首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tolhurst LE  Barry J  Dyer RA  Thomas KV 《Chemosphere》2007,68(8):1519-1524
The effect of resuspending sediment contaminated with Irgarol 1051 based antifouling paint particles on the green macroalga Ulva intestinalis was examined. U. intestinalis was also exposed to sediment spiked with Irgarol 1051. The macroalga were exposed over 21 days to the resuspension of sediments containing 61.2 mg kg(-1) of antifouling paint particles containing Irgarol 1051 that provided aqueous Irgarol 1051 concentrations of approximately 0.3 microg l(-1), Irgarol 1051 and appropriate controls. The growth response was compared with that for 'clean' sediment. Resuspension of sediment was associated with reduced growth when compared to seawater alone. Resuspension of sediment spiked with Irgarol 1051 was associated with a greater reduction in growth, with growth being significantly reduced when sediment containing antifouling paint particles was resuspended. The data suggest that the prolonged disturbance of sediments containing antifouling paint particles in marinas represents a potential and as yet unquantified hazard to photosynthetic organisms.  相似文献   

2.
Ogawa N  Okamura H  Hirai H  Nishida T 《Chemosphere》2004,55(3):487-491
Irgarol 1051 (2-methylthio-4-tert-butylamino-6-cyclopropylamino-s-triazine), a derivative of s-triazine herbicide, is an antifouling compound used as an alternative to organotins. The compound is highly persistent and is known to be biodegraded only by the white rot fungus, Phanerochaete chrysosporium. We used partially purified manganese peroxidase (MnP) prepared from P. chrysosporium to evaluate its capacity to degrade Irgarol 1051. MnP degraded Irgarol 1051 to two major products, one identified as M1 (identical to GS26575, 2-methylthio-4-tert-butylamino-6-amino-s-triazine) and the other not identified but with same mass spectrum as M1 and a different ultraviolet spectrum. This report clearly demonstrates that this ligninolytic enzyme is involved in the degradation of Irgarol 1051.  相似文献   

3.
Cima F  Ballarin L 《Chemosphere》2012,89(1):19-29
After the widespread ban of TBT, due to its severe impact on coastal biocoenoses, mainly related to its immunosuppressive effects on both invertebrates and vertebrates, alternative biocides such as Cu(I) salts and the triazine Irgarol 1051, the latter previously used in agriculture as a herbicide, have been massively introduced in combined formulations for antifouling paints against a wide spectrum of fouling organisms. Using short-term (60 min) haemocyte cultures of the colonial ascidian Botryllus schlosseri exposed to various sublethal concentrations of copper(I) chloride (LC50 = 281 μM, i.e., 17.8 mg Cu L−1) and Irgarol 1051 (LC50 > 500 μM, i.e., >127 mg L−1), we evaluated their immunotoxic effects through a series of cytochemical assays previously used for organotin compounds. Both compounds can induce dose-dependent immunosuppression, acting on different cellular targets and altering many activities of immunocytes but, unlike TBT, did not have significant effects on cell morphology. Generally, Cu(I) appeared to be more toxic than Irgarol 1051: it significantly (< 0.05) inhibited yeast phagocytosis at 0.1 μM (∼10 μg L−1), and affected calcium homeostasis and mitochondrial cytochrome-c oxidase activity at 0.01 μM (∼1 μg L−1). Both substances were able to change membrane permeability, induce apoptosis from concentrations of 0.1 μM (∼10 μg L−1) and 200 μM (∼50 mg L−1) for Cu(I) and Irgarol 1051, respectively, and alter the activity of hydrolases. Both Cu(I) and Irgarol 1051 inhibited the activity of phenoloxidase, but did not show any interactive effect when co-present in the exposure medium, suggesting different mechanisms of action.  相似文献   

