首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ANOVA is used to show that approximately 25% of the total variation of indoor radon concentrations in England and Wales can be explained by the mapped bedrock and superficial geology. The proportion of the total variation explained by geology is higher (up to 37%) in areas where there is strong contrast between the radon potential of sedimentary geological units and lower (14%) where the influence of confounding geological controls, such as uranium mineralisation, cut across mapped geological boundaries. When indoor radon measurements are grouped by geology and 1-km squares of the national grid, the cumulative percentage of the variation between and within mapped geological units is shown to be 34-40%. The proportion of the variation that can be attributed to mapped geological units increases with the level of detail of the digital geological data. This study confirms the importance of radon maps that show the variation of indoor radon concentrations both between and within mapped geological boundaries.  相似文献   

2.
In the UK, building new homes in areas prone to radon gas is currently subject to regulations that require installation of radon-proof membranes. These membranes are not, however, the only way to protect residents of new homes against radon's potential to cause lung cancer. Alternative regulatory regimes can be constructed that would achieve the same end.The purpose of this paper is to examine the cost-effectiveness of four alternative regimes and so determine if building regulations for new homes could be altered to protect residents from the effects of radon more cost-effectively than at present. In addressing this question, the paper also contributes to the wider debate on how best to reduce the effect on public health of exposure to radon.The measure of cost-effectiveness used, cost per quality-adjusted life-year gained, is determined from radon test results obtained in properties in Brixworth, England, UK, a radon Affected Area. Confidence intervals for the cost-effectiveness estimates are also derived using bootstrap techniques.The central estimates of cost-effectiveness range from £2870 per quality-adjusted life-year gained for the most cost-effective of the alternative regimes to £6182 for the current regime. These results suggest that alternative regimes may be more cost-effective in tackling the radon problem. A definitive assessment of the most suitable to adopt will require extensive negotiation between government departments, the construction industry, and other interested parties to ensure acceptance of any new regime. The paper offers suggestions for future research that should help in the process of identifying the key features of a new regulatory approach.  相似文献   

3.
The results of radon activity recorded in 70 dwellings of Nurpur area, Kangra district, Himachal Pradesh, India are reported. LR-115 Type 2 films in the bare mode were exposed for four seasons of three months each covering a period of one year for the measurement of indoor radon levels. The calibration constant of 0.020 tracks cm(-2) d(-1) per Bq m(-3) has been used to express radon activity in Bq m(-3). The annual average indoor radon concentrations in 17 different villages of the area are found to vary from 168+/-46 to 429+/-71. Most of the indoor radon values lie in the range of action levels (200-600 Bq m(-3)) recommended by International Commission on Radiological Protection.  相似文献   

4.
In order to improve regulatory tools for radon risk management in France, a harmonised methodology to derive a single map of the geogenic radon potential has been developed. This approach consists of determining the capacity of the geological units to produce radon and to facilitate its transfer to the atmosphere, based on the interpretation of existing geological data. This approach is firstly based on a classification of the geological units according to their uranium (U) content, to create a radon source potential map. This initial map is then improved by taking into account the main additional parameters, such as fault lines, which control the preferential pathways of radon through the ground and which can increase the radon levels in soils. The implementation of this methodology to the whole French territory is currently in progress. We present here the results obtained in one region (Bourgogne, Massif Central) which displays significant variations of the geogenic radon potential. The map obtained leads to a more precise zoning than the scale of the existing map of radon priority areas currently based solely on administrative boundaries.  相似文献   

5.
For the first time in Hong Kong, atmospheric radon concentration was continuously monitored between November 2007 and October 2008. This paper presents the results obtained during the 12-month period. The annual mean atmospheric radon concentration in Hong Kong was found to be 9.3 Bq m−3 which was close to the level at neighbouring places like Guangdong and Taiwan. An estimation of the dose arising from atmospheric radon to the Hong Kong population was made. The meteorological effects on the variation of atmospheric radon concentration were discussed. It was found that the origin of the airmass and stability of the local atmosphere played vital roles in the seasonal and diurnal variations respectively, whereas precipitation caused abrupt changes in rainy days. An attempt was also made to find out the contribution of atmospheric radon to the ambient gamma dose rate.  相似文献   

