首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
This study investigated the application of bamboo as a natural composite, in which its potential as a composite material had been examined for 2–6 layers. In precise, the woven bamboo (BW) formed the culm fiber composite with an average of 0.5 mm thickness and 5.0 mm width strip. In addition, this study looked into a specific type of bamboo species known as Gigantochloa Scortechinii (Buluh Semantan), which can be found in Malaysia. This laminated plain BW, which had been reinforced with epoxy (EP), was developed by applying the hand lay-up technique. After that, the specimens were characterized via mechanical analyses, for instance, tensile, flexural, hardness, and impact tests. As a result, the 2-layer BW had displayed rather excellent results chiefly due to the incorporation of epoxy composite, although this is exceptional hardness value.  相似文献   

2.
The aim of this study was to investigate the application of grapeseed oil, a waste product from the wine industry, as a renewable feedstock to make polyesters and to compare the properties of these materials with those derived from soybean and rapeseed oils. All three oils were epoxidized to give renewable epoxy monomers containing between 3.8 and 4.7 epoxides per molecule. Polymerisation was achieved with cyclic anhydrides catalysed by 4-methyl imidazole at 170 and 210 °C. Polymers produced from methyl tetrahydrophthalic anhydride (Aradur917®) had greater tensile strength and Young’s Modulus (tensile strength = 12.8 MPa, Young’s Modulus = 1005 MPa for grapeseed) than methyl nadic anhydride (MNA) derived materials (5.6 and 468 MPa for grapeseed) due to increased volume of MNA decreasing crosslink density. Soybean and grapeseed oils produced materials with higher tensile strength (5.6–29.3 MPa) than rapeseed derived polyesters (2.5–3.9 MPa) due to a higher epoxide functionality increasing crosslinking. T g’s of the polyesters ranged from ?36 to 62 °C and mirrored the trend in epoxide functionality with grapeseed producing higher T g polymers (?17 to 17 °C) than soybean (?25 to 6 °C) and rapeseed (?36 to ?27 °C). Grapeseed oil showed similar properties to soybean oil in terms of T g, thermal degradation and Young’s Modulus but produced polymers of lower tensile strength. Therefore grapeseed oil would only be a viable substitute for soybean for low stress applications or where thermal properties are more important.  相似文献   

3.
Lignins in general have been extensively studied, while beech wood lignin in particular is rarely researched. In the present work, Organosolv isolated lignin from beech wood (OBL) has been characterized. The isolation was done by two methods: (a) by using sulfuric acid at 170 °C and a reaction time of 120 min and (b) at a temperature of 180 °C for 240 min. A range of analytical methods were applied including elemental analysis, FT-IR, UV–Vis, 31P NMR, SEC, Pyrolysis-GC/MS and HPLC to gain information about establish the purity, structure, molecular weight, thermal behavior and to determine carbohydrate residues according to the NREL protocol. FT-IR and UV–Vis spectra of OBL revealed expected typical absorptions for lignins. NREL analysis presented a carbohydrate-free lignin fraction which has not been achieved to date. TGA and DSC are used to study the thermal behavior of the isolated lignins and showed a relatively low glass transition temperatures (Tg: 123 °C) and decomposition temperatures of 348 and 381 °C. The pyrograms generated from the pyrolysis–GC/MS at 550 °C consisted mainly of fragments of syringyl, guaiacyl and hydroxyphenyl units, thereby confirming the results of the NMR analysis. Our findings support Organolsolv as an efficient method to isolate pure lignin fractions from beech wood with practical value in industry.  相似文献   

