首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
A chamber study was conducted to evaluate the growth response and leaf nitrogen (N) status of four plant species exposed to continuous ammonia (NH3) for 12 weeks (wk). This was intended to evaluate appropriate plant species that could be used to trap discharged NH3 from the exhaust fans in poultry feeding operations before moving off-site. Two hundred and forty bare-root plants of four species (Juniperus virginiana (red cedar), Gleditsia triacanthos var. inermis (thornless honey locust), Populus sp. (hybrid poplar), and Phalaris arundinacea (reed canary grass) were transplanted into 4- or 8-L polyethylene pots and grown in four environmentally controlled chambers. Plants placed in two of the four chambers received continuous exposure to anhydrous NH3 at 4 to 5 ppm while plants in another two chambers received no NH3. In each of the four chambers, 2 to 4 plants per species received no fertilizer while the rest of the plants were fertilized with a 100 ppm solution containing 21% N, 7% phosphorus, and 7% potassium. The results showed that honey locust was the fastest-growing species. The superior growth of honey locust among all species was also supported by its total biomass, root, and root dry matter (DM) weights. For all species there was a trend for plants exposed to NH3 to have greater leaf DM than their non-exposed counterparts at 6 (43.0 vs. 30.8%; P = 0.09) and 12 wk (47.9 vs. 36.6%; P = 0.07), and significantly greater (P 相似文献   

2.
A laboratory experiment was carried out to measure volatilisation fluxes of polychlorinated biphenyls (PCBs) from sewage sludge-amended soils. The most commonly practised methods of applying sludge to agricultural land in the UK, namely, surface application, ploughing in to soil and subsurface injection, were simulated inside glass experimental chambers using an anaerobically digested sludge and a sandy loam soil. Humidified air was blown over the surface of the soil/sludge in the chambers for a period of 32 days, in order to sample a sufficient air volume to detect the volatilising PCBs. The resulting PCB volatilisation fluxes from the different sludge application methods were quantified and compared. Volatilisation fluxes of individual congeners were generally highest for the surface sludge (1-cm depth) application and slightly lower for the plough layer (5-cm depth) application. Fluxes from the subsurface layer of sludge (5-cm depth) were only quantified for the lightest congeners near to the end of the experimental run-time. Results from a multiple regression analysis showed that volatilisation fluxes of PCBs from the surface application are highly dependent on both the sludge concentration and the log of the octanol-air partition coefficient (K(OA)). A well-known soil volatilisation model, developed by Jury et al., was adapted and used to predict fluxes for the different sludge application methods during the experiment. The model predicted volatilisation fluxes that were reasonably comparable to measured fluxes for some congeners, but for others predicted fluxes that were more than an order of magnitude lower than measured fluxes. The model predicted similar loss kinetics to those observed in the experiment. Possible reasons for the dissimilarity between measured and predicted fluxes include inaccuracies in model input parameters and the fact that the models were not developed for predicting fluxes from sludge-amended soils.  相似文献   

3.
Waite DT  Cabalo E  Chau D  Sproull JF 《Chemosphere》2007,68(6):1074-1081
The insecticide gamma-hexachlorocyclohexane (gamma-HCH) is primarily used in Canada in treatments of canola (Brassica napus) seed. It has been shown that gamma-HCH so applied will volatilise with 12-30% entering the atmosphere within 6 wk after the seed is planted. Both flux chambers and high-volume air samplers were used to measure gamma-HCH volatilisation from a canola field and the results from each method compared. Daily samples were collected from three flux chambers located on the field. gamma-HCH was found in the air of the chambers on the first day after planting. Volatilisation rates were low for the first 7d (40.0 mg ha(-1) wk(-1)) but increased during the second week (143.8 mg ha(-1) wk(-1)). This was consistent with previous studies. Weekly composite air samples, from three heights above the canola field, were used to calculate volatilisation rates from the field. These were 190 mg ha(-1) wk(-1) (week 1) and 420 mg ha(-1) wk(-1) (week 2). Soil temperatures in the open field were warmer than those under the flux chambers and this may have contributed to the higher ambient air measurements.  相似文献   