4.
Lambert SJ  Thomas KV  Davy AJ 《Chemosphere》2006,63(5):734-743
Antifouling paints are used to reduce the attachment of living organisms to the submerged surfaces of ships, boats and aquatic structures, usually by the release of a biocide. Two 'booster' biocides in common use are the triazine herbicide Irgarol 1051 (N-2-methylthio-4-tert-butylamino-6-cyclopropylamino-s-triazine), and diuron (1-(3,4-dichlorophenyl)-3,3-dimethylurea), which are designed to inhibit algal photosynthesis. Previous research has been directed at the effects of these compounds in marine and estuarine environments. In 2001 we sampled the main rivers and shallow freshwater lakes (Broads) of East Anglia UK for Irgarol 1051, its metabolite GS26575 (2-methylamino-4-tert-butylamino-6-amino-s-triazine) and diuron in order to establish the baseline environmental concentrations of these compounds in freshwater systems of eastern UK and to investigate their possible effects on aquatic plants. Irgarol 1051, GS26575 and diuron were found in water samples collected from 21 locations. The highest concentrations were found in the Norfolk and Suffolk Broads in May. The rivers Great Ouse, Wissey, Bure and Yare also contained all three compounds, as did the Great Ouse Cut-off Channel. The toxicity of these biocides to three macrophyte species (Apium nodiflorum, Chara vulgaris, and Myriophyllum spicatum) was investigated. Deleterious effects on relative growth rate, the maximum quantum efficiency (Fv/Fm) of photosystem II and, for Apium, root mass production were found. C. vulgaris was generally most sensitive; growth, especially of roots, was strongly affected in A. nodiflorum; growth rate of M. spicatum was sensitive to diuron. No observed effect concentrations (NOEC) were interpolated using standard toxicological analysis. These were compared with measured environmental concentrations (MEC) to determine the ranges of risk quotients (MEC/NOEC). Both Irgarol 1051 and diuron represented significant risks to A. nodiflorum and C. vulgaris in this area.  相似文献   

5.
Humic-like substances (HLS) were extracted from a mixture of sewage sludges and trimmings (70-30%, w/w) after different times of composting (0, 70 days and 130 days). HLS were analyzed by elemental analysis, UV-visible and fluorescence spectroscopy and also tested for their ability to photosensitize the degradation of Irgarol. The rate of Irgarol photodegradation in artificial solar light was found to be 2.5- to 4.3-fold higher in the presence of HLS than in buffered Milli-Q water. These results were confirmed by experiments in solar light that evidenced the photodegrading properties of HLS in a more striking way. Using 2-propanol as hydroxyl radical scavenger, we could show that hydroxyl radicals contributed to the photosensitized Irgarol degradation for about 25%. The photodegrading activity of HLS, their absorbance and their emissive properties were all found to increase between 0 and 70 days of composting and to remain quite constant between 70 and 130 days. The degree of humification varied in the same way, linking all these properties to the humification process.  相似文献   

6.
Sargent CJ  Bowman JC  Zhou JL 《Chemosphere》2000,41(11):1755-1760
Irgarol 1051 (2-methylthio-4-tert-butylamino-6-cyclopropylamino-s-triazine) is an antifouling agent used in paint formulations that are applied to the hulls of ships. A survey was carried out at Conwy Marina in North Wales to determine the levels of the herbicide over a period of three months. Liquid/liquid extraction was used to concentrate the analyte for quantitative analysis using gas chromatography/mass spectrometry (GC/MS) in the selected ion monitoring (SIM) mode. The concentrations of Irgarol 1051 in Conwy marina ranged from 7 to 543 ng/l, similar to the levels found in many other marinas, estuaries and ports in England, although much lower than those in C?te d'Azur, France. The concentrations of Irgarol 1051 were not found to be influenced by salinity, pH or temperature, although there is a strong correlation between the average concentrations of Irgarol 1051 and the density of boating activity. At the levels found in the marina, it is possible that non-target photosynthetic inhibition could occur.  相似文献   