6.
The indoor air of 60 residences in and around a Maryland suburb of Washington, DC, was monitored in a pilot study to determine residential radon concentrations. In each residence, a radon grab sample was acquired in the living room, and, if possible, in the basement. Infiltration rates were determined by tracer gas dilution. To help standardize sampling conditions, each home remained closed up for 8 h prior to sampling and during analysis. Over 60% of the residences sampled showed air infiltration rates below 0.6 air changes per hour. Approximately 55% of all surveyed basements and 30% of all surveyed living areas displayed radon concentrations in excess of 4.0 nCi m−3. Assuming an equilibrium factor of 0.5, these radon levels may lead to working levels above the annual guidelines suggested by EPA for florida homes build on land reclaimed from phosphate mining.  相似文献   

7.
In ten high radon level kindergartens, radon sources were sought by applying a combination of several radon measuring techniques: etched track detectors to obtain average indoor air radon concentration, continuous devices to record radon concentration and see its diurnal variation, and alpha scintillation cells to determine radon concentration in the air entering a room from cracks, holes and sinks in the floor and from under-floor channels. In three cases, a strong local radon source was identified while, in the others, the bad quality of the basic concrete slab was responsible for the high indoor radon concentration.  相似文献   

8.
Radon and gamma dose rate measurements were performed in 512 schools in 8 of the 13 regions of Greece. The distribution of radon concentration was well described by a lognormal distribution. Most (86%) of the radon concentrations were between 60 and 250 Bq m−3 with a most probable value of 135 Bq m−3. The arithmetic and geometric means of the radon concentration are 149 Bq m−3 and 126 Bq m−3 respectively. The maximum measured radon gas concentration was 958 Bq m−3. As expected, no correlation between radon gas concentration and indoor gamma dose rate was observed. However, if only mean values for each region are considered, a linear correlation between radon gas concentration and gamma dose rate is apparent. Despite the fact that the results of radon concentration in schools cannot be applied directly for the estimation of radon concentration in homes, the results of the present survey indicate that it is desirable to perform an extended survey of indoor radon in homes for at least one region in Northern Greece.  相似文献   

9.
In general, indoor radon concentration is subject to seasonal variability. The reasons are to be found (1) in meteorological influence on the transport properties of soil, e.g. through temperature, frozen soil layers and soil water saturation; and (2) in living habits, e.g. the tendency to open windows in summer and keep them closed in winter, which in general leads to higher accumulation of geogenic Rn in closed rooms in winter. If one wants to standardize indoor Rn measurements originally performed at different times of the year, e.g. in order to make them comparable, some correction transform as a function of measurement time which accounts for these effects must be estimated. In this paper, the seasonality of indoor Rn concentration measured in Austria is investigated as a function of other factors that influence indoor Rn. Indoor radon concentration is clearly shown to have seasonal variability, with higher Rn levels in winter. However, it is complicated to quantify the effect because, as a consequence of the history of an Rn survey, the measurement season maybe correlated to geological regions, which may introduce a bias in the estimate of the seasonality amplitude.  相似文献   

10.
There are several methods of measuring radon concentrations but nuclear track detector cylindrical dosimeters are widely employed. In this investigation, the consequence of effective volumes of the dosimeters on the registration of alpha tracks in a CR-39 detector was studied. In a series of experiments an optimum radius for a CR-39-based open cylindrical radon dosimeter was found to be about 3 cm. Monte Carlo simulation techniques have been employed to verify the experimental results. In this context, a computer code Monte Carlo simulation dosimetry (MOCSID) was developed. Monte Carlo simulation experiments gave the optimum radius of the dosimeters as 3.0 cm. The experimental results are in good agreement with those obtained by Monte Carlo design calculations. In addition to this, plate-out effects of radon progeny were also studied. It was observed that the contribution of radon progeny (218Po and 214Po) plated-out on the wall of the dosimeters increases with an increase of dosimeter radii and then decrease to 0 at a radius of about 3 cm if a point detector has been installed at the center of the dosimeter base. In the code MOCSID different types of random number generators were employed. The results of this research are very useful for designing an optimum size of radon dosimeters.  相似文献   

