首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Both environmental and economic factors have driven the development of recycling routes for the increasing amount of carbon fibre reinforced polymer (CFRP) waste generated. This paper presents a review of the current status and outlook of CFRP recycling operations, focusing on state-of-the-art fibre reclamation and re-manufacturing processes, and on the commercialisation and potential applications of recycled products. It is shown that several recycling and re-manufacturing processes are reaching a mature stage, with implementations at commercial scales in operation, production of recycled CFRPs having competitive structural performances, and demonstrator components having been manufactured. The major challenges for the sound establishment of a CFRP recycling industry and the development of markets for the recyclates are summarised; the potential for introducing recycled CFRPs in structural components is discussed, and likely promising applications are investigated.  相似文献   

2.
Feasibility investigation on a dual waste-plastics recycling system concept   总被引:2,自引:0,他引:2  
Fiber-reinforced plastics (FRP) were first used as a material for boats and bath tubs about 40 years ago. Because of their great durability, wastes including FRP products are increasing. In addition, since the FRP resin is synthesized from expensive reactants, material recycling is highly desirable. Recycling using supercritical water is one solution; however, the cost of producing the high pressure and temperature needed to produce supercritical water prevents the concept from being realized. Therefore, we proposed a system concept based on dual waste-plastics recycling. A numerical survey of the results confirmed that our concept was feasible and would contribute to resource recycling as we expected. Received: January 6, 1998 / Accepted: July 23, 1999  相似文献   

3.
The conversion of biomass waste into resources as a recycling process is receiving increased interest due to the perceived need for a sustainable global carbon cycle and environmental considerations. Several treatment processes are being developed. Hydrothermal treatment is one of the most effective approaches, because water at high temperatures and high pressures behaves as a reaction medium with remarkable properties. In this work, the reaction behavior of guaiacol as a biomass model compound was studied in subcritical water at 483–563 K and in supercritical water at 653–673 K using a batch reactor. Guaiacol can be considered representative of the aromatic ring structures present in lignin, a major component of woody biomass. The chemical species formed in aqueous products were identified by gas chromatography/mass spectrometry and quantified using high-performance liquid chromatography. The effect of pressure and reaction time on the conversion process of guaiacol is discussed. The results obtained indicate that this method has potential for efficient organic waste conversion.  相似文献   

4.
The demand for processes to clean up contaminated soils without introducing additional contaminants is increasing. One approach to solving this problem is the use of supercritical fluids like carbon dioxide, alone or with cosolvents, to extract contaminants from the soil. Carbon dioxide is readily available, inexpensive, and nonpolluting. Gases exhibit unique properties under supercritical conditions. They retain the ability to diffuse through the interstitial spaces of solid materials, plus they have the solvating power of liquids. Soil cleanup using supercritical fluid extraction (SFE) is being investigated as an alternative/complementary technology to other cleanup methods such as incineration and bioremediation. The objective of the studies included in this article was to collect and analyze data to support use of the SFE technology and to provide the conceptual design and operational processes needed for building a portable treatment unit.  相似文献   

5.
CF/EP (carbon fibre/epoxy resin) composites were degraded by supercritical n-butanol with alkali additive KOH in a batch reactor. The catalytic degradation mechanism of the composites was investigated based on the analysis of liquid phase products by GC–MS and solid phase products by FTIR. The results indicate that alkali additive (KOH) can promote Guerbet reaction and increase hydrogen donor capability of supercritical n-butanol. The H· can combine promptly with the free radical formed by the scission of linear and crosslinked chains in epoxy resin to generate the liquid products, including phenol, 4-isopropylphenol, 4-(2-methylallyl)phenol and other derivatives of benzene and phenol. The combination of supercritical n-butanol with alkali additive is an effective way to degrade and recycle CF/EP composites.  相似文献   

6.
Model compounds of phenol resin were reacted in sub- and supercritical water to clarify the mechanism of the decomposition reaction of plastics in water. Cleavage reaction of methylene bonds was confirmed in the reactions of model compounds of phenol resin such as bis(hydroxyphenyl)methanes in sub- and supercritical water under an Ar atmosphere, although the methylene bond was stable in thermal reactions. It was also confirmed that sub- and supercritical water played important roles not only as a stable solvent thermally, but also as a chemical reagent. Received: July 19, 2000 / Accepted: September 14, 2000  相似文献   