7.
Leaching of copper and zinc from spent antifouling paint particles   总被引:1,自引:0,他引:1  
Leaching of Cu and Zn from a composite of spent antifouling paint particles, containing about 300 mg g−1 and 110 mg g−1 of the respective metals, was studied in batch experiments. For a given set of simulated environmental conditions, release of Cu was independent of paint particle concentration due to attainment of pseudo-saturation, but Zn was less constrained by solubility effects and release increased with increasing particle concentration. Leaching of Cu increased but Zn decreased with increasing salinity, consistent with mechanisms governing the dissolution of Cu2O in the presence of chloride and Zn acrylates in the presence of seawater cations. Because of complex reaction kinetics and the presence of calcium carbonate in the paint matrix, metal leaching appeared to be greater at 4 °C than 19 °C under many conditions. These findings have important environmental and biological implications regarding the deliberate or inadvertent disposal of antifouling paint residues.  相似文献   

8.
Using short-term hemocyte cultures of the colonial ascidian Botryllus schlosseri exposed to various sublethal concentrations of Diuron (3-(3,4-diclorophenyl)-1,1-dimethylurea) and TCMS pyridine (2,3,5,6-tetrachloro-4-(metylsulphonyl)pyridine), we evaluated their immunotoxic effects through a series of cytochemical assays previously used for organotin compounds. At concentrations higher than 250 micro M and 10 micro M for Diuron and TCMS pyridine, respectively, both biocides exerted immunosuppressant effects on Botryllus hemocytes, causing i) deep changes in the cytoskeleton that irreversibly affect cell morphology and phagocytosis, ii) induction of DNA damage, iii) leakage of oxidative and hydrolytic enzymes due to membrane alteration. Unlike organotin compounds, Diuron and TCMS pyridine do not inhibit cytochrome-c-oxidase, and only TCMS pyridine triggers oxidative stress. When co-present, they exert an antagonistic interaction on cytoskeletal components.  相似文献   

9.
This study investigated lethal and sublethal effects (glutathione, lipid peroxidation, cholesterol, and acetylcholinesterase) of the anti-fouling herbicide Irgarol 1051 on larval and adult grass shrimp (Palaemonetes pugio). The 96-hour LC50 test for larvae resulted in an estimated LC50 of 1.52 mg/L (95% confidence interval [CI] 1.26–1.85 mg/L). The adult 96-h LC50 was 2.46 mg/L (95% CI = 2.07–2.93 mg/L). Glutathione, lipid peroxidation, cholesterol and acetylcholinesterase levels were not significantly affected in adult grass shrimp by exposure of up to 3.00 mg/L irgarol. Lipid peroxidation and acetylcholinesterase levels in the larvae were significantly higher than controls in the highest irgarol exposures of 1.0 and 2.0 mg/L, respectively. Cholesterol levels were significantly reduced in larvae in all four irgarol concentrations tested while glutathione levels were not significantly affected in larvae. Both lethal and sublethal effects associated with irgarol exposure were only observed at concentrations well above those reported in the environment.  相似文献   

10.
This study investigated lethal and sublethal effects (glutathione, lipid peroxidation, cholesterol, and acetylcholinesterase) of the anti-fouling herbicide Irgarol 1051 on larval and adult grass shrimp (Palaemonetes pugio). The 96-hour LC50 test for larvae resulted in an estimated LC50 of 1.52 mg/L (95% confidence interval [CI] 1.26-1.85 mg/L). The adult 96-h LC50 was 2.46 mg/L (95% CI = 2.07-2.93 mg/L). Glutathione, lipid peroxidation, cholesterol and acetylcholinesterase levels were not significantly affected in adult grass shrimp by exposure of up to 3.00 mg/L irgarol. Lipid peroxidation and acetylcholinesterase levels in the larvae were significantly higher than controls in the highest irgarol exposures of 1.0 and 2.0 mg/L, respectively. Cholesterol levels were significantly reduced in larvae in all four irgarol concentrations tested while glutathione levels were not significantly affected in larvae. Both lethal and sublethal effects associated with irgarol exposure were only observed at concentrations well above those reported in the environment.  相似文献   