4.
Hydrolytic, enzymatic degradation and composting under controlled conditions of series of triblock PCL/PEO copolymers, PCEC, with central short PEO block (M n 400 g/mol) are presented and compared with homopolymer (PCL). The PCEC copolymers, synthesized via ring-opening polymerization of ε-caprolactone, were characterized by 1H NMR, quantitative 13C NMR, GPC, DSC and WAXS. The introduction of the PEO central segment (<?2 wt%) in PCL chains significantly affected thermal degradation and crystallization behavior, while the hydrophobicity was slightly reduced as confirmed by water absorption and moisture uptake experiments. Hydrolytic degradation studies in phosphate buffer after 8 weeks indicated a small weight loss, while FTIR analysis detected changes in crystallinity indexes and GPC measurements revealed bulk degradation. Enzymatic degradation tested by cell-free extracts containing Pseudomonas aeruginosa PAO1 confirmed high enzyme activity throughout the surface causing morphological changes detected by optical microscopy and AFM analysis. The changes in roughness of polymer films revealed surface erosion mechanism of enzymatic degradation. Copolymer with the highest content of PEO segment and the lowest molecular weight showed better degradation ability compared to PCL and other copolymers. Furthermore, composting of polymer films in a model compost system at 37 °C resulted in significant degradation of the all synthesized block copolymers.  相似文献   

5.
In this paper chiral bioactive poly(amide–imide)s (PAI)s were synthesized from four different diacids containing chiral amino acids with 4,4′-methylene bis(3-chloro 2,6-diethylaniline) as a diamine via direct polycondensation reaction in a system of tetra-n-butylammonium bromide and triphenyl phosphite as a condensing agent. The structures of these polymers were confirmed by FT-IR, 1H-NMR, specific rotation, elemental and thermogravimetric analysis (TGA) techniques. TGA showed that the 10 % weight loss temperature in a nitrogen atmosphere was more than 378 °C, which indicates that the resulting PAIs have a good thermal stability. The biodegradability of the monomers and prepared polymers was investigated in culture media and soil burial test for assessment of the susceptibility of these compounds to microbial degradation. The results showed that the synthesized monomers and theirs derived polymers are biologically active and nontoxic to microbial growth.  相似文献   

6.
Alginate polyurethane hybrid materials are prepared by varying mole ratio of 2, 4-TDI as a di-isocyanate and alginic acid as a polyol in presence of dimethyl sulfoxide (DMSO) as a solvent. FT-IR and 13C one-dimensional (1D) solid state NMR (SSNMR) spectroscopy indicates that alginic acid is converted into alginate-polyurethane hybrid material via urethane linkage. Surface morphology of alginate-polyurethane hybrids changes by varying alginic acid: TDI ratio. The peak at near 221 °C in DSC thermogram of alginic acid (Alg) is shifted to higher temperature in alginate-polyurethane hybrid (Algpu1 and Algpu2). TGA study shows that alginate-polyurethane hybrid prepared using alginic acid: TDI = 1:1 (Algpu2) is more stable than alginic acid: TDI = 1:0.5 (Algpu1) at 300 °C. Kinetic analysis was performed to fit with TGA data, where the entire degradation process has been considered as three consecutive 1st order reactions. This study shows that thermal stability of alginate-polyurethane hybrid material was increased by adjusting mole ratio of 2, 4-TDI and alginic acid.  相似文献   

7.
This paper presents a study regarding the preparation of MgCr2O4 from waste tannery solution, and chromium leaching behavior is also investigated with varying amounts of sulfate, chloride and calcium. The phase transformation, crystallinity index and crystallite diameter were characterized using XRD, FT-IR and thermal analysis. A well-crystallized MgCr2O4 was successfully prepared at 1400 °C. The sintering temperature had a major impact on the formation of MgCr2O4 compared with sintering time. The MgCr2O4 phase was observed initially at 400 °C and its crystallite diameter increased with increasing temperature. The concentration of total chromium leached and Cr(VI) decreased gradually with increasing temperature. The considerable amount of Cr(VI) was found in the leachate at 300–500 °C caused by Cr(VI) intermediary products. Sulfate and chlorine could impact the transformation efficiency of chromium adversely, and chlorine has a more significant effect than sulfate. The presence of calcium disturbed the formation of MgCr2O4 and new chromium species (CaCrO4) appeared, which resulted in a sharp increase in the concentration of leached Cr(VI). Incorporating Cr(III) into the MgCr2O4 spinel for reusable products reduced its mobility significantly. This was demonstrated to be a promising strategy for the disposal of chromium containing waste resource.  相似文献   