7.
Many life cycle assessment studies have evaluated and compared the environmental performance of various technologies for recycling plastic containers and packaging in Japan and other countries. However, no studies have evaluated the combination of recycling technologies in consideration of the resin composition in terms of the quantity of each recycled product so as to maximize their environmental potential. In this study, 27 scenarios of recycling schemes for household waste plastic containers and packaging are developed through integrating a conventional recycling scheme with additional recycling schemes. The conventional recycling scheme involves municipal curbside collection and either the material recycling or feedstock recycling of waste plastics. The additional recycling schemes are feedstock recycling in steel works of the residue from conventional material recycling processes, and corporate voluntary collection and independent material recycling of specific types of plastic trays. Life cycle assessment based on the modeling of recycling processes considering the resin composition in terms of the quantity of each recycled product is applied to evaluate and compare these scenarios from the viewpoints of fossil resource consumption and CO2 emission. The results show that the environmental loads are reduced in all scenarios including the additional recycling schemes compared with the conventional recycling scheme. However, the independent plastic tray recycling scheme exhibits lower additional environmental savings when the residue recycling scheme is integrated with the conventional material recycling scheme. This is because both additional recycling schemes aim to utilize polystyrene and polyethylene terephthalate, which would otherwise be incinerated as residue from material recycling processes. The evaluation of the environmental loads of plastic recycling with consideration of the resin composition in terms of the quantity of each recycled product makes it possible to investigate recycling schemes that integrate different technologies to maximize their environmental potential.  相似文献   

8.
聚对苯二甲酸乙二醇酯废料的回收方法   总被引:6,自引:0,他引:6  
龚国华  朱瀛波 《化工环保》2004,24(3):199-201
介绍了聚对苯二甲酸乙二醇酯传统的化学回收方法:甲醇醇解法、水解法和醣酵解法;简述了聚酯新的回收工艺:伊斯曼乙二醇水解工艺、超临界水水解工艺和Reco-PET工艺,及有关国家聚酯回收的工业化实践,并对聚酯回收的前景及影响聚酯回收的因素进行了分析。  相似文献   

9.
综述了传统处理方法和深度处理方法两大类压裂返排液处理方法的特点和处理效率。介绍了对氧化破胶的压裂返排液和非氧化破胶的压裂返排液进行处理的方法和机理,以及返排液循环使用效果和性能检测的标准。指出研发含有高分子聚合物稠化剂的返排液循环使用工艺、高效便捷的压裂返排液循环使用工艺和新型可循环使用的压裂液体系等将是未来压裂返排液循环使用的发展方向。  相似文献   

10.
超临界二氧化碳萃取再生吸苯活性炭的研究   总被引:10,自引:0,他引:10  
以工业废水中的典型污染物苯作为单一吸附质,进行了超临界二氧化碳萃取再生活性炭研究,探讨了操作温度、操作压力、CO2流速、活性炭粒度、循环再生次数等因素对再生效率及再生速率的影响。试验结果表明,超临界CO2对活性炭中的苯具有良好的再生效果。  相似文献   

11.
To apply PET depolymerization in supercritical methanol to commercial recycling, the benefits of supercritical methanol usage in PET depolymerization was investigated from the viewpoint of the reaction rate and energy demands. PET was depolymerized in a batch reactor at 573 K in supercritical methanol under 14.7 MPa and in vapor methanol under 0.98 MPa in our previous work. The main products of both reactions were the PET monomers of dimethyl terephthalate (DMT) and ethylene glycol (EG). The rate of PET depolymerization in supercritical methanol was faster than that of PET depolymerization in vapor methanol. This indicates supercritical fluid is beneficial in reducing reaction time without the use of a catalyst. We depicted the simple process flow of PET depolymerization in supercritical methanol and in vapor methanol, and by simulation evaluated the total heat demand of each process. In this simulation, bis-hydroxyethyl terephthalate (BHET) was used as a model component of PET. The total heat demand of PET depolymerization in supercritical methanol was 2.35 x 10(6)kJ/kmol Produced-DMT. That of PET depolymerization in vapor methanol was 2.84 x 10(6)kJ/kmol Produced-DMT. The smaller total heat demand of PET depolymerization in supercritical methanol clearly reveals the advantage of using supercritical fluid in terms of energy savings.  相似文献   

