共查询到20条相似文献,搜索用时 0 毫秒
1.
Thermogravimetric analysis and kinetic study on pyrolysis of representative medical waste composition 总被引:1,自引:0,他引:1
To obtain detailed information on the pyrolysis characteristics, a thermogravimetric study on the pyrolysis of 14 typical medical waste compositions was carried out in thermogravimetric analysis (TGA) equipment using dynamic techniques in a stream of N(2). An index representing pyrolysis reactivity of waste was presented. Kinetic parameters were obtained by Coats-Redfern method and used to model the TG curve. The results showed that: (a) Plastic, protein, cellulosic material, synthetic fibre, and rubber entered pyrolysis process in succession. (b) There was one decomposition stage in the pyrolysis of one-off medical glove, operating glove, cellulosic waste, absorbable catgut suture and adhesive plaster, while other components had two obvious weight loss stages. (c) The obtained apparent activation energy for second stage pyrolysis was comparably higher than that for first stage. (d) Each stage was controlled by only one kinetic mechanism, in which kinetic parameters were constant. (e) The degradation kinetics of medical waste may be affected by special physical and chemical treatment in the product manufacturing process. (f) Among 13 waste samples, the pyrolysis index of cellulosic matter was the highest, which indicated cellulosic matter had strong pyrolysis reactivity. (g) With increasing heating rate, TG curve and DTG peak shifted to high temperatures and main reaction interval of the sample became longer. 相似文献
2.
We investigated the thermal properties and behavior of bromine on the thermal decomposition of paper-based phenolic laminate
wastes containing polybrominated flame retardants. The thermal properties of the phenolic laminate wastes were measured with
a thermogravimeter and a conduction-type scanning calorimeter (TG-CSC). The weight loss of the wastes on thermal decomposition
was mainly in three phases between 40°C and 600°C. The enthalpy (ΔH) of the thermal decomposition was 104 cal/g. The material balance of the decomposition components was measured with batch-type
thermal decomposition equipment. The ratios of carbon residue, liquid, and gas on decomposition at 800°C in a vacuum were
37 wt. %, 48 wt. %, and 15 wt. %, respectively. The bromine contents in the carbon residue and liquid were less than 0.02 wt.
% and 10 wt. %, respectively. These results are useful both in the carbonization process of these wastes and in the application
of carbon residue as carbon materials.
Received: August 11, 2000 / Accepted: March 7, 2001 相似文献
3.
Pyrolysis of large printed circuit board (PCB) waste particle was conducted on a specially designed laboratory-scale thermobalance (Macro-TG) with sample loading of 30 g under dynamic nitrogen atmosphere. The effects of heating rate (10, 15, 20 and 25 °C min?1) and particle size (1 mm × 1 mm, 5 mm × 5 mm, 10 mm × 10 mm and 10 mm × 20 mm) were examined. To compare the different decomposition behavior of fine and large one, the thermal decomposition of PCB waste powder (approximately 5 mg) was also performed on a thermogravimetric analyzer (common TG) under various heating rates (10, 15, 20 and 40 °C min?1) and particle size ranges (0.198–0.165 mm, 0.165–0.074 mm, 0.074–0.055 mm and 0.055–0.047 mm). Experimental results show that large particle has a pyrolysis reaction retardancy compared to fine one. The distributed activation energy model was used to study the pyrolysis kinetics. It was found that during pyrolysis process, values of frequency factor (k0) changed with different activation energy (E) values. On common TG, the E values range from 156.95 to 319.37 kJ mol?1 and k0 values range from 2.67 × 1013 to 2.24 × 1027 s?1. While, on Macro-TG, the range of E was 31.48–41.26 kJ mol?1 and of the frequency factor was 19.80–202.67 s?1. 相似文献
4.
李向辉 《再生资源与循环经济》2011,4(6):37-41
相对于填埋、焚烧等传统的处理方法,废塑料热解技术不仅可以降低塑料处理过程中对环境的污染,而且可以将废塑料还原成燃料和化学品,从而有效地回收废物资源。但是废塑料热解反应通常需要很高的温度,使得热解法回收废塑料过程变得复杂。分析比较了热解回收废塑料相对于其他方法的优势,并系统地阐述了塑料热降解的机理。在综合国内外研究的基础上提出两种低温热解废塑料的方法:加催化热解和共热解。并利用塑料降解的自由基理论,分析了催化热解和共热解法降低塑料降解温度的机理。 相似文献
5.
6.