8.
The color of wood ash is normally white, but black color ash was observed when seawater-soaked wood was combusted. In order to check the conditions for generation of black ash, we examined both ashing temperatures from 500 to 800 °C and seawater salt densities for wood soaking. As seawater salt densities rose, the ash color got black at ashing temperatures of 500 and 700 °C. The colors of the ash were analyzed by a spectrophotometer, and color space L* a* b* was measured. The L* value and wood ash yield showed a negative correlation when the ashing temperature was at 600 °C. Salt concentration in wood (SC) was practicably estimated from the L* value (R 2 = 0.51) by the approximation formula [SC (%) = 11.82e?0.038L*]. By scanning electron microscope (SEM) observation, black ash of 600 °C was fully covered by translucent material. It was composed of Na, Mg and Cl by energy dispersive X-ray spectroscopy analysis, and seemed to be crystallized seawater salt. Washed black ash was also observed by SEM, translucent seawater salt was removed and the wood tissue was observed. Black ash was found to be carbonized wood tissue residue, and it was generated when seawater salt exists with a woody biomass.  相似文献   

9.
Thermocatalytic degradation of high density polyethylene (HDPE) was carried out using acid activated fire clay catalyst in a semi batch reactor. Thermal pyrolysis was performed in the temperature range of 420–500 °C. The liquid and gaseous yields were increased with increase in temperature. The liquid yield was obtained 30.1 wt% with thermal pyrolysis at temperature of 450 °C, which increased to 41.4 wt% with catalytic pyrolysis using acid activated fire clay catalyst at 10 wt% of catalyst loading. The composition of liquid products obtained by thermal and catalytic pyrolysis was analyzed by gas chromatography-mass spectrometry and compounds identified for catalytic pyrolysis were mainly paraffins and olefins with carbon number range of C6–C18. The boiling point was found in the range of commercial fuels (gasoline, diesel) and the calorific value was calculated to be 42 MJ/kg.  相似文献   

10.
In this research, a biosurfactant-producing bacterium with capability of asphaltene degradation was isolated from oil-contaminated soil samples, and identified as Bacillus cereus. This strain produced an effective biosurfactant in the presence of molasses and the surface tension was reduced to the level of 36.4 mN/m after 48 h under optimum conditions. The optimum values of carbon-to-nitrogen ratio (C:N), pH, and temperature for biosurfactant production were determined as 30:1, 7.3 and 29 °C, respectively, using response surface methodology. The maximum emulsification activity in the culture broth was 53 % after 48 h using kerosene at 25 °C. The goodness of fit of four growth kinetic models including Tessier, Contois, Logistic and Westerhoff was compared for the bacterial growth and molasses utilization of B. cereus in 5-L batch bioreactor during 120 h. Conducted kinetic study showed that biosurfactant production had a good fit with the Contois growth kinetic model (R2 = 0.962) and the maximum specific growth rate (µ max ), saturation constant (K s ) and the yield of biomass per substrate (Y x/s ) were determined to be 0.145 h?1, 1.83 g/L and 0.428 g/g, respectively. The asphaltene biodegradation in flask was evaluated by FTIR analysis and quantified by a spectrophotometer. This bacterium was able to degrade up to 40 % of asphaltene as a sole carbon and energy source after 60 days at 28 °C. The resulting surface tension of 30.2 mN/m with the critical micelle concentration of 23.4 mg/L indicated good efficiency of the biosurfactant.  相似文献   