4.
Cai Z  Laughlin RJ  Stevens RJ 《Chemosphere》2001,42(2):113-121
In a laboratory study, soil amended with and without wheat straw (2.8 g kg(-1) soil) was incubated under 70% water holding capacity (WHC), continuously flooded and flooded/drained cycle conditions at 30 degrees C for 51 days. Dinitrogen and N2O evolution and ammonia volatilisation were measured during the incubation. Extractable NH4+-N and NO3--N were determined at the end of the incubation. Entrapped N2, N2O, and dissolved NH4+-N and NO3--N in drainage water were measured in the flooded/drained cycle treatment when the floodwater was drained. The results indicated that N loss through ammonia volatilisation was undetected in all treatments due to the low soil pH value (pHH2O= 5.87) and no air movement. The recovery of urea-15N as N2 was lowest in the continuously flooded treatments (0.75% and 0.96% with and without straw amendment, respectively), highest in the 70% WHC treatments (5.65% and 4.41%, respectively), and intermediate in the flooded/drained cycle treatments (1.79% and 2.65%, respectively). The recovery of urea-15N as N2O was in the same order as that of N2, negligible in the continuously flooded treatments, 0.01% and 0.07% in the flooded/drained cycle treatments, and 1.29% and 2.23% in the 70% WHC treatments, respectively. Peak N2O evolution rates were observed after the floodwater was drained but no substantial evolution was found after the soil was reflooded following drained periods. However, peak N2 evolution rates were observed after the onset of both drainage and re-flooding. Considerable quantities of N2 but no detectable N2O were entrapped in the flooded soil.  相似文献   

5.
Four non-filtered and four charcoal-filtered open-top chambers were employed to determine the effects of ambient levels of gaseous air pollutants at Braunschweig, FRG, on growth and yield of potted plants of winter and spring barley. During the exposure period (November 1985-August 1986) monthly mean values of gaseous air pollutants (microg m(-3)) ranged between 34 and 127 for SO(2), 34 and 52 for NO(2) and 12 and 33 for O(3) in winter (November-March), and 16 to 26 for SO(2), 20 to 33 for NO(2) and 42 to 53 for O(3) in spring-summer (April-August). Monthly 2% percentile values for these gases reached (microg m (-3)) 561 for SO(2), 140 for NO(2) and 170 for O(3). The filtering efficiencies of the charcoal filters used averaged 60% for SO(2), 50% for NO(2) and 70% for O(3). All plants of winter barley from the unchambered plot were killed by severe frost periods in winter, 1986. Little frost damage occurred on plants grown in the chambers. Air filtration resulted in higher numbers of plants of winter barley per pot, i.e. a higher number of individuals per area, and a higher dry weight of whole plants and ears compared to the non-filtered atmosphere. In the experiments with spring barley, fresh and dry weight of whole plants were lower and dry weight of leaves were higher in the filtered open-top chambers. These effects could not be observed at all harvests which were carried out during the growing season. Grain yield and sulphur content of the leaves of both barley cultivars were not affected by the air filtration. Production of biomass of spring barley grown in ambient air was higher than of that grown in open-top chambers.  相似文献   

6.
An evaluation of the effects of ambient ozone (O3) on muskmelon was conducted with the use of open-top chambers (OTCs). 'Superstar' muskmelons grown in charcoal-filtered (CF) chambers compared to those grown in nonfiltered (NF) chambers showed significant differences in the severity of visible foliar O3 injury. Furthermore, plants grown in NF conditions had significantly less (21.3%) marketable fruit weight and fewer (20.9%) marketable fruit number than those from CF chambers. No differences were found in early biomass production, leaf area, or number of nodes after 3 weeks of exposure to treatment conditions. Ambient O3 did not affect soluble solids content of mature fresh fruit nor foliage fresh weight at final harvest. Results indicate that ambient concentrations of O3 in southwestern Indiana caused significant foliar injury and yield loss to muskmelons.  相似文献   