Misoo Shin Dongsoon Jang Jongwook Ha 《Journal of Material Cycles and Waste Management》2016,18(3):399-406
Considering the global warming potential of R-134a (C2H2F4) with the substantial generation of this refrigerant as waste material in various industrial sectors, the development of proper thermal destruction method of R-134a is of great practical significance. For this, experiment and numerical calculations have initially made for a tubular-type furnace in order to figure out the basic combustion characteristics of R-134a. A series of experimental investigations for the thermal decomposition of R-134a have been made as a function of wall temperature of tubular furnace and important reacting species such as O2 and H2O necessary for the decomposition of C2H2F4 into HF, CO2 and H2O. In general, the thermal decomposition of R-134a is successfully made for the condition of temperature above 800 °C with the supply of stoichiometric amount of O2 and these results are well agreed with numerical prediction. And this information is employed for the simulation of a full-scale, practical incinerator used for the CDM project. For this, numerical investigation has been made for a commercial-scale incinerator using CH4–air flames for the proper destruction C2H2F4 together with the control of pollutants such as CO and NO. In general, the destruction rate of C2H2F4 appears more than 99.99 % and the generation of CO and NO species appears rather sensitive to the operational condition such as amount of water vapor. The numerical method of HFCs (hydrofluorocarbons) thermal treatment shows high possibility as a viable tool for the proper design and optimal determination of the operational condition for a HFCs incinerator. 相似文献
7.
Mercury, in contrast to other toxic metals, cycles between the atmosphere, land, and water. During this cycle, it undergoes a series of complex chemical and physical transformations. Because of these transformations, it is found in the environment not only as simple inorganic and organic compounds, but also as complex compounds. As a result, it is difficult to remediate mercury contaminated materials. Laboratory studies were conducted with a mercury contaminated complex waste from an industrial site to evaluate the ability of extractants such as H2O2, H2SO4 and Na2S2O3 to decontaminate the waste. Up to 87 percent of the total mercury present in the waste was extracted. Mercury was recovered as insoluble mercury sulfide by adding Na2S solution to the combined filtrates from the H2O2 + H2SO4 and Na2S2O3 treatment steps. The technique described in this article is capable of recovering mercury in a usable form and can be used as a pretreatment to remediate mercury contaminated waste before laud disposal. 相似文献
8.
9.
赵联朝 《再生资源与循环经济》2004,(5)
针对废旧锌锰电池中汞分散存在给回收处理废旧锌锰电池工作完全回收汞所带来的困难,利用汞和铵的性质特点,找到了从废旧锌锰电池中集中回收汞和铵的工艺条件,为废旧锌锰电池的资源化和防止二次污染创造了有利条件. 相似文献
10.
11.
Pyrolysis of aseptic packages (tetrapak cartons) in a laboratory apparatus using a flow screw type reactor and a secondary catalytic reactor for tar cracking was studied. The pyrolysis experiments were realized at temperatures ranging from 650 °C to 850 °C aimed at maximizing of the amount of the gas product and reducing its tar content. Distribution of tetrapak into the product yields at different conditions was obtained. The presence of H2, CO, CH4, CO2 and light hydrocarbons, HCx, in the gas product was observed. The Aluminum foil was easily separated from the solid product. The rest part of char was characterized by proximate and elemental analysis and calorimetric measurements. The total organic carbon in the tar product was estimated by elemental analysis of tars. Two types of catalysts (dolomite and red clay marked AFRC) were used for catalytic thermal tar decomposition. Three series of experiments (without catalyst in a secondary cracking reactor, with dolomite and with AFRC) at temperatures of 650, 700, 750, 800 and 850 °C were carried out. Both types of catalysts have significantly affected the content of tars and other components in pyrolytic gases. The effect of catalyst on the tetrapack distribution into the product yield on the composition of gas and on the total organic carbon in the tar product is presented in this work. 相似文献
12.
Wang HY 《Waste management (New York, N.Y.)》2009,29(1):335-341
In order to study the recycling of discarded liquid crystal display (LCD) glass into concrete (LCDGC), a portion of the usual river sand was replaced by sand prepared from discarded LCD glass. Three different mix designs were regulated by the ACI method (fc(28)=21, 28, and 35MPa) with 0%, 20%, 40%, 60%, and 80% LCD glass sand replacements investigated; their engineering properties were determined. Test results revealed that, when compared to the design slump of 15cm, the 20% glass sand concrete for the three different mix designs kept good slump and slump flow. Furthermore, a slump loss ranging from 7 to 11cm was observed for specimens with 60% and 80% glass sand replacement for the design strengths of 28 and 35MPa. The compressive strengths of the concrete with glass sand replacement were higher than the design strengths. Moreover, the durability of the concrete with 20% glass sand replacement was better than that of the control group. Surface resistivity for specimens with different amounts of LCD glass sand replacement was also higher than that in the control group for mid to long curing ages. The sulfate attack in concrete with different amounts of glass sand replacement caused less weight loss than in the control group. Moderate chloride ion penetration was observed for glass sand concrete. Furthermore, the measured ultrasonic pulse velocities for LCD glass sand concrete specimens were higher than 4100m/s, which qualified these specimens as good concrete. OM and SEM indicate that the dense C-S-H gel hydrate was produced at the interface between the glass sand and cement paste. The test results indicate that the addition of 20% LCD glass sand to concrete satisfies the slump requirements and improves the strength and durability of concrete. This suggests that LCD glass sand can potentially be used as a recycled material in concrete applications. 相似文献
13.