12.
Polystyrene (PS) is currently used as packaging, insulating and storing material in various industrial or domestic fields. As a result, a large quantity of PS wastes is produced. Plastic wastes are not usually biodegradable, so it is necessary to suggest a technology to recycle them. Landfills and incineration are reasonably cheap methods but are not environmentally acceptable, therefore, alternative methods for polymer recycling are required. The general purpose of PS foam recycling is to recover a more compact polymeric material without degradation. Dissolution with terpenic solvents is presented here as an efficient and cheap alternative that is developed at room temperature; among the oils studied, limonene was selected because of its intermediate solubility and its abundance. The solvent removal is possible thanks to supercritical technology that provides a high solubility in limonene and almost a complete PS insolubility at moderated pressures (77?bar) and low temperatures (30?°C). Thus, based on the results of thermogravimetric and chromatographic analysis, we propose that.supercritical antisolvent precipitation is an ideal technique for carrying out the separation of PS and limonene, providing a recycled polymer with a reduced volume, almost completely free of solvent and without degradation of the polymeric chains.  相似文献   

13.
Journal of Material Cycles and Waste Management - Recycling carbon fiber reinforced polymer (CFRP) waste is unavoidable for the sustainable manufacturing and cost reduction of CFRP products....  相似文献   

14.
废弃印刷线路板(WPCBs)既有污染环境的一面,又有可资源化回收利用的一面.通过机械物理法、热解、超临界流体氧化和离子液体溶解等方法对其进行分离和回收金属和非金属材料.初步分选的金属需要进一步提纯以实现高附加值.而非金属材料可以用热解法、微波处理、超临界流体技术、等离子技术等技术进行产气和能量回收,也可以通过制备建筑材料或填料和其它功能村料进行物料回收.总之,对WPCBs进行适当地处理不但可以减轻环境压力,还可以变废为宝,实现资源再生利用.  相似文献   

15.
To develop a new method for the chemical recycling of plastics, we examined the formation of recycled polymers from the recovered monomeric materials of solubilized waste fiber-reinforced plastics (FRP) under supercritical alcoholic conditions. Treatment of waste FRP with supercritical MeOH resulted in the formation of monomeric organic compounds that mainly contained dimethyl phthalate (DMP) and propylene glycol. The presence of these materials was confirmed by gas chromatography and nuclear magnetic resonance analyses and they were mixed with new DMP and glycols in various ratios to form unsaturated polyesters. The polymerization progressed successfully for all mixing ratios of the recovered and new DMP. Hardness tests on these recycled polymers indicated that the polymer made from a 1:1 mixture of recovered and new dimethyl phthalate had almost the same level of hardness as the polymers made from new materials. We also examined the formation of recycled FRP by using glass fibers and monomeric materials recovered through the present depolymerization method. Chemical Feedstock Recycling & Other Innovative Recycling Techniques 6  相似文献   

16.
Directive 2000/53/EC sets a goal of 85% material recycling from end-of-life vehicles (ELVs) by the end of 2015. The current ELV recycling rate is around 80%, while the remaining waste is called automotive shredder residue (ASR), or car fluff. In Europe, this is mainly landfilled because it is extremely heterogeneous and often polluted with car fluids. Despite technical difficulties, in the coming years it will be necessary to recover materials from car fluff in order to meet the ELV Directive requirement. This study deals with ASR pretreatment and pyrolysis, and aims to determine whether the ELV material recycling target may be achieved by car fluff mechanical separation followed by pyrolysis with a bench scale reactor. Results show that flotation followed by pyrolysis of the light, organic fraction may be a suitable ASR recycling technique if the oil can be further refined and used as a chemical. Moreover, metals are liberated during thermal cracking and can be easily separated from the pyrolysis char, amounting to roughly 5% in mass. Lastly, pyrolysis can be a good starting point from a "waste-to-chemicals" perspective, but further research should be done with a focus on oil and gas refining, in order both to make products suitable for the chemical industry and to render the whole recycling process economically feasible.  相似文献   