7.
The goal of this study was to investigate the potential for atmospheric Hg degrees uptake by grassland species as a function of different air and soil Hg exposures, and to specifically test how increasing atmospheric CO(2) concentrations may influence foliar Hg concentrations. Four common tallgrass prairie species were germinated and grown for 7 months in environmentally controlled chambers using two different atmospheric elemental mercury (Hg major; 3.7+/-2.0 and 10.2+/-3.5 ng m(-3)), soil Hg (<0.01 and 0.15+/-0.08 micro g g(-1)), and atmospheric carbon dioxide (CO(2)) (390+/-18, 598+/-22 micro mol mol(-1)) exposures. Species used included two C4 grasses and two C3 forbs. Elevated CO(2) concentrations led to lower foliar Hg concentrations in plants exposed to low (i.e., ambient) air Hg degrees concentrations, but no CO(2) effect was apparent at higher air Hg degrees exposure. The observed CO(2) effect suggests that leaf Hg uptake might be controlled by leaf physiological processes such as stomatal conductance which is typically reduced under elevated CO(2). Foliar tissue exposed to elevated air Hg degrees concentrations had higher concentrations than those exposed to low air Hg degrees , but only when also exposed to elevated CO(2). The relationships for foliar Hg concentrations at different atmospheric CO(2) and Hg degrees exposures indicate that these species may have a limited capacity for Hg storage; at ambient CO(2) concentrations all Hg absorption sites in leaves may have been saturated while at elevated CO(2) when stomatal conductance was reduced saturation may have been reached only at higher concentrations of atmospheric Hg degrees . Foliar Hg concentrations were not correlated to soil Hg exposures, except for one of the four species (Rudbeckia hirta). Higher soil Hg concentrations resulted in high root Hg concentrations and considerably increased the percentage of total plant Hg allocated to roots. The large shifts in Hg allocation patterns-notably under soil conditions only slightly above natural background levels-indicate a potentially strong role of plants in belowground Hg transformation and cycling processes.  相似文献   

8.
A laboratory-scale column experiment was conducted to evaluate the effect of organic carbon amendments on the mobility of As, Cu, Fe, Mn, Mo, Ni, Pb, Sb, Tl and Zn in mine tailings. Three columns were packed with sulfide- and carbonate-rich tailings, which were amended with a 1:1 (vol.) mixture of peat and spent brewing grain at proportions of 0, 2 and 5vol.%. A simulated input solution characterized by circumneutral pH and elevated concentrations of SO(4) and S(2)O(3) was passed through the columns for 540 days. The input solution contained low concentrations of metal(loid)s during the initial 300 days and elevated concentrations thereafter. Decreases in mass transport of S(2)O(3) were observed in all columns; with increased attenuation observed at 5 vol. % organic carbon content. Removal of Mn, Ni, Cu, Sb and Mo was observed in all columns during the initial 300 days. However, during this time, mobilization of Fe, As, Zn and Pb was observed, with the greatest increases in concentration observed at the higher organic carbon content. During the final 240 days, S(2)O(3) removal was enhanced in columns containing organic carbon, and Fe, Mn, Ni, Tl, As and Sb removal also was observed. This study demonstrates the influence of organic carbon amendments on metal(loid) mobility in mine tailings. Decreases in mass discharge of metal(loid)s may be achieved using this technique; however, site-specific geochemical conditions must be considered before field-scale implementation.  相似文献   

9.
Factors affecting ammonia volatilisation from a rice-wheat rotation system   总被引:6,自引:0,他引:6  
Tian G  Cai Z  Cao J  Li X 《Chemosphere》2001,42(2):123-129
Some of the major factors influencing ammonia volatilisation in a rice wheat rotation system were studied. A continuous airflow enclosure method was used to measure NH3 volatilisation in a field experiment at an agricultural college in Jiangsu Province. The five treatments comprised application rates of 0, 100, 200 or 300 kg N ha(-1) as urea, per growing season with rice straw amendment when wheat was sown, and 200 kg N ha(-1) without rice straw amendment. There were three replicates in a randomised block design. Ammonia volatilisation was measured immediately after urea application in the three consecutive years 1995 to 1997. The results show that N losses through NH3 volatilisation accounted for 4-19% of N applied during the wheat growing season and for 5-11% during the rice growing season. Ammonia volatilisation was affected significantly by soil moisture and temperature before and after fertiliser application during the wheat growing season. The ratio of volatilised NH3-N to applied N after urea application during the rice growing season was as follows: top-dressing at the onset of tillering > top-dressing at the start of the booting stage > basal fertilization. The results also show that the amount of N lost through NH3 volatilisation increased with increasing N application rate, but the ratio to applied N was not affected significantly by N application rate. Amendment with rice straw had no significant effect on NH3 volatilisation.  相似文献   