11.
船舶防污漆在船舶航行过程中向外缓慢的释放毒素,对海洋环境以及海洋生物造成了严重的危害。废弃船舶在拆解过程中得不到有效处理同样会造成二次污染。该研究选取了十艘待拆解船舶的防污漆并对其污染物进行了分析检测,包括多环芳烃、重金属、挥发性有机污染物以及DDT。通过分析不同污染物的浓度以及毒性建立了防污漆有害物质清单,并建立起一套无尘打磨+高效吸附+无害化焚烧的防污漆处理系统。针对一艘10 000 t以上待拆解船舶进行示范作业并计算环境收益,该研究对防污漆的无害化处理提供了一个示范性的案例。  相似文献   

12.
The marine macroalga, Ulva lactuca, has been exposed to different concentrations of antifouling paint particles (4–200 mg L?1) in the presence of a fixed quantity of clean estuarine sediment and its photosynthetic response and accumulation of Cu and Zn monitored over a period of 2 days. An immediate (<2 h) toxic effect was elicited under all experimental conditions that was quantitatively related to the concentration of contaminated particles present. Likewise, the rate of leaching of both Cu and Zn was correlated with the concentration of paint particles added. Copper accumulation by the alga increased linearly with aqueous Cu concentration, largely through adsorption to the cell surface, but significant accumulation of Zn was not observed. Thus, in coastal environments where boat maintenance is practiced, discarded antifouling paint particles are an important source of Cu, but not Zn, to U. lactuca.  相似文献   

13.
The antifouling herbicide Irgarol 1051 has been detected in recent years in numerous estuaries, marinas, harbors and coastal areas, and in some harbors on Lake Geneva, but so far only a few studies have investigated the ecotoxicological effects of this compound on microalgae. The purpose of this study was to assess the ecotoxicological impact of Irgarol 1051 on the algal communities of Lake Geneva, and to compare its phytotoxicity to that of the common triazine herbicide, atrazine. We investigated the response of phytoplanktonic and periphytonic algal communities and single-species isolates collected from the lake, to the PS II inhibitor Irgarol 1051 (growth, proxy of photosynthetic activity and community structure). A short-term bioassay was developed based on in vivo fluorescence, together with nanocosm experiments with natural algal communities, and single-species tests on algal strains isolated from the lake. The toxicity of Irgarol 1051 towards periphyton and phytoplankton was shown to be higher than that of atrazine. Indications of the tolerance induced by this triazine in the algal communities of Lake Geneva, suggests that even at the levels of contamination reported in some parts of the lake, Irgarol 1051 is already exerting selection pressure. Information about sensitivities, selection and tolerance from laboratory experiments are used to explain the observations in natural microalgal communities from the lake.  相似文献   

14.
Used supply air filters were studied by sensory and chemical methods. In addition, filter dust was examined by thermodesorption/cold trap (TCT) and headspace (HS) devices connected to a GC–MS. The prefilter was the main odor source in the ventilation unit, but when humidifier was turned on odor was released mainly from the fine filter. However, the effect of the relative humidity (RH) was only temporary. At the same time, there was an increase in the concentration of aldehydes after the filters. Aldehydes, carboxylic acids, and nitrogen-containing organic compounds were the main emission products in the thermodesorption analyses of the filter dust. Many of these compounds have low odor threshold values and, therefore, contribute to the odor released from the filters. Especially, the role of aldehydes seems to be important in the odor formation.  相似文献   

15.
Fragments of antifouling paint and environmental geosolids have been sampled from the island of Malta and analysed for total and bioaccessible metals. Total concentrations of Ba, Cd, Cu, Pb, Sn and Zn were two to three orders of magnitude higher in spent antifouling composites relative to respective values in background soils and road dusts. Paint fragments were visible in geosolids taken from the immediate vicinity of boat maintenance facilities and mass balance calculations, based on Ba as a paint tracer, suggested that the most contaminated soils, road dusts and boatyard dusts contained about 1%, 7% and 9%, respectively, of antifouling particles. Human bioaccessibilities of metals were evaluated in selected samples using a physiologically based extraction technique. Accessibilities of Cd, Cu, Pb and Zn in the most contaminated solids were sufficient to be cause for concern for individuals working in the boat repair industry and to the wider, local community.  相似文献   