在传统的电镀污泥回收有价金属工艺基础上,提出了焚烧预处理新技术,成功降低了电镀污泥的含水率,使其体积及重量都大幅度的减少,并同时提高了焚烧渣的重金属含量.当焚烧温度适宜时,焚烧对电镀污泥的酸浸过程的影响很小,重金属的浸出率仍保持在较高水平. 相似文献
14.
Journal of Material Cycles and Waste Management - The recycling of industrial wastes has in recent years become a priority issue. The relevant work on reducing the adverse effects of industrial... 相似文献
15.
Tohru Kamo Kanji Takaoka Junichiro Otomo Hiroshi Takahashi 《Journal of Material Cycles and Waste Management》2006,8(2):109-115
Steam gasification of dehydrochlorinated poly(vinyl chloride) (PVC) or activated carbon was carried out in the presence of
various alkali compounds at 3.0 MPa and 560°C–660°C in a batch reactor or in a semi-batch reactor with a flow of nitrogen
and steam. Hydrogen and sodium carbonate were the main products, and methane and carbon dioxide were the minor products. Yields
of hydrogen were high in the presence of sodium hydroxide and potassium hydroxide. The acceleration effect of the alkali compounds
on the gasification reaction was as follows: KOH > NaOH > Ca(OH)2 > Na2CO3. The rate of gasification increased with increasing partial steam pressure and NaOH/C molar ratio. However, the rate became
saturated at a molar ratio of NaOH/C greater than 2.0. 相似文献
16.
17.
18.
Junya Katagiri Siqingaowa Borjigin Toshiaki Yoshioka Tadaaki Mizoguchi 《Journal of Material Cycles and Waste Management》2010,12(2):136-146
The formation and decomposition of tetrafluoroborate ions (BF4−) in H3BO3-Al3+-F− solutions were investigated via experiments and thermodynamic calculations. The concentration of the formed BF4− increased with decreasing pH, raising the total fluoride concentration and lowering the total aluminum ion concentration.
Once formed, BF4− was stable under neutral and alkaline conditions. Fluoride in the form of BF4− was converted to fluoroaluminate ions by adding an aluminum compound under acidic conditions. A method for removing fluoride
in the form of BF4− is proposed whereby fluoroaluminate ions formed by the reaction of BF4− with aluminum are decomposed with calcium ions. This process was applied to the treatment of wastewater from flue gas desulfurization
plants, and resulted in a satisfying level of reduction in the range of the fluoride emission limit of 8 mg/l. 相似文献
19.
Nobuhisa Watanabe Shusuke Takemine Katsuya Yamamoto Yuki Haga Mitsuyasu Takata 《Journal of Material Cycles and Waste Management》2016,18(4):625-630
Perfluorooctanoic acid (PFOA), perfluorohexanoic acid (PFHxA) and perfluorooctane sulfonate (PFOS) adsorbed onto granular activated carbon (GAC) were thermally treated in N2 gas stream. The purpose was to assess the fate of perfluoroalkyl and polyfluoroalkyl substances (PFASs) during thermal regeneration of GAC, which had been used for water treatment. Mineralized F, residual PFASs including short-chained species, and volatile organic fluorine (VOF) were determined. In a temperature condition of 700 °C, VOF were 13.2, 4.8, and 5.9 % as for PFOA, PFHxA, and PFOS. However, the VOF decreased to 0.1 %, if the GAC and off-gas were kept at 1000 °C. No PFASs remained in GAC at 700–1000 °C; at the same time, short-chained PFASs were slightly detected in the aqueous trapping of off-gas at 800 and 900 °C conditions. The destruction of PFASs on GAC could be perfect if the temperature is higher than 700 °C; however, the process is competitive against volatile escape from GAC. Destruction in gaseous phase needs a temperature as high as 1000 °C. Destruction of PFASs on the surface of GAC, volatile escape from the site, and thermolysis in gas phase should be considered, as to thermal regeneration of GAC. 相似文献
20.
This paper aims to calculate the energetic and environmental effects of an integrated solid waste management system in Palermo, Italy. In particular, the thermal treatment of Municipal Solid Waste (MSW) with energy recovery is assessed. The current characterization at the local scale is taken into account. Two different options of collection are taken into account: (1) unselected wastes; and (2) sorted collection, according to the current Italian regulation. Combustion process is analyzed and the following features are calculated: (1) stoichiometric content of air and air excess; and (2) temperature and enthalpy of flue gases. Energy recovery is performed in the hypothesis of Hirn cycle both with steam condensation to produce only power, and with bleeding cycle for the combined production of power and thermal energy. Total electric efficiency is assumed as representative index of the technological level of the assessed plant. Results show that the thermal treatment of selected MSW, associated with a cogenerative recovery of energy, represents a relevant sustainable strategy of waste valorization as an alternative to fossil fuels. 相似文献