17.
Printed circuit boards (PCBs) are the most essential components of all electrical and electronic equipments, which contain noteworthy quantity of metals, some of which are toxic to life and all of which are valuable resources. Therefore, recycling of PCBs is necessary for the safe disposal/utilization of these metals. Present paper is a part of developing Indo-Korean recycling technique consists of organic swelling pre-treatment technique for the liberation of thin layer of metallic sheet and the treatment of epoxy resin to remove/recover toxic soldering material. To optimize the parameters required for recovery of tin from waste PCBs, initially the bench scale studies were carried out using fresh solder (containing 52.6% Sn and 47.3% Pb) varying the acid concentration, temperature, mixing time and pulp density. The experimental data indicate that 95.79% of tin was leached out from solder material using 5.5M HCl at fixed pulp density 50g/L and temperature 90°C in mixing time 165min. Kinetic studies followed the chemical reaction controlled dense constant size cylindrical particles with activation energy of 117.68kJ/mol. However, 97.79% of tin was found to be leached out from solder materials of liberated swelled epoxy resin using 4.5M HCl at 90°C, mixing time 60min and pulp density 50g/L. From the leach liquor of solder materials of epoxy resin, the precipitate of sodium stannate as value added product was obtained at pH 1.9. The Pb from the leach residue was removed by using 0.1M nitric acid at 90°C in mixing time 45min and pulp density 10g/L. The metal free epoxy resin could be disposed-of safely/used as filling material without affecting the environment.  相似文献   

18.
The world’s waste electrical and electronic equipment (WEEE) consumption has increased incredibly in recent decades, which have drawn much attention from the public. However, the major economic driving force for recycling of WEEE is the value of the metallic fractions (MFs). The non-metallic fractions (NMFs), which take up a large proportion of E-wastes, were treated by incineration or landfill in the past. NMFs from WEEE contain heavy metals, brominated flame retardant (BFRs) and other toxic and hazardous substances. Combustion as well as landfill may cause serious environmental problems. Therefore, research on resource reutilization and safe disposal of the NMFs from WEEE has a great significance from the viewpoint of environmental protection. Among the enormous variety of NMFs from WEEE, some of them are quite easy to recycle while others are difficult, such as plastics, glass and NMFs from waste printed circuit boards (WPCBs). In this paper, we mainly focus on the intractable NMFs from WEEE. Methods and technologies of recycling the two types of NMFs from WEEE, plastics, glass are reviewed in this paper. For WEEE plastics, the pyrolysis technology has the lowest energy consumption and the pyrolysis oil could be obtained, but the containing of BFRs makes the pyrolysis recycling process problematic. Supercritical fluids (SCF) and gasification technology have a potentially smaller environmental impact than pyrolysis process, but the energy consumption is higher. With regard to WEEE glass, lead removing is requisite before the reutilization of the cathode ray tube (CRT) funnel glass, and the recycling of liquid crystal display (LCD) glass is economically viable for the containing of precious metals (indium and tin). However, the environmental assessment of the recycling process is essential and important before the industrialized production stage. For example, noise and dust should be evaluated during the glass cutting process. This study could contribute significantly to understanding the recycling methods of NMFs from WEEE and serve as guidance for the future technology research and development.  相似文献   

19.
采用纯物理法,通过固液分离、脱色、精滤、真空蒸馏、指标调节等工艺技术,对太阳能晶硅片切割废液进行资源化回收处理,切割废液回收得到的产品各项性能指标满足使用要求,可以再次作为太阳能晶硅片切割液使用,实现切割废液资源化循环利用,以及社会、环境和经济效益的有机统一和协调发展。  相似文献   

20.
The purpose of this study was to explore ways to extend the chemical recycling of poly(ethylene terephthalate) (PET) as a valuable feedstock for chemical processes. First, PET wastes were depolymerised using a glycolysis method in the presence of sodium carbonate, which is considered to be a less environmentally damaging option for a catalyst. Good yields of the monomer bis(2-hydroxyethyl) terephthalate (BHET) were obtained (80 %). Second, to develop an economically viable recycling programme for the reclaimed BHET, the conversion of purified BHET into unsaturated polyester resins (UPR) was studied. The recovered monomer was thus polyesterified with maleic anhydride and subsequently mixed with styrene monomer to prepare UPRs. The resins were casted by a crosslinking reaction using methyl ethyl ketone peroxide and cobalt 2-ethylhexanoate as the initiator and catalyst, respectively. The polyesterification reaction was followed by gel permeation chromatography. The curing process was studied by differential scanning calorimetry and infrared spectroscopy. The cured resin was subjected to various characterisation methods in order to determine its chemical, physical and mechanical properties. Resins with suitable properties for commercial application were obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号