10.
To determine if ozone (O3) and root zone temperature (RZT) affect plant biomass allocation and photosynthesis, radish (Raphanus sativus) plants were grown in controlled environment laboratory chambers in one of four treatments: episodic O3 (average delivery 0.063 mumol mol-1) with RZT at 13 degrees C, episodic O3 (same delivery) with RZT at 18 degrees C, charcoal-filtered air with RZT at 13 degrees C and charcoal-filtered air with RZT at 18 degrees C. O3 reduced total biomass and shoot biomass of radish at 13 degrees C RZT but had no effect at 18 degrees C RZT. Low (13 degrees C) RZT decreased total biomass in both O3 and charcoal-filtered air. RZT had no overall effect on biomass allocation, but O3 lowered root-to-shoot ratios for plants grown at 18 degrees C RZT. Photosynthesis was reduced for plants grown at 18 degrees C RZT and O3, but stomatal conductance was not affected by O3 nor RZT. These results indicate that O3 and low RZT decrease biomass, but that plant photosynthesis is decreased by O3 and warm RZT.  相似文献   

11.
A greenhouse experiment was conducted to evaluate the potential role of arbuscular mycorrhizal fungi (AMF) in encouraging revegetation of copper (Cu) mine tailings. Two native plant species, Coreopsis drummondii and Pteris vittata, together with a turf grass, Lolium perenne and a leguminous plant Trifolium repens associated with and without AMF Glomus mosseae were grown in Cu mine tailings to assess mycorrhizal effects on plant growth, mineral nutrition and metal uptake. Results indicated that symbiotic associations were successfully established between G. mosseae and all plants tested, and mycorrhizal colonization markedly increased plant dry matter yield except for L. perenne. The beneficial impacts of mycorrhizal colonization on plant growth could be largely explained by both improved P nutrition and decreased shoot Cu, As and Cd concentrations. The experiment provided evidence for the potential use of local plant species in combination with AMF for ecological restoration of metalliferous mine tailings.  相似文献   

12.
Lygeum spartum is a native species in semiarid Mediterranean areas that grows spontaneously on acid mine tailings. We aimed to study the suitability of this plant for phytostabilization. L. spartum was grown from both seeds and rhizomes in acid mine tailings with various fertilizer and lime treatments. Untreated soils had a solution pH of 2.9 with high concentrations of dissolved salts (Electrical Conductivity 25 dS m(-1)) and Zn (3100 mg L(-1)). Plants grown on untreated soil had high shoot metal concentrations (>4000 mg kg(-1)Zn). Liming increased the solution pH to 5.5 and reduced the dissolved salts by more than 75%, resulting in lower shoot metal accumulation. Plants grown from rhizomes accumulated less metal than those grown from seeds. Plants collected in the field had metal concentrations an order of magnitude less than plants raised in the growth chamber. These differences may be due to the higher moisture content and homogeneous nature of the soils used in the pot experiment.  相似文献   

13.
A greenhouse study was carried out with Brassica juncea to critically evaluate effects of bacterial inoculation on the uptake of heavy metals from Pb-Zn mine tailings by plants. Application of plant growth-promoting rhizobacteria, including nitrogen-fixing bacteria and phosphate and potassium solubilizers, might play an important role in the further development of phytoremediation techniques. The presence of these beneficial bacteria stimulated plant growth and protected the plant from metal toxicity. Inoculation with rhizobacteria had little influence on the metal concentrations in plant tissues, but produced a much larger above-ground biomass and altered metal bioavailability in the soil. As a consequence, higher efficiency of phytoextraction was obtained compared with control treatments.  相似文献   