11.
Building regulations in the UK have since 1992 required that radon-proof membranes be installed in new domestic properties to protect residents against the adverse effects of radon. This study compares the cost-effectiveness of the current regulatory regime with an alternative that would entail new properties being tested for radon after construction, and being remediated if necessary. The alternative regime is found to be more cost-effective for a sample of properties in Brixworth, Northamptonshire, UK. For this regime, the central estimate of cost per quality-adjusted life-year gained, the measure of cost-effectiveness used, is 2869 pounds compared to 6182 pounds for installing membranes, results suggesting a case for re-examining the current regulations on radon protection in new properties. Pilot studies will, however, be needed to consider how different means of protecting residents of new properties against radon might operate in practice and to provide improved evidence on their relative cost-effectiveness.  相似文献   

12.
The RAD Laboratory measured annual means of radon activity concentrations in 15 277 first-floor rooms of dwellings and in 325 rooms on upper floors in Hungary (1994-2004). The original purpose of the survey was to find radon-prone area in Hungary. The maximum measured value was 5800 Bq m(-3), while the minimum was 10 Bq m(-3). Due to geological diversity and different structures of buildings, the data set of first-floor rooms did not follow the lognormal distribution. Therefore, strata were chosen so that the measured data fitted the lognormal distribution. The numbers of dwellings above a given radon level were determined in each stratum. The national distribution was then taken as the sum of the individual distributions of all strata. This distribution was not lognormal. The parameters of the best fitting lognormal distribution were GM = 58 Bq m(-3), GSD = 2.2. The weighted averages of strata values GM = 62 Bq m(-3), GSD=2.1 were obtained corresponding to 92% of Hungarian dwellings.  相似文献   

13.
Radon concentrations in dwellings vary by more than two orders of magnitude. Predicting where and when concentrations are likely to be high requires studying the variability of the contributors to radon in buildings. Among common sources, geological factors (water supply and substrate) are the most variable, whereas building materials are much less variable. Ventillation variation among houses is generally responsible for radon variations comparable to those introduced by building materials, but it is more significant at lower ventilation rates. In some regions with relatively high proportions of houses with elevated radon concentrations, mappable geological factors are associated with most cases of high radon concentrations. However, a priori identification of rock types likely to be implicated is likely to be successful in only a few cases.  相似文献   

14.
Diurnal variation of radon progeny   总被引:1,自引:0,他引:1  
The diurnal variation of the gross alpha (alpha) radioactivity in the air near the ground and the gamma (gamma) radioactivity emitted from the ground have been monitored in North-eastern Greece. Meteorological information comprising air temperature and humidity has been simultaneously recorded. Over a period of the 24h of a typical day, the variation of alpha-radioactivity reaches a peak in the morning followed by a remarkable decrease, rising to a second peak in the afternoon. Furthermore, its significant dependence on the air temperature and humidity is confirmed, rising with an increase in humidity and decrease in temperature. The variation of the ground gamma-radioactivity follows that of the air alpha-radioactivity. A mathematical model has been developed to describe the diurnal variation of the alpha-radioactivity in the air near the ground in terms of the above meteorological variables and ground level gamma-radioactivity.  相似文献   

15.
One of the essential parameters influencing of the dose conversion factor is the ratio of unattached short-lived radon progeny. This may differ from the value identified for indoor conditions when considering special workplaces such as mines. Inevitably, application of the dose conversion factors used in surface workplaces considerably reduces the reliability of dose estimation in the case of mines.This paper surveyed the concentration of radon and its short-lived radon progeny and identified the unattached fraction of short-lived radon progeny. As well equilibrium factor during the month of August was calculated simultaneously at two extraction faces in a manganese ore mine.During working hours the average radon concentrations were 220 Bq m−3 and 530 Bq m−3 at Faces 1 and 2; the average short-lived progeny concentration was 90 Bq m−3 and 190 Bq m−3, the average equilibrium factors were 0.46 and 0.36, and the average unattached fractions were 0.21 and 0.17, respectively. The calculated dose conversion factor was between 9 and 27 mSv WLM−1, but higher values could also be possible.  相似文献   

