共查询到20条相似文献,搜索用时 31 毫秒
1.
The main purpose of this research is to study the addition effect of the surfactant and other operating factors on the treatment of wastewater containing mercury ions in aqueous solution by cementation with sacrificing metal, zinc. The removal of mercury ions from aqueous solutions by cementation of zinc powder was found to be a function of solution pH and temperature, amount of zinc, concentration of mercury ion, contact time and the addition of several organic surfactants. Cementation of mercury was shown to be a feasible process to achieve a very high degree of mercury removal over a broad operational range within a fairly reasonable contact time. The reaction rate is approximately first order with respect to the concentration of mercury ion in aqueous solution. Among the surfactants used in this study, only the presence of SDS, an anionic surfactant, slightly enhanced the cementation rate of mercury. The presence of CTAB and Triton-X100 retarded the cementation of mercury by zinc. 相似文献
2.
Mercury leaching characteristics of waste treatment residues generated from various sources in Korea
Jae Han Cho Yujin Eom Jung-Min Park Sang-Bo Lee Ji-Hyung Hong Tai Gyu Lee 《Waste management (New York, N.Y.)》2013,33(7):1675-1681
In this study, mercury (Hg) leaching characteristics of the waste treatment residues (fly ash, bottom ash, sludge, and phosphor powder) generated from various sources (municipal, industrial, medical waste incinerators, sewage sludge incinerator, oil refinery, coal-fired power plant, steel manufacturing plant, fluorescent lamp recycler, and cement kiln) in Korea were investigated. First, both Hg content analysis and toxicity characteristic leaching procedure (TCLP) testing was conducted for 31 collected residue samples. The Hg content analysis showed that fly ash from waste incinerators contained more Hg than the other residue samples. However, the TCLP values of fly ash samples with similar Hg content varied widely based on the residue type. Fly ash samples with low and high Hg leaching ratios (RL) were further analyzed to identify the major factors that influence the Hg leaching potential. Buffering capacity of the low-RL fly ash was higher than that of the high-RL fly ash. The Hg speciation results suggest that the low-RL fly ashes consisted primarily of low-solubility Hg compounds (Hg2Cl2, Hg0 or HgS), whereas the high-RL fly ashes contain more than 20% high-solubility Hg compounds (HgCl2 or HgSO4). 相似文献
3.
Munsol Ju Sung-Jin Bae Jae Young Kim Dong-Hoon Lee 《Journal of Material Cycles and Waste Management》2016,18(3):419-426
Source-separated collection system of household food waste has been implemented national wide in South Korea. Food waste recycling rate that means conversion rate to recycle is over 90 % in present. However, over the value of 90 %, we need to enhance the efficiency of food waste recycling process. We analyzed material flow of 24 food waste recycling facilities and calculated solid recovery rate to key-process. We found that 3–13 % of the solids from food waste outflows with foreign materials and 27–33 % of the solids outflow with wastewater. As a result, solid recovery rates are 65.3, 60.9, and 56.3 % in wet feed facility, dry feed facility, and composting facility, respectively. Alternative ways to recovery solid from wastewater or collection tools to exclude plastic bags, salt, and moisture content are required to make food waste recycling more efficient. 相似文献
4.
The material flow approach provides a framework from which to address resource management and estimate gross environmental impacts, both spatially and temporally. In this article, the major flows of zinc in Oceania over its entire life-cycle are examined; these include production (mining, milling, and refining), fabrication and manufacturing of semi- and finished products, use, and the waste management system. Comprehensive mass balances were applied to determine the zinc flows, including the quantities of zinc entering stocks in waste and in-use reservoirs. The Oceania cycle shows that substantial amounts of zinc (about 1120Gg/year) are mined on the continent. The total flow of zinc in finished products entering the use stage is about 8.6kg/(capita.year), substantially exceeding the zinc flow in discarded products. This difference, about 7.2kgZn/(capita.year) on average, is added to the in-use reservoir, largely for galvanizing applications in domestic construction and transportation. Less than 60% of all discarded zinc entering the waste management system is recycled. Much of the remaining discarded zinc is diluted into other waste streams, where recovery and recycling are probably not economically feasible. 相似文献
5.
