首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
消化污泥作为垃圾填埋场覆盖材料的研究   总被引:4,自引:0,他引:4  
为解决城市污染,实现污泥"减量化、无害化、稳定化、资源化"的目标,有必要寻求更多技术上可行、低成本的污泥综合利用新技术.测定了消化污泥本底的含水率、有机质含量以及经过预处理后不同含水率的消化污泥模拟降雨实验的渗透系数,浸出液的COD、氨氮、pH等.选择渗透系数低、污染负荷小的含水率为50%和60%的消化污泥,分别与石灰、炉渣以不同比例混合改性后,再测定模拟降雨实验浸出液的各个指标.实验结果表明,含水率为60%的消化污泥与炉渣以2∶1(质量比)混合时,渗透系数达到10-6数量级,已接近垃圾填埋场对防渗层的要求.因此,消化污泥改性后可作为垃圾填埋场覆盖材料.  相似文献   

2.
以市政污泥为研究对象,采用固化剂对污泥进行改性,通过分析不同固化剂添加比例下固化产物的抗压强度和渗透系数,比较不同养护时间下污泥固化产物浸出液的COD、氨氮和重金属性质,探讨市政污泥固化产物作为垃圾填埋场覆土可行性。实验结果表明:固化剂添加比例为30%的固化产物抗压强度高于50kPa,其渗透系数达到10^-7cm/s数量级,基本满足覆土材料的标准要求。污泥固化产物重金属的最大浸出量远远低于《污水综合排放标准》(GB8978-88)中一级排放标准。随养护时间延长,固化产物浸出液COD和氨氮浸出浓度亦呈下降趋势,重金属Pb、Cd浸出量明显减少,浸出比例小于1%。养护有利于降低固化产物的浸出污染程度,30%的污泥固化产物养护3d后可作为垃圾填埋场日覆盖材料。  相似文献   

3.
在序批式厌氧反应器中探究了矿化垃圾对污泥厌氧消化产甲烷的影响。实验结果表明,矿化垃圾能够提高甲烷的产量并且提高甲烷的体积分数。当矿化垃圾投加量由0增加到5 g·L~(-1)时,甲烷的产量也由168.9 m L·(g VSS)-1(挥发性悬浮固体)增加到218.6 m L·(g VSS)-1,体积分数由60%增加至70%。然而继续提高矿化垃圾的投加量至7 g·L~(-1)对污泥厌氧消化造成一定的抑制作用。矿化垃圾的存在能够提高污泥中溶解性化学需氧量(SCOD)的溶出,挥发性脂肪酸的积累进而为产甲烷菌提供了充足的消化底物,从而提高了甲烷的产量。  相似文献   

4.
梅娟  赵由才 《环境工程学报》2014,8(6):2548-2552
利用甲烷氧化菌菌液增加材料中甲烷氧化菌的数量,可以得到高甲烷氧化率的填埋场甲烷生物氧化覆盖材料。研究发现,渗滤液原水和渗滤液处理尾水均能促进甲烷氧化菌的生长,可利用渗滤液耦合矿化垃圾混合培养制备甲烷氧化菌菌液用于填埋场甲烷减排。填埋龄长的渗滤液原水有着较好的培养效果,得到的菌液在4 d内最高甲烷氧化速率达到2.68 mL/h,超过甲烷氧化菌培养液(nitrate minimal salt medium,NMS)的实验结果。渗滤液中总氮、无机碳、总有机碳和Ni元素的含量对甲烷氧化菌的培养过程影响较大,适用于甲烷氧化培养的渗滤液应满足:总氮1 400 mg/L,总有机碳55 mg/L,Ni元素0.4 mg/L,总磷含量较高。  相似文献   