16.
Since the restriction imposed by European Union regulations on the use of TBT-based antifouling paints on boats below 25 m in length, new terms have been introduced in the 'small boat' market. Replacement products are generally based on copper metal oxides and organic biocides. Several studies have demonstrated the presence of these biocides in European ports and marinas of Spain, France, Germany and the United Kingdom. An extended survey of the antifouling biocides chlorothalonil, dichlofluanid, irgarol 1051 and sea-nine 211 was carried out in Greek ports and marinas of high boating activities from October 1999 to September 2000. The sampling sites were: Piraeus, Elefsina, Thessaloniki, Patras, Chalkida, Igoumenitsa, and Preveza (Aktio). The extraction of these compounds from the seawater samples was performed off-line with C18 solid phase extraction (SPE) disks while the determination was carried out with gas chromatography coupled to electron capture (ECD), thermionic (FTD) and mass spectroscopy (MS) detectors. The concentration levels of biocides were higher during the period from April to October. This seasonal impact depends on the application time of antifouling paints and mimic trends in the seasonal distribution of biocides in other European sites.  相似文献   

17.
Environmental Science and Pollution Research - Maintenance of maritime vessels includes the removal of paint from hulls that are sources of metals, antifouling paint particles (APPs) and...  相似文献   

18.
Leaching of Cu and Zn from a composite of discarded antifouling paint residues ([Cu] = 288 mg g−1; [Zn] = 96 mg g−1) into natural sea water has been studied over a period of 75 h. Total Cu and Zn were released according to a pseudo first-order reaction, with rate constants on the order of 0.3 and 2.5 (mg L−1)−1 h−1, respectively, and final concentrations equivalent to the dissolution of about 8 and 2% of respective concentrations in the composite. Time-distributions of hydrophobic metals, determined by solid phase extraction-methanol elution, were more complex. Net release of hydrophobic Cu was greater in the absence of light than under a sequence of light-dark cycles; however, hydrophobic Zn release was not detected under the former conditions but contributed up to 50% of total aqueous Zn when light was present. These observations are interpreted in terms of the relative thermodynamic and photolytic stabilities of biocidal pyrithione complexes.  相似文献   

19.
Analytical procedures for the determination of nine organic booster biocides which are currently licensed for use in marine antifouling paints, and are thought likely to occur at concentrations in the ng 1−1 range in estuarine water samples, are reviewed. A robust multiresidue method for the determination of four compounds (chlorothalonil, dichlofluanid, diuron and Irgarol 1051) is suggested. A route for the development of a method for the analysis of zinc pyrithione is outlined, based on an extraction method and subsequent derivatisation prior to determination by HPLC with fluorescence detection. Methodology for Zineb, Kathon 5287, TCMS pyridine and TCMTB is less clearly defined.  相似文献   

20.
Xin J  Liu X  Liu W  Jiang L  Wang J  Niu J 《Chemosphere》2011,84(3):342-347
This study provides the first intensive investigation of Dichlorodiphenyltrichloroethanes (DDT) distribution in typical paint factories and shipyards in China where DDT containing antifouling paint were mass produced and used respectively. DDTs were analyzed in soil, sludge and sediment samples collected from three major paint factories and two shipyards. The results showed that the total DDTs concentrations detected in paint factory and shipyard sites ranged from 0.06 to 8387.24 mg kg−1. In comparison with paint factory sites, the shipyard sites were much more seriously contaminated. However, for both kinds of sites, the DDTs level was found to be largely affected by history and capacity of production and use of DDT containing antifouling paint. (DDE + DDD)/DDT ratios indicated that DDT containing antifouling paint could serve as important fresh input sources for DDTs. It can be seen that most samples in shipyards were in ranges where heavy contamination and potential ecological risk were identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号