14.
The effects of nitrilotriacetate (NTA) and citric acid applications on metal extractability from a multiply metal-contaminated soil, as well as on their uptake and accumulation by Indian mustard (Brassica juncea) were investigated. Desorption of metals from the soil increased with chelate concentration, NTA being more effective than citric acid in solubilising the metals. Plants were grown in a sandy soil collected from a contaminated field site and polluted by Cd, Cr, Cu, Pb and Zn. After 43 days of plant growth, pots were amended with NTA or citric acid at 5 mmol kg-1 soil. Control pots were not treated with any chelate. Harvest of plants was performed 1 week after chelate addition. Soil water-, NH4NO3- and DTPA-extractable Cd, Cu, Pb and Zn fractions were enhanced only in the presence of NTA. In comparison to unamended plants, Indian mustard shoot dry weights suffered significant reductions following NTA application. NTA treatment increased shoot metal concentrations by a factor of 2-3, whereas citric acid did not induce any difference compared to the control. Chromium was detected in the above-ground tissues only after NTA amendment. Due to differences in dry matter yield, a significant enhancement of metal uptake was observed in NTA-treated plants for Cu and Zn.  相似文献   

15.
The influence of temperature and solar radiations on the rapid dissipation of DDT from tropical soils was studied by quantifying volatilisation, mineralisation, binding and degradation of ((14)C)-p,p'-DDT in a sandy loam soil. The bulk of the DDT loss occurred by volatilisation, which increased fivefold when the temperature changed from 15 to 45 degrees C. Degradation of DDT to DDE was also faster at higher temperatures. Mineralisation of DDT, though minimal, increased with temperature and time. Higher temperatures also enhanced binding of DDT to soil. Flooding the treated soil further increased volatilisation and degradation, although mineralisation was greatly reduced. Exposure of flooded and unflooded soils treated with DDT to sunlight in quartz, glass and dark tubes for 42 days during summer resulted in significant volatile losses. Volatilisation in the quartz tubes was nearly twice as great as that in the dark tubes The volatilised organics from the quartz tubes contained larger amounts of p,p'-DDE than the glass and dark tubes. Higher rates of volatilisation and degradation were found in flooded soils. Also significant quantities of p,p'-DDD were detected in addition to DDE. The data clearly show that volatilisation is the major mechanism for the rapid dissipation of DDT from Indian soils.  相似文献   

16.
Controlled bench-scale laboratory experiments were conducted to evaluate the recovery of ammonia (NH3) and hydrogen sulfide (H2S) from dynamic isolation flux chambers. H2S (80-4000 ppb) and NH3 (5000-40,000 ppb) samples were diffused through the flux chamber to simulate ground level area source emissions while measuring the inlet and outlet flux chamber concentrations simultaneously. Results showed that the recovery of H2S during a 30-min sampling time was almost complete for concentrations >2000 ppb. At the lowest concentration of 80 ppb, 92.55% of the H2S could be recovered during the given sampling period. NH3 emissions exhibited similar behavior between concentrations of 5000-40,000 ppb. Within the 30-min sampling period, 92.62% of the 5000-ppb NH3 sample could be recovered. Complete recovery was achieved for concentrations >40,000 ppb. Predictive equations were developed for gas adsorption. From these equations, the maximum difference between chamber inlet and outlet concentrations of NH3 or H2S was predicted to be 7.5% at the lowest concentration used for either gas. In the calculation of emission factors for NH3 and H2S, no adsorption correction factor is recommended for concentrations >37,500 ppb and 2100 ppb for NH3 and H2S, respectively. The reported differences in outlet and inlet concentration above these ranges are outside the fullscale sensitivity of the gas sensing equipment. The use of 46-90 m of Teflon tubing with the flux chambers has apparently no effect on gas adsorption, because recovery was completed almost instantaneously at the beginning of the tests.  相似文献   