5.
不同改性剂改善污泥土工性质的比较研究   总被引:2,自引:1,他引:1  
选择了泥土、矿化垃圾、粉煤灰和建筑垃圾4种改性剂改性城市污水处理厂污泥(以下简称污泥)。结果表明:(1)随着4种改性剂与污泥的混合比增大,混合物含水率降低。(2)当混合比为0.7(质量比)时,各种混合物的抗压强度都达到50kPa的填埋要求;当混合比为0.3~1.0时,混合物的抗压强度随着混合比的增大呈指数形式增大;比较4种改性剂对抗压强度的增大能力,粉煤灰最强,建筑垃圾次之,泥土和矿化垃圾较弱。(3)在50kPa预压力下,混合物要达到不小于25kPa的抗剪强度,泥土与污泥最小混合比为1.0,矿化垃圾与污泥最小混合比为1.0,粉煤灰与污泥最小混合比为0.7,建筑垃圾与污泥最小混合比为0.7。(4)除加泥土的混合物外,混合物压缩系数随着混合比的增大呈总体下降趋势。(5)粉煤灰除臭效果最好,矿化垃圾次之,建筑垃圾较差,泥土最差。  相似文献   

6.
生活垃圾卫生填埋场甲烷减排与控制技术研究   总被引:4,自引:0,他引:4  
系统地研究了生物氧化、生物抑制和风力驱动准好氧填埋的生活垃圾卫生填埋场甲烷减排集成技术.研究表明,喷洒了NMS营养液(80 mL/kg)的矿化垃圾为甲烷氧化覆盖层,可以持续氧化甲烷,第23天后甲烷氧化率稳定在75%左右;当氯仿质量浓度为20 mg/kg或乙炔体积分数达到1.2%时,甲烷产量极少,产甲烷菌几乎被完全抑制;采用风帽技术的改进型准好氧填埋可以利用风速0.5 m/s的自然风,在不增加成本的前提下大幅减少甲烷排放.  相似文献   

7.
将污泥与餐厨垃圾联合厌氧发酵产氢余物进一步产甲烷,产甲烷量比污泥与餐厨垃圾单独或直接联合厌氧发酵产甲烷大.研究污泥与餐厨垃圾联合厌氧发酵产氢余物产甲烷过程中产甲烷量与底物指标变化的关系,实验结果表明,整个消化过程中,累积产甲烷量为613 L,最大产气速率和产甲烷速率分别为2.12 L/(kg·d)和1.46 L/(kg·d),最大甲烷含量为72.5%,消化系统的pH在总挥发性脂肪酸(TVFA)以及氨氮、CO32-和HCO3-等碱度的共同作用下基本维持在适宜产甲烷的范围内,在不同的消化阶段,厌氧发酵产甲烷过程起主要作用的物质不同,先后顺序依次为糖类、蛋白质和TVFA,并且累积产甲烷量与COD、总糖、总蛋白质的显著相关性大小依次为:COD>总糖>总蛋白质,COD去除率高达79.54%.  相似文献   

8.
填埋场覆盖材料在甲烷减排中起至关重要的作用,但覆盖材料的筛选及其生物特性的有效评估仍存在困难。以重庆地区填埋场覆盖土为甲烷氧化材料建立反应器,通过材料复配和含水量等影响因子优化手段强化了氧化效果,最大甲烷氧化效率高达32.40 mol·(d·m~2)~(-1)。以经典Monod方程和固定床轴向扩散模型为基础,推演了反应器中甲烷的迁移转化过程,以稳态方程对监测结果拟合,结果十分理想(R2=0.94~0.99),能够较好地描述甲烷在反应器中的扩散和氧化过程。甲烷浓度为13%~28%时,推演半饱和常数KS为0.007~0.016 g·L~(-1),与以往报道(KS为0.06~2.07 g·L~(-1))相比表明该覆盖材料对甲烷有较强的亲和氧化能力。该研究成果为覆盖材料的优选和生物特性评估提供了指导。  相似文献   