Kim Junbeum Lee Seung-Jin Lee Geon-Ho Kim Young Woon Hwang Yongwoo 《Journal of Material Cycles and Waste Management》2022,24(2):517-527
Journal of Material Cycles and Waste Management - In this study, an ammonia flow analysis that presents how ammonia is used or handled in the South Korean fertilizer industry is developed using... 相似文献
6.
This study estimated domestically available energy amount of biomethane including landfill gas (LFG) as a transportation fuel by 2035. The amount of available energy that could be supplied was predicted through four stages of ‘theoretical-’, ‘geographical-’, ‘technical-’, and ‘market potential’ by considering geographical, technical, economic conditions, etc. Energy efficiency and added value of biomethane are largely influenced by the site conditions and the neighboring infrastructures. So, how much of the natural gas used in transportation could be substituted with biomethane was examined by setting limits to the amount of organic wastes generated within urban areas. As a result, the market potential of biomethane including landfill gas was approximately 331 × 106 Nm3/year, corresponding to 25% of the natural gas supply for transportation, which could be replaced by biomethane. Assuming that 2% of natural gas for transportation is replaced by biomethane, it corresponds to 29 × 106 Nm3/year (approximately 9% of market potential of biomethane). However, RFS annual mixing rate may be increased upon introduction and the growth rate of the natural gas supply for transport would be higher than that of market potential of biomethane calculated in this study. 相似文献
7.
Natural disasters such as typhoon, flood, and heavy rainfall cause damage in South Korea every year during the summer season. After each rainy season, South Korea suffers not only from flood wastes but also from debris that pile up at dams and stagnate at the estuary of the river. Thus, it is very important to handle these types of wastes as quickly as possible to recover from flood damages and to prevent environmental contamination such as offensive odor and water contamination by the leachate from flood wastes. Other countries such as Japan or USA have established and implemented regulations and guidelines for flood waste. Note, however, that South Korea did not establish practical guidelines; hence, the urgency of establishing practical measures for flood waste. In this study, we suggested various ways of making environmentally sound guidelines including the method of reducing the amount of flood waste by environmentally sound treatment process for flood waste, and the method of setting up and operating the temporary storage site for purposes of efficient separation and treatment of flood waste. 相似文献
8.
Taein Ohm Soyoung Myung Wanbok Jang Shiri Yu 《Journal of Material Cycles and Waste Management》2017,19(2):631-644
HFCs (hydrofluorocarbons) emerged as alternative refrigerants after the production of chlorofluorocarbons was banned and hydrochlorofluorocarbons were phased out, under the Montreal Protocol on Substances that Deplete the Ozone Layer. However, because the Kyoto Protocol considered HFCs as greenhouse gases, and their impact on climate change has been increasing, major developed countries have been strengthening existing regulations on the use of HFCs as refrigerants. South Korea has also passed various legislations related to refrigerant management. However, reports indicate that implementation of these regulations has been ineffective, due to the absence of a specific system for managing the production, use, and disposal phases of refrigerants. To identify and resolve these issues, this study investigates the current state of refrigerant management in South Korea for those three phases. Refrigerant management policies are compared between different legislatures, using the examples of the European Union, United States, and Japan. Based on the findings, five types of measures are suggested to reduce the production and consumption of refrigerants, and to improve refrigerant management regulations in ways that are most appropriate to the South Korean context. 相似文献
9.
Takaoka Masaki Hamaguchi Daisuke Shinmura Ryuhei Sekiguchi Tomoo Tokuichi Hiroyuki 《Journal of Material Cycles and Waste Management》2017,19(2):863-869
Journal of Material Cycles and Waste Management - Mercury emissions from non-ferrous metal industries are a major environmental concern. Because of the large differences in mercury emission factors... 相似文献
10.