17.
In a pot experiment the effects of nitrilotriacetate (NTA) and citric acid applications on Cd extractibility from soil as well as on its uptake and accumulation by Indian mustard (Brassica juncea) were investigated. Plants were grown in a sandy soil with added CdS at four levels ranging from 50 to 200 mg Cd kg(-1) soil. After 30 days of growth, pots were amended with NTA or citric acid at 10 and 20 mmol kg(-1). Control pots were not treated with chelates. Harvest of plants was performed immediately before and one week after chelate addition. Soil water-, NH(4)NO(3)- and EDTA-extractable Cd fractions increased constantly with both increasing soil metal application and chelate concentration. Shoot dry weights did not suffer significant reductions with increasing Cd addition to the soil except for both NTA treatments in which at 200 mg Cd kg(-1) a 30% decrease in dry matter was observed. Generally, following NTA and citric acid amendments, Cd concentration in shoots increased with soil Cd level. However, due to Cd toxicity, at the highest metal application rate both NTA treatments lowered Cd concentration in the above-ground parts. Compared to the control, at 10 mmol kg(-1) citric acid did not change Cd concentration in shoots, whereas NTA-treated plants showed an about 2-fold increase. The addition of chelates at 20 mmol kg(-1) further enhanced Cd concentration in shoots up to 718 and 560 microg g(-1) dry weight in the NTA and citrate treatments, respectively.  相似文献   

18.
Establishment of Carex rostrata, Eriophorum angustifolium and Phragmites australis on weathered, acidic mine tailings (pH approximately 3) and their effect on pH in tailings were investigated in a field experiment. The amendments, sewage sludge and an ashes-sewage sludge mixture, were used as plant nutrition and their influence on the metal and As concentrations of plant shoots was analysed. An additional experiment was performed in greenhouse with E. angustifolium and sewage sludge as amendments in both weathered and unweathered tailings. After one year, plants grew better in amendments containing ashes in the field, also in those plants the metal and As shoot concentrations were generally lower than in other treatments. After two years, the only surviving plants were found in sewage sludge mixed with ashes. No effect on pH by plants was found in weathered acidic mine tailings in either field- or greenhouse experiment.  相似文献   

19.
The effects of two-year early season ozone exposure on physiological and biochemical stress response were investigated in model plant communities. Achillea millefolium and Veronica chamaedrys target plants were grown in monocultures and in mixed cultures with Poa pratensis (phytometer) and exposed in open-top chambers over two years for five weeks to charcoal-filtered (CF) air plus 25 nl l(-1) O3 (control) and non-filtered (NF) air plus 50 nl l(-1) O3. Significant O3 effects were detected in different physiological and biochemical parameters, evidencing interspecific differences in metabolic stress responses and a strong influence of the competition factor. O3 induced strong oxidative effects in Achillea irrespective to the different growth modality. Veronica showed less O3-induced effects in monoculture than when grown in competition with the phytometer. Poa exhibited a different behaviour against O3 depending on the species in competition, showing an overall higher sensitivity to O3 when in mixture with Achillea.  相似文献   

20.
Portable 24-hr sampling units were used to collect air samples from eight biofilters on four animal feeding operations. The biofilters were located on a dairy, a swine nursery, and two swine finishing farms. Biofilter media characteristics (age, porosity, density, particle size, water absorption capacity, pressure drop) and ammonia (NH3), hydrogen sulfide (H2S), sulfur dioxide (SO2), methane (CH4), and nitrous oxide (N2O) reduction efficiencies of the biofilters were assessed. The deep bed biofilters at the dairy farm, which were in use for a few months, had the most porous media and lowest unit pressure drops. The average media porosity and density were 75% and 180 kg/m3, respectively. Reduction efficiencies of H2S and NH3 (biofilter 1: 64% NH3, 76% H2S; biofilter 2: 53% NH3, 85% H2S) were close to those reported for pilot-scale biofilters. No N2O production was measured at the dairy farm. The highest H2S, SO2, NH3, and CH4 reduction efficiencies were measured from a flat-bed biofilter at the swine nursery farm. However, the highest N2O generation (29.2%) was also measured from this biofilter. This flat-bed biofilter media was dense and had the lowest porosity. A garden sprinkler was used to add water to this biofilter, which may have filled media pores and caused N2O production under anaerobic conditions. Concentrations of H2S and NH3 were determined using the portable 24-hr sampling units and compared to ones measured with a semicontinuous gas sampling system at one farm. Flat-bed biofilters at the swine finishing farms also produced low amounts of N2O. The N2O production rate of the newer media (2 years old) with higher porosity was lower than that of older media (3 years old) (P = 0.042).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号