9.
经长时间稳定化形成的矿化污泥中,含有种类丰富和数量繁多的降解性微生物,具有处理渗滤液的潜力。建立3个矿化污泥生物反应器,即C1(粉煤灰0%),C2(粉煤灰9.1%),C3(粉煤灰16.7%),以处理垃圾填埋场老龄渗滤液。在单级矿化污泥反应器中,当进水COD和NH3-N分别约为1350和900 mg/L时,水力负荷为17.7~70.8 L/(m3.d),COD去除率可超过65%,氨氮的去除率可超过94%。粉煤灰的加入一定程度上降低了COD去除率,但有助于氨氮的去除。在二级矿化污泥生物反应器中(即C3~C1串联),水力负荷为35.4 L/(m3.d)的工况下,当COD、TOC、IC和NH3-N分别为1 500~2 500,500~900,1 200~1 600和1 200~1 450 mg/L时,出水可达到COD<300 mg/L,TOC<180 mg/L,IC<100 mg/L,NH3-N<5 mg/L。但是,矿化污泥生物反应器对渗滤液总氮的去除率较低,仅为20%左右。  相似文献   

10.
对城市污泥填埋场填埋气集气井收集系统进行了优化研究,考察了城市污泥水平方向的渗透系数(以下简称污泥渗透系数)对集气井影响半径的影响、集气井抽气负压随填埋时间的变化规律、填埋气的经济收集年限。结果表明,当抽气负压为25000~30000Pa时,污泥渗透系数分别取1.04×10-7、2.60×10-8、1.04×10-8m2/(Pa.s)时,集气井的影响半径分别为10.0~11.0、6.0~7.0、5.0~5.5m,过小的污泥渗透系数会严重影响集气井的集气效率,因此污泥渗透系数最好不应小于1.00×10-8m2/(Pa.s);随城市污泥填埋时间的增加,集气井抽气负压总体呈指数型降低趋势,从第8年起,抽气负压由起初的25000Pa降低到5000Pa以下,此时CH4产率约为2kg/(m3.a),到第20年时CH4产率接近于零,故从城市污泥填埋后第8年起,对填埋气继续进行收集的意义已经不大。  相似文献   

11.
Concentrations of different chlorinated compounds were measured in mussels incubated in two polluted watercourses, a river (the River Kymijoki) and a lake (Lake Vanaja) for four weeks in summer 1995. The sum concentrations of polychlorinated phenols (PCP) and biphenyls (PCB) were both about 1 μg/g lipid weight (lw) in Lake Vanaja mussels, while in the River Kymijoki mussels PCPs were non-detectable and PCBs were measured 120 ng/g lIw. The concentrations of toxic polychlorinated dibenzo-p-dioxin (PCDD) and dibenzofuran (PCDF) congeners ranged between <17 and 370 pg/g Iw in Lake Vanaja mussels and between <38 and 11,000 pg/g lw in the River Kymijoki mussels. Polychlorinated diphenyl ethers (PCDE) were detected in the mussels incubated in the River Kymijoki (0.4–1.1 ng/g Iw), but not in those incubated in Lake Vanaja. Polychlorinated phenoxyanisoles (PCPA) were measured 33 ng/g lw and polychlorinated phenoxyphenols (PCPP) 300 ng/g lw in the mussels incubated in the River Kymijoki. PCPAs were also detected in reference samples, which were sediment and pike from the River Kymijoki and Baltic salmon, seal and white-tailed sea eagle.  相似文献   

12.
Book review     
The Pesticide Manual ‐ A World Compendium, 8th Edition, C.R. Worthing, Editor and S.B. Walker, Assistant Editor, British Crop Protection Council, BCPC Publications Sales, Bear Farm, Binfield, Bracknell, Berkshire RG12 5QE, England. 1987, 1100 pp., UK £50; Overseas £56. ISBN 0–948404–01–9.  相似文献   

13.
Organochlorine compounds in a three-step terrestrial food chain   总被引:1,自引:0,他引:1  
The concentrations of 15 organochlorine chemicals (PCBs and pesticides) were studied in a Central European oak wood food chain system: Great tit (Parus major), caterpillars (Tortrix viridana, Operophtera brumata, Erannis defoliaria), and oak-leaves (Quercus robur). Juvenile tits receive organochlorines from the mother via egg transfer and, eventually to a greater extent, from the caterpillar food source during nestling period. The concentrations of PCB 153 (2,2′,4,4′,5,5′-hexachlorobiphenyl, the most abundant in this study) was found in leaf material at ca. 1 ng/g, in caterpillars 10 ng/g, and in bird eggs 170 ng/g on an average and on a dry mass basis.  相似文献   