Soyoung Kim Masahiro Oguchi Aya Yoshida Atsushi Terazono 《Waste management (New York, N.Y.)》2013,33(2):474-483
We estimated the amount of waste electrical and electronic equipment (WEEE) generated in South Korea by using the population balance model (PBM) based on a lifespan distribution analysis. This is the first study to apply PBM to estimate WEEE generation in South Korea. The lifespan distribution analysis of electrical and electronic equipment (EEE) was based on the results of a questionnaire survey of 1000 households, which were analyzed with the Weibull distribution. As a result, we could estimate the domestic service lifespan and lifespan distribution shape parameter for eight selected products. Using the lifespan distribution analysis and other data, such as the shipment volume and the number of products owned by households, we estimated the amount of WEEE generated for the eight selected items from 2000 to 2020. We found that 1.2 million air conditioners, 2.5 million televisions, 1.3 million microwave ovens, 1.2 million kimchi refrigerators, 17.0 million mobile phones, 1.7 million refrigerators, 2.0 million vacuum cleaners, and 1.4 million washing machines were generated as WEEE in 2010. We also compared our WEEE estimates with the number of items collected through the official WEEE recycling program from 2003 to 2009 and found that in 2009 washing machines had the highest collection rate (28%) and air conditioners had the lowest rate (7%). 相似文献
11.
Dongjin Lee Jisu Bae Jungu Kang Kiheon Kim 《Journal of Material Cycles and Waste Management》2016,18(3):445-454
This study was to find out potential of methane yield on food waste and food waste leachate as biomass in Korea. The seven biogasification facilities were selected for comparison of theoretical methane yield and actual methane yield. The theoretical methane yield was calculated based on organic constituents (carbohydrate, protein, fat) and based on element analysis. The actual methane yield was investigated based on volatile solids and CODcr. Theoretical methane yields by organic constituents were 0.52 Sm3CH4/kg VS and 0.35 Sm3CH4/kg CODcr and these by element analysis were 0.53 Sm3CH4/kg VS and 0.36 Sm3CH4/kg CODcr. Actual methane yields were 0.36 Sm3CH4/kg VSin and 0.26 Sm3CH4/kg CODcrin. Considering the average removal efficiency of organic materials of seven FWL biogasification facilities, actual methane yields were 0.48 Sm3CH4/kg VSrem and 0.33 Sm3CH4/kg CODcrrem. Methane yield by organic constituents is very similar to that by element analysis and actual methane yields of volatile solids and CODcr were similar to theoretical value. The actual methane yield in this study showed approximated boundary values with previous other references which conducted in lab-scale or biochemical methane potential (BMP) tests. In conclusion, Korean food waste and food waste leachate have sufficient potential of methane yield in the ongoing biogasification facilities. 相似文献
12.
Sung-Won Yoo Young Keun Cho Sang-Hwa Jung Kwang-Myung Lee Seung-Jun Kwon 《Journal of Material Cycles and Waste Management》2017,19(2):694-711
In South Korea, nine million tons of fly ash (FA) are annually produced and approximately 70 % is reutilized for industrial demand. For the prompt reuse and insufficient reclamation site, quality control of FA which is main productive construction material from coal ash is very important. Assessed Pozzolanic-activity Index (API) test which needs only 2 days for evaluation of pozzolanic reaction is currently considered as an alternative of activity index measurement. This paper aims for an applicability of API test for prompt quality control and investigation of domestic FA properties. For the work, FAs from two different power plant types are prepared, and quality tests are carried out based on Korean Standards (KS) methods and API method. Lots of test results are compared with those from API and K-value test for FA with age of 7 days–1 year. From the test results for FA aged 1 year, API results are evaluated to be closely related with those from activity index and K-value, and the correlations are improved with increasing ages regardless of plant types. The applicability of API test is verified and the reduced period of FA quality evaluation can accelerate prompt use and the related process of FA. 相似文献
13.
Lee Joon-Hyuk Choi Sang-Sun Gwak Dae-Chul Jung Yong-An Lee Soon-Hong 《Journal of Material Cycles and Waste Management》2018,20(2):985-994
Journal of Material Cycles and Waste Management - This paper aims to propose testing methods and standards for evaluating refrigerant recovery and recycling equipment so that the methodology can be... 相似文献
14.
15.
16.
