and compared in this study. Bottom ash physico-chemical characteristics were investigated by chemical analyses, and leaching tests. In order to understand their long-term behavior, accelerated ageing experiments and biodegradation tests were also performed. The whole analyses gave complementary information. It was shown that the six samples do have different properties. Waste inputs have a great influence on Cl and S content in bottom ash, as well as on the Ca/Si ratio. The importance of this ratio on the carbonation process has been demonstrated. Combustion parameters have an influence on the quantity and mobility of the residual organic matter. 相似文献