14.
Abstract

The active ingredients in commercial formulations of malathion, oxamyl, carbaryl, diazinon, and chlorpyrifos diluted to “spray tank”; concentrations with buffered distilled or natural water of pH 4–9 were stable for at least 24 hr. Formulations of trichlorfon were not stable at pH 7 or above but disappearance rates were slower than for the pure chemical in homogeneous solution. Cupric ion was observed to be an effective catalyst for the hydrolysis of a variety of pure organophosphorus insecticides but did not catalyze hydrolysis of the active ingredients of the formulations examined. Increasing the dilution of the formulation increased the susceptibility of malathion, oxamyl, and carbaryl to hydrolysis.  相似文献   

15.
Abstract

The pH‐disappearance rate profiles were determined at ca. 25°C for 24 insecticides at 4 or 5 pH values over the range 4.5 to 8.0 in sterile phosphate buffers prepared in water‐ethanol (99: 1 v/v). Half‐lives measured at pH 8 were generally smaller than at lower pH values. Changes in half lives between pH 8.0 and 4.5 were largest (>1000x) for the aryl carbamates, carbofuran and carbaryl, the oxime carbamate, oxamyl, and the organophosphorus insecticide, trichlorfon. In contrast, half lives of phorate, terbufos, heptachlor, fensulfothion and aldicarb were affected only slightly by pH changes. Under the experimental conditions described half lives at pH8 varied from 1–2 days for trichlorfon and oxamyl to >1 year for fensulfothion and cyper‐methrin. Insecticide persistence on alumina (acid, neutral and basic), mineral soils amended with aluminum sulfate or calcium hydroxide to different pH values and four natural soils of different pH was examined. No correlation was observed between the measured pH of these solids and the rate of disappearance of selected insecticides applied to them. These observations demonstrate the difficulty of extrapolating the pH dependent disappearance behaviour observed in homogeneous solution to partially solid heterogeneous systems such as soil.  相似文献   

16.
Abstract

One of the dominant tree species growing within and around the eastern portion of Los Alamos National Laboratory (LANL), Los Alamos, NM, lands is the pinon pine (Pinus edulis). Pinon pine is used for firewood, fence posts, and building materials and is a source of nuts for food—the seeds are consumed by a wide variety of animals and are also gathered by people in the area and eaten raw or roasted. This study investigated the (1) concentration of 3H, 137Cs, 90Sr, totU, 238Pu, 239, 240Pu, and241 Am in soils (0‐ to 12‐in. [31 cm] depth underneath the tree), pinon pine shoots (PPS), and pinon pine nuts (PPN) collected from LANL lands and regional background (BG) locations, (2) committed effective dose equivalent (CEDE) from the ingestion of nuts, and (3) soil to PPS to PPN concentration ratios (CRs). Most radionuclides, with the exception of 3H in soils, were not significantly higher (p < 0.10) in soils, PPS, and PPN collected from LANL as compared to BG locations, and concentrations of most radionuclides in PPN from LANL have decreased over time. The maximum net CEDE (the CEDE plus two sigma minus BG) at the most conservative ingestion rate (10 lb [4.5 kg]) was 0.0018 mrem (0.018 μSv); this is far below the International Commission on Radiological Protection (all pathway) permissible dose limit of 100 mrem (1000 μSv). Soil‐to‐nut CRs for most radionuclides were within the range of default values in the literature for common fruits and vegetables.  相似文献   