11.
This study focused on the thermal degradation of polycarbonate (BrPC) and high-impact polystyrene (BrHIPS), containing different brominated flame retardants. The evolved inorganic bromine was utilized for the separation of metals present in electric arc furnace dust (EAFD). The thermal degradation of BrPC generated inorganic gaseous HBr (69%) and condensable Br2 (31%). The bromine evolved from BrHIPS was detected almost entirely in a condensed phase as SbBr3. When mixed with EAFD, the evolved inorganic bromine reacted immediately with the metallic components of zinc and lead, but not with iron. The best bromination efficiencies were obtained during the isothermal heating (80 min at 550 °C) of the mixtures at mass ratios of 6:1 and 9:1 w/w under oxidizing conditions. The achieved brominating rates reached 78 and 81% for zinc and 90 and 94% for lead in 6:1 and 9:1 BrPC:EAFD, respectively, and 47 and 65% for zinc and 67 and 63% for lead in 6:1 and 9:1 BrHIPS:EAFD, respectively. The oxidizing condition favored complete vaporization of the formed bromides.  相似文献   

12.
Biochemical methane potentials (BMP) of two different substrates from macroalgae (MA) and market place wastes (MPW) were investigated using anaerobic granulated sludge from food industry with different ratios of substrate to inoculum (S/X). The substrates were used as MA only, MPW only, MA–MPW mixture, pretreated MA, and pretreated MA–MPW mixture. Research involved investigation of the effects of parameters such as temperature (35, 45, and 55 °C), substrate to inoculum ratio (S/X = 0.5, 2.0, 4.0, and 6.0 as g VSsubstrate/g VSinoculum), and the type of pretreatment (by microwave, thermal, and ultrasonic) on BMP. BMP assays were performed for all substrates. The highest cumulative biogas production (and BMP) were obtained for MA only at an S/X ratio of 4.0 g VS/g VS as 357 Lbiogas/kg VS (197 L CH4/kg VS) and 33 Lbiogas/kg VS (17 L CH4/kg VS), respectively, at 35 and 55 °C. For pretreated substrates, the highest cumulative biogas production and BMP were observed as 287 Lbiogas/kg VS and 146 L CH4/kg VS using pretreated macroalgae at 35 °C. Results suggested that MA only and MA–MPW mixtures are suitable substrates for biogas production. It is also concluded that any type of pretreatment has adverse effects on biogas and methane productions.  相似文献   

13.
Perfluorooctanoic acid (PFOA), perfluorohexanoic acid (PFHxA) and perfluorooctane sulfonate (PFOS) adsorbed onto granular activated carbon (GAC) were thermally treated in N2 gas stream. The purpose was to assess the fate of perfluoroalkyl and polyfluoroalkyl substances (PFASs) during thermal regeneration of GAC, which had been used for water treatment. Mineralized F, residual PFASs including short-chained species, and volatile organic fluorine (VOF) were determined. In a temperature condition of 700 °C, VOF were 13.2, 4.8, and 5.9 % as for PFOA, PFHxA, and PFOS. However, the VOF decreased to 0.1 %, if the GAC and off-gas were kept at 1000 °C. No PFASs remained in GAC at 700–1000 °C; at the same time, short-chained PFASs were slightly detected in the aqueous trapping of off-gas at 800 and 900 °C conditions. The destruction of PFASs on GAC could be perfect if the temperature is higher than 700 °C; however, the process is competitive against volatile escape from GAC. Destruction in gaseous phase needs a temperature as high as 1000 °C. Destruction of PFASs on the surface of GAC, volatile escape from the site, and thermolysis in gas phase should be considered, as to thermal regeneration of GAC.  相似文献   