16.
Following an intensive survey of domestic radon levels in the United Kingdom (UK), the former National Radiological Protection Board (NRPB), now the Radiation Protection Division of the Health Protection Agency (HPA-RPD), established a measurement protocol and promulgated Seasonal Correction Factors applicable to the country as a whole. Radon levels in the domestic built environment are assumed to vary systematically and repeatably during the year, being generally higher in winter. The Seasonal Correction Factors therefore comprise a series of numerical multipliers, which convert a 1-month or 3-month radon concentration measurement, commencing in any month of the year, to an effective annual mean radon concentration. In a recent project undertaken to assess the utility of short-term exposures in quantifying domestic radon levels, a comparative assessment of a number of integrating detector types was undertaken, with radon levels in 34 houses on common geology monitored over a 12-month period using dose-integrating track-etch detectors exposed in pairs (one upstairs, one downstairs) at 1-month and 3-month resolution. Seasonal variability of radon concentrations departed significantly from that expected on the basis of the HPA-RPD Seasonal Correction Factor set, with year-end discontinuities at both 1-month and 3-month measurement resolutions. Following this study, monitoring with electrets was continued in four properties, with weekly radon concentration data now available for a total duration in excess of three and a half years. Analysis of this data has permitted the derivation of reliable local Seasonal Correction Factors. Overall, these are significantly lower than those recommended by HPA-RPD, but are comparable with other results from the UK and from abroad, particularly those that recognise geological diversity and are consequently prepared on a regional rather than a national basis. This finding calls into question the validity of using nationally aggregated Seasonal Correction Factors, especially for shorter exposures, and the universal applicability of these corrections is discussed in detail.  相似文献   

17.
The use of coefficients, derived from cross-sectional mortality studies, for air pollution risk assessment is quite controversial. In this study, the major limitations of cross-sectional studies are reviewed. The consistency of results from the major recent cross-sectional studies is examined, and the sensitivity of results to model specification is analyzed. Finally, the implications for risk assessment of our inquiries are discussed.  相似文献   

18.
Measurements were made of radon levels in 165 randomly selected homes in Cumberland County, PA during Winter 1984–1985. The average and mean levels were found to be 9.1 ± 0.7 pCi/L and 6.3 ± 0.5 pCi/L, respectively, many times normally encountered levels. Average and mean radon levels are reported vs. various house characteristics.  相似文献   

19.
The authors investigate the effect of filtration and aerosol loading of the air on the level of short-lived air-borne daughter products of radon. By the use of a combination of filtration and aerosol loading, it is possible to shift the partitioning of the radon daughters in the room between the states: airborne, plated-out on the walls, and trapped by filters; the airborne fraction will shift between being attached to aerosol particles and existing as molecular-sized clusters. When the air filtered the equilibrium factor decreases with increasing filtration rate. At high aerosol concentrations the decrease can be explained solely as an effect of the filter removing the daughter products from the air passing through it. As the aerosol production and concentration is lowered, the decrease in equilibrium factor becomes larger. This is caused by an increase in the unattached fraction of the airborne activity and hence in the wall-deposited fraction of the total activity. At a given radon concentration, the dose delivered to a certain portion of the respiratory tract depends not only upon the equilibrium factor but also upon the fraction of, especially, 84218Po in the unattached state. It is further demonstrated that, according to the dose model of Harley and Pasternak, the dose to the basal cells of the epithelium of the bronchii will in general decrease with increasing filtration rate and increase with decreasing aerosol concentration.  相似文献   

20.
Radon levels were measured in 119 groundwater samples collected throughout the active volcanic area of Mt. Etna by means of a portable Lucas-type scintillation chamber. The measured activity values range from 1.8 to 52.7 Bq l(-1). About 40% of the samples exceed the maximum contaminant level of 11 Bq l(-1) proposed by the USEPA in 1991. The highest radon levels are measured in the eastern sector of the volcano, which is the seismically most active zone of the volcano. On the contrary the south-western sector, which is both seismically active and a site of intense magmatic degassing, display lower radon levels. This is probably due to the formation of a free gas phase (oversaturation of CO(2)) that strips the radon from the water. Comparison of the data gathered at Mt. Etna with those of other areas indicates that (222)Rn activity in groundwater is positively correlated with both the content of parent elements in the aquifer rocks and the temperature of the geothermal systems that interacts with the sampled aquifers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号