17.
Degradation and sorption/desorption are important processes affecting the leaching of pesticides through soil. This research characterized the degradation and sorption of imidacloprid (1-[(6-chloro-3-pyridinyl)-methyl]-N-nitro-2-imidazolidinimine) in Drummer (silty clay loam) and Exeter (sandy loam) surface soils and their corresponding subsurface soils using sequential extraction methods over 400 days. By the end of the incubation, approximately 55% of imidacloprid applied at a rate of 1.0 mg kg?1 degraded in the Exeter sandy loam surface and subsurface soils, compared to 40% of applied imidacloprid within 300 days in Drummer surface and subsurface soils. At the 0.1 mg kg?1 application rate, dissipation was slower for all four soils. Water-extractable imidacloprid in Exeter surface soil decreased from 98% of applied at day 1 to > 70% of the imidacloprid remaining after 400 d, as compared to 55% in the Drummer surface soil at day 1 and 12% at day 400. These data suggest that imidacloprid was bioavailable to degrading soil microorganisms and sorption/desorption was not the limiting factor for biodegradation. In subsurface soils > 40% of 14C-benzoic acid was mineralized over 21 days, demonstrating an active microbial community. In contrast, cumulative 14CO2 was less than 1.5% of applied 14C-imidacloprid in all soils over 400 d. Qualitative differences in the microbial communities appear to limit the degradation of imidacloprid in the subsurface soils.  相似文献   

18.
The ability of two biodegradable surfactants, polyoxyethylene (20) sorbitan monooleate (Tween 80) and sodium dihexyl sulfosuccinate (Aerosol MA), to recover a representative dense non-aqueous-phase liquid (DNAPL), trichloroethene (TCE), from heterogeneous porous media was evaluated through a combination of batch and aquifer cell experiments. An aqueous solution containing 3.3% Aerosol MA, 8% 2-propanol and 6 g/l CaCl(2) yielded a weight solubilization ratio (WSR) of 1.21 g TCE/g surfactant, with a corresponding liquid-liquid interfacial tension (IFT) of 0.19 dyn/cm. Flushing of aquifer cells containing a TCE-DNAPL source zone with approximately two pore volumes of the AMA formulation resulted in substantial (>30%) mobilization of TCE-DNAPL. However, a TCE mass recovery of 81% was achieved when the aqueous-phase flow rate was sufficient to displace the mobile TCE-DNAPL toward the effluent well. Aqueous solutions of Tween 80 exhibited a greater capacity to solubilize TCE (WSR=1.74 g TCE/g surfactant) and exerted markedly less reduction in IFT (10.4 dyn/cm). These data contradict an accepted empirical correlation used to estimate IFT values from solubilization capacity, and indicate a unique capacity of T80 to form concentrated TCE emulsions. Flushing of aquifer cells with less than 2.5 pore volumes of a 4% T80 solution achieved TCE mass recoveries ranging from 66 to 85%, with only slight TCE-DNAPL mobilization (<5%) occurring when the total trapping number exceeded 2 x 10(-5). These findings demonstrate the ability of Tween 80 and Aerosol MA solutions to efficiently recover TCE from a heterogeneous DNAPL source zone, and the utility of the total trapping number as a design parameter for a priori prediction of DNAPL mobilization and bank angle formation when flushing with low-IFT solutions. Given their potential to stimulate microbial reductive dechlorination at low concentrations, these surfactants are well-suited for remedial action plans that couple aggressive mass removal followed by enhanced bioremediation to treat chlorinated solvent source zones.  相似文献   

19.
Abstract

Five organophosphorous insecticides: Leptophos, EPN, Cyano‐fenphos, trichloronate and salithion proved to cause irreversible ataxia not only to chicken but also to mice and sheep. TOCP was included as a reference. Cyanofenphos blocked the catecholamine B‐receptor binding activity with 3H‐norepinephrine at a level similar to that of the specific inhibitor propranolol in the mouse heart preparation. In the lamb heart preparation, the B‐receptor was more sensitive to Leptophos, salithion and TOCP than to propranolol. The six compounds and their oxons were screened for their in‐vitro inhibition to monamine oxidase (MAO), acetyl cholinesterase (AChE) and neurotoxic esterase (NTE) in the brain of either mouse, lamb or chicken. It is believed that their AChE inhibition stands for their acute toxicity, while NTE inhibition is responsible for their paralytic ataxia.  相似文献   