14.
The addition of plasticizers to biopolymer films is a good method for improving their physicochemical properties. The aim of this study was to evaluate the effect of chitosan (CHI) blended with two hydrophilic plasticizers glycerol (GLY) and sorbitol (SOR), at two concentrations (20 and 40 wt%) on their mechanical, thermal, barrier, structural, morphological and antimicrobial properties. The chitosan was prepared through the alkaline deacetylation of chitin obtained from fermented lactic from shrimp heads. The obtained chitosan had a degree of deacetylation (DA) of 84 ± 2.7 and a molecular weight of 136 kDa, which indicated that a good film had formed. The films composed of CHI and GLY (20 wt%) exhibited the best mechanical properties compared to the neat chitosan film. The percentage of elongation at break increase to over 700 % in the films that contained 40 % GLY, and these films also exhibited the highest values for the water vapor transmission rate (WVTR) of 79.6 ± 1.9 g m2 h?1 and a yellow color (b o  = 17.9 ± 2.0) compared to the neat chitosan films (b o  = 8.8 ± 0.8). For the structural properties, the Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction analyses revealed an interaction in the acetamide group and changes in the crystallinity of plasticized films. The scanning electron micrographs revealed that all formulations of the chitosan films were smooth, and that they did not contain aggregations, pores or microphase separation. The thermal analysis using differential scanning calorimetry (DSC) revealed a glass transition temperature (Tg) of 130 °C for neat chitosan film, but the addition of SOR or GLY elicited a decrease in the temperature of the peak (120 °C). In addition, the antimicrobial activity of the chitosan films was evaluated against Listeria monocytogenes, and reached a reduction of 2 log after 24 h. The plasticizer concentration of 20 % GLY is sufficient for obtaining flexible chitosan films with good mechanical properties, and it could serve as an alternative as a packaging material to reduce environmental problems associated with synthetic packaging films.  相似文献   

15.
Poly(lactic acid)/halloysite nanoclay composites (PLA/HNC) containing maleic anhydride grafted styrene-ethylene/butylene-styrene (SEBS-g-MAH) were produced using melt compounding followed by compression molding. The effects of hygrothermal aging on the thermal properties and functional groups changes of the HNC reinforced PLA (with and without SEBS-g-MAH) at three different temperatures (i.e., 30, 40 and 50 °C) were analyzed using differential scanning calorimetry and Fourier transform infrared spectroscopy techniques. The diffusion coefficient (D) of PLA was decreased by the incorporation of HNC and SEBS-g-MAH. The activation energy of water diffusion (E a ) of PLA/HNC/SEBS-g-MAH nanocomposites was higher than that of pure PLA. The glass transition temperature (T g ), cold-crystallization temperature (T cc ) and melting temperature (T m ) of the PLA sample were shifted to lower temperature and the effect was more pronounced at 50 °C. The carbonyl index values of all PLA samples increased after immersed in 40 and 50 °C, which is due to the formation of higher amount of carboxyl groups during the hydrolysis process.  相似文献   

16.
The aim of this investigation was to extract nanocrystalline cellulose (NCC) from Moroccan Doum fibers (Chamaerops humilis) by chemical treatment to examine their potential for use as reinforcement fibers in bionanocomposite applications. The chemical composition, morphological and structural properties of the Doum fibers was determined at different stages of chemical treatment. Morphological (transmission electron microscopy and scanning electron microscopy), structural characterization (X-ray diffraction, Fourier transformed infrared), thermal characterization (thermogravimetric analysis). The suspension electrostatic stabilization (zeta potential) of NCCs was also carried out. The results of these characterization analysis found that average size of the NCC is 220 nm in length and 11 nm in diameter, with high crystallinity index (93 %), a thermal stability comparable to that of untreated Doum fibers (degradation temperature 340 °C), which is reasonably promising for the use of these nanofibers in reinforced-polymer manufacturing, and a good stability in water suspension that it allows their utilization such as reinforcement of the water-soluble polymers to prepare the bio-nanocomposite.  相似文献   