Cao Qingyi Cheng Yingchao Kusakabe Taketoshi Qian Yahui Liang Handong Takaoka Masaki 《Journal of Material Cycles and Waste Management》2023,25(5):2706-2715
Journal of Material Cycles and Waste Management - Mercury, a highly toxic environmental pollutant with a global circulation, must be controlled worldwide. Taking the Wuda underground coal fires,... 相似文献
17.
《Waste management & research》1988,6(4):363-377
The study is part of a programme on solid waste management in the Shuiba Industrial Area in Kuwait. Potential landfill sites were identified and evaluated in terms of environmental, technical and socio-economic factors. Exclusion/avoidance criteria were formulated and used for a preliminary screening, which resulted in two candidate sites. A set of site selection criteria was then compiled and used in a multidisciplinary study of the candidate sites that included field investigation, soil analysis, and an assessment of groundwater, ecology and socio-economic setting. A weighting/scaling scoring system was applied to the final evaluation of the results and the selection of the most suitable site. This work also presents recommendations on operations and management of the landfill to ensure maximum protection of the environment and public health. 相似文献
18.
Mardina Primata Yong Chan Seo Young Hwan Chu 《Journal of Material Cycles and Waste Management》2013,15(2):223-228
Biodiesel from waste cooking oil (WCO) and soybean oil (SO) mixture was produced by changing the alkali catalyst (NaOH) content and the WCO to SO ratio in the feedstock. All the prepared biodiesel samples satisfied the standard requirement in terms of free glycerol, density, and acid value. The minimum catalyst content and the highest WCO composition to get biodiesel from the WCO/SO mixture feedstock without ruining the biodiesel properties were 1.0 and 60 wt %, respectively. This conclusion implies that the waste cooking oil mixture, which contains 40 wt % fresh soybean oil, could be treated like the fresh soybean oil to produce biodiesel, and that this behavior would be helpful to reduce the biodiesel production cost when waste cooking oil used as feedstock. The unsaturated methyl esters such as linoleic, and oleic acid were dominant (almost 80 % w/w) in the fresh soybean oil. However the saturated methyl ester was increased due to the double bond breaking during the frying process. These results may deteriorate the biodiesel quality by changing the methyl ester composition. 相似文献
19.
Installing material recovery facilities (MRFs) in a solid waste management system could be a feasible alternative to achieve sustainable development goals in urban areas if current household and curbside recycling cannot prove successful in the long run. This paper addresses the optimal site selection and capacity planning for a MRF in conjunction with an optimal shipping strategy of solid waste streams in a multi-district urban region. Screening of material recovery and disposal capacity alternatives can be achieved in terms of economic feasibility, technology limitation, recycling potential, and site availability. The optimization objectives include economic impacts characterized by recycling income and cost components for waste management, while the constraint set consists of mass balance, capacity limitation, recycling limitation, scale economy, conditionality, and relevant screening constraints. A case study for the City of San Antonio, Texas (USA) presents a vivid example where scenario planning demonstrates the robustness and flexibility of this modeling analysis. It proves especially useful when determining MRF ownership structure. Each scenario experiences two case settings: (1) two MRF sites are proposed for selection and (2) a single MRF site is sought. Cost analysis confirms processing fees are not the driving force in the City's operation, but rather shipping cost. Sensitivity analysis solidifies the notion that significant public participation plays the most important role in minimizing solid waste management expenses. 相似文献
20.
Material and heavy metal balance in a recycling facility for home electrical appliances 总被引:6,自引:0,他引:6
Collection and recycling of home electrical appliances was started in Japan in 2001 under a new recycling law. The law is aimed at promoting material recycling and at reducing the amount of waste to be landfilled. End of life products are processed by manual disassembly, shredding, and separation in 38 recycling facilities. The authors conducted a questionnaire survey and interviewed at some facilities to obtain information on process flow and material balance. By using the detailed records offered by one facility and by estimating the composition of recovered components, the material balance in the facilities was determined for four typical recycling processes. The heavy metal content of the recovered components was analyzed, then metal flow in the process was determined for each scenario. As a result, it was concluded that emissions to the environment of most heavy metals have been substantially reduced by the new recycling system, while a modest improvement in the rate of material recovery has been achieved. 相似文献