20.
Background, Aims and Scope The global problem concerning contamination of the environment as a consequence of human activities is increasing. Most of the environmental contaminants are chemical by-products and heavy metals such as lead (Pb). Lead released into the environment makes its way into the air, soil and water. Lead contributes to a variety of health effects such as decline in mental, cognitive and physical health of the individual. An alternative way of reducing Pb concentration from the soil is through phytoremediation. Phytoremediation is an alternative method that uses plants to clean up a contaminated area. The objectives of this study were: (1) to determine the survival rate and vegetative characteristics of three grass species such as vetivergrass, cogongrass and carabaograss grown in soils with different Pb levels; and (2) to determine and compare the ability of the three grass species as potential phytoremediators in terms of Pb accumulation by plants. Methods The three test plants: vetivergrass (Vetiveria zizanioides L.); cogongrass (Imperata cylindrica L.); and carabaograss (Paspalum conjugatum L.) were grown in individual plastic bags containing soils with 75 mg kg−1 (37.5 kg ha−1) and 150 mg kg−1 (75 kg ha−1) of Pb, respectively. The Pb contents of the test plants and the soil were analyzed before and after experimental treatments using an atomic absorption spectrophotometer. This study was laid out following a 3 × 2 factorial experiment in a completely randomized design. Results On the vegetative characteristics of the test plants, vetivergrass registered the highest whole plant dry matter weight (33.85–39.39 Mg ha−1). Carabaograss had the lowest herbage mass production of 4.12 Mg ha−1 and 5.72 Mg ha−1 from soils added with 75 and 150 mg Pb kg−1, respectively. Vetivergrass also had the highest percent plant survival which meant it best tolerated the Pb contamination in soils. Vetivergrass registered the highest rate of Pb absorption (10.16 ± 2.81 mg kg−1). This was followed by cogongrass (2.34 ± 0.52 mg kg−1) and carabaograss with a mean Pb level of 0.49 ± 0.56 mg kg−1. Levels of Pb among the three grasses (shoots + roots) did not vary significantly with the amount of Pb added (75 and 150 mg kg−1) to the soil. Discussion Vetivergrass yielded the highest biomass; it also has the greatest amount of Pb absorbed (roots + shoots). This can be attributed to the highly extensive root system of vetivergrass with the presence of an enormous amount of root hairs. Extensive root system denotes more contact to nutrients in soils, therefore more likelihood of nutrient absorption and Pb uptake. The efficiency of plants as phytoremediators could be correlated with the plants’ total biomass. This implies that the higher the biomass, the greater the Pb uptake. Plants characteristically exhibit remarkable capacity to absorb what they need and exclude what they do not need. Some plants utilize exclusion mechanisms, where there is a reduced uptake by the roots or a restricted transport of the metals from root to shoots. Combination of high metal accumulation and high biomass production results in the most metal removal from the soil. Conclusions The present study indicated that vetivergrass possessed many beneficial characteristics to uptake Pb from contaminated soil. It was the most tolerant and could grow in soil contaminated with high Pb concentration. Cogongrass and carabaograss are also potential phytoremediators since they can absorb small amount of Pb in soils, although cogongrass is more tolerant to Pb-contaminated soil compared with carabaograss. The important implication of our findings is that vetivergrass can be used for phytoextraction on sites contaminated with high levels of heavy metals; particularly Pb. Recommendations and Perspectives High levels of Pb in localized areas are still a concern especially in urban areas with high levels of traffic, near Pb smelters, battery plants, or industrial facilities that burn fuel ending up in water and soils. The grasses used in the study, and particularly vetivergrass, can be used to phytoremediate urban soil with various contaminations by planting these grasses in lawns and public parks. ESS-Submission Editor: Dr. Willie Peijnenburg (wjgm.peijnenburg@rivm.nl)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号