17.
In this study, cellulose fibers were removed from crop by-products using a combination of sodium hydroxide treatment followed by acidified sodium chlorite treatment. The objective was to obtain high recovery of cellulose by optimizing treatment conditions with sodium hydroxide (5–20%, 25–75 °C and 2–10 h) followed by acidified sodium chlorite (1.7%, 75 °C for 2–6 h) to remove maximum lignin and hemicellulose, as well as to investigate the effect of lignin content of the starting materials on the treatment efficiency. Samples were characterized for their chemical composition, crystallinity, thermal behavior and morphology to evaluate the effects of treatments on the fibers’ structure. The optimum sodium hydroxide treatment conditions for maximum cellulose recovery was at 15% NaOH concentration, 99 °C and 6 h. Subsequent acidified sodium chlorite treatment at 75 °C was found to be effective in removing both hemicellulose and lignin, resulting in higher recovery of cellulose in lupin hull (~?95%) and canola straw (~?93%). The resultant cellulose fibers of both crop by-products had increased crystallinity without changing cellulose I structure (~?68–73%). Improved thermal stabilities were observed with increased onset of degradation temperatures up to 307–318 °C. Morphological investigations validated the effectiveness of treatments, revealing disrupted cell wall matrix and increased surface area due to the removal of non-cellulosics. The results suggest that the optimized combination of sodium hydroxide and acidified sodium chlorite treatments could be effectively used for the isolation of cellulose fibers from sweet blue lupin hull and canola straw, which find a great number of uses in a wide range of industrial applications.  相似文献   

18.
The fermentation conditions for poly(l-lactide) (PLA)-degrading enzyme production by Amycolatopsis orientalis ssp. orientalis were statistically optimized by response surface methodology. The optimal value of the most important factors was 0.39 % PLA and 0.34 % gelatin for 2.81 days of cultivation. Under these conditions, the model predicted a PLA-degrading activity of 155.30 U/l. The verification showed the production amount of 154.2 U/l. The crude enzyme from A. orientalis ssp. orientalis showed potent PLA-degrading ability, which is efficient for the biological recycling of PLA. Up to 4,000 mg/l of PLA granule was completely degraded within 5 days at 45 °C by the crude enzyme. l-lactic acid (600 mg/l) was obtained as a degradation product of PLA after only 2 h of incubation. The results indicated that the crude PLA-degrading enzyme from A. orientalis ssp. orientalis has the potential to degrade PLA to lactic acid for the recycling of PLA industry and waste disposal.  相似文献   

19.
We intended to find thermophilic degraders of terephthalate-containing Biomax® films. Films in mesh bags were buried in composts (inside temperature: approximately 55–60 °C), resulting in the degradation of them in 2 weeks. Fluorescent microscopy of films recovered from composts showed that microorganisms gradually covered the surface of a film during composting. DGGE analysis of microorganisms on the composted film indicated the presence of Bacillus species as main species (approximately 80% of microbial flora) and actinomycetes (approximately 10–20%) as the second major flora. Isolation of Biomax®-utilizing bacteria was focused on these two genera: two actinomycetes and one Bacillus species were isolated as pure best degraders from the composted polymer films, which were fragmented into small pieces. All the strains were thermophilic and identified, based on their 16S rDNA analyses. Degradation of polymer films was confirmed by (1) accelerated fragmentation of films in composts, compared with a control (no inoculum) and resultant decrease in molecular weights, (2) growth in a powdered Biomax® medium, compared with a control without powdered Biomax®, and (3) production of terephthalate in a powdered Biomax® medium. In this way, we concluded that these bacteria were useful for degradation of thermostable Biomax® products.  相似文献   

20.
The synthesis and characterization of poly(lactic acid)-co-aspartic acid copolymers (PLA-co-Asp) were presented. Subsequently, the synthesized PLA-co-Asp copolymers were tested as biodegradable carriers in drug delivery systems. PLA-co-Asp copolymers were synthesized by solution polycondensation procedure, using different molar ratios PLA/l-aspartic acid (2.33/1, 1/1, 1/2.33), manganese acetate and phosphoric acid as catalysts and N,N′-dimethyl formamide (DMF)/toluene as solvent mixture. The copolymers were characterized by FT-IR and 1H-NMR spectroscopy, gel permeation chromatography (GPC), DSC and TG-DTG analyses. Diclofenac sodium, a non steroidal anti-inflammatory drug was subsequently loaded into PLA-co-Asp copolymers. The in vitro drug release experiments were done by dialysis of the copolymer/drug systems, in phosphate buffer solution (pH = 7.4, at 37 °C) and monitored by UV spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号