首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stable carbon isotope measurements (13C) were used to assess the importance of kelp carbon (-13.6 to-16.5) versus phytoplankton carbon (-25.5 to-26.5) to resident fauna of an isolated kelp bed community on Alaska's north arctic coast from 1979 to 1983. The predominant kelp, Laminaria solidungula, showed some seasonal variation in 13C which was correlated with changes in the carbon content of the tissue. Animals that showed the greatest assimilation of kelp carbon (>=50%) included macroalgal herbivores (gastropods and chitons,-16.9 to-18.2), a nonselective suspension feeder (an ascidian,-19.0) and a predatory gastropod (-17.6). Animals that showed the least incorporation of kelp carbon into body tissues (<=7%) included selective suspension-feeders (hydroids, soft corals and bryozoans,-22.8 to-25.1). Sponges, and polychaete, gastropod and crustacean omnivores exhibited an intermediate dependence on kelp carbon (15 to 40%). Within some taxonomic groups, species exhibited a broad range in isotopic composition which was related to differences in feeding strategies. In the polychaete group alone, 13C values identified four major feeding habits: deposit-feeders (-18.0), omnivores (-20.4), predators (-22.2) and microalgal herbivores (-23.0). Distinct seasonal changes in the 13C values of several animals indicated an increased dependence on kelp carbon during the dark winter period when phytoplankton were absent. Up to 50% of the body carbon of mysid crustaceans, which are key prey species for birds, fishes and marine mammals, was composed of carbon derived from kelp detritus during the ice-covered period.  相似文献   

2.
The White Sea gastropod Hydrobia ulvae (Pennant) was exposed to step-wise lowering or increase of the habitat salinity. The time allowed for acclimatization to the successive salinity levels was sufficient to complete non-genetic adaptation. In this way, the lower and upper salinity limits were extended. The tolerance limits obtained are assumed to be indicative of the capacity for non-genetic adaptation and to serve as a genotypical characteristic. The tolerance of specimens colleced from in situ conditions (mid littoral, 20 S) ranged between 14 and 34 S. After non-genetic adaptation, the lower tolerance value shifted to 6 S (adaptation limit), and the upper value to 76 S (final limit not reached). There is no reason for considering White Sea H. ulvae to represent a special physiological race of specimens from those on the coast of Great Britain.  相似文献   

3.
S. V. Job 《Marine Biology》1969,3(3):222-226
Tilapia mossambica (Teleostei) weighing 5 to 80 g were acclimated at 30°C to salinities of 0.4 (tap water), 12.5 (50% sea water) and 30.5 (100% sea water). Their respiration was measured at routine activity and the partial pressure of ambient oxygen gradually reduced from 250 to 50 mm Hg. Respiration is salinity-dependent; the proportionate ability to use oxygen in any one salinity is — above the critical pO2 —the same in all experimental groups. This ability is a function of temperature and increases from 15° to 30°C, becoming temperature independent from 30° to 40°C as long as the pO2 remains above 150 mm Hg. At 50 mm Hg pO2, the limiting effect of oxygen causes a decrease in metabolic rate. This limiting effect is minimal in 80 g fish kept in an isotonic medium (12.5 S), allowing greater scope for activity and a higher rate of oxygen uptake.  相似文献   

4.
The effect of salinity on embryonic development ofSepia officinalis (cuttlefish) in the Delta Area (South Western part of The Netherlands) was investigated in 1988/1989, and compared with data concerning the distribution ofS. officinalis in the three main parts of this area: Oosterschelde, Westerschelde and Grevelingen. Embryos hatched in water collected at Yerseke (Oosterschelde), Vlissingen (Western part of the Westerschelde) and Bommenede (Grevelingen), i.e., at salinity values above 28.1, but not in water sampled at Hoedekenskerke and Hansweert (Middle and Eastern part of the Westerschelde; salinities below 22.0). Under laboratory conditions, using diluted Oosterschelde water, the highest hatching percentages ofS. officinalis were found at salinities above 29.8. Some embryos hatched at a salinity value of 26.5 but no hatching occurred at salinities below 23.9. In embryos exposed to salinity changes during late embryonic development, the developmental rate decreased at salinity values of 28.7 or less. Below 22.4 embryos with morphological malformations were found. It can be concluded that salinity is an important factor limiting the distribution ofS. officinalis in most parts of the Delta Area, with the exception of the Western part of the Westerschelde and the Grevelingen.Contribution no. 489 of the Library of the Delta Institute for Hydrobiological Research  相似文献   

5.
The hemolymph of the blue crab Callinectes sapidus was hyperosmotic during 20-10-20 S and 30-10-30 S diurnal cycles. The hemolymph became isosmotic at 26 S and hyposmotic at 28 S in the 10-30-10 S diurnal cycle. Hemolymph Na+ was hyperionic to seawater throughout all cycles. Hemolymph Cl- was hyperionic below 24 S and either isionic or hypoionic from 24 to 30 S. Hemolymph K+ concentrations were hyperionic below 26 S and either isionic or hypoionic from 26 to 30 S. Hemolymph Mg++ values were hypoionic over the experimental salinity range (10 to 30). Hemolymph ninhydrin-positive substances (NPS) levels were directly related to ambient salinity.  相似文献   

6.
Respiration rates of Thais haemastoma and Callinectes sapidus were determined as a function of salinity with a flow-through respirometer at 20°C. Respiration rates were measured at 10, 20 and 30 S for acclimated animals. The effects of 10-5-10, 20-10-20, 30-10-30 and 10-30-10 S semidiurnal cycles (12 h) of fluctuating salinity on the rate of respiration of the oyster drill were studied. During each cycle, salinity was changed from the acclimation salinity over a 4 h interval, held at that salinity for 2 h, returned to the acclimation salinity over 4 h and held at that salinity for 2 h. The effects of diurnal (24.8 h) salinity cycles on respiration in the oyster drill and blue crab were also studied. Salinity was changed from the acclimation salinity over a 10.4 h interval, held at that salinity for 2 h, then returned to the acclimation salinity over 10.4 h and held at that salinity for 2 h. The respiration rate of 30 S acclimated oyster drills (679 l O2 g dry weight–1 h–1) was significantly higher than for individuals acclimated to 10 S (534 l O2 g dry weight–1 h–1). Blue crab respiration was 170 l O2 g dry weight–1 h–1 at 30 S, and was significantly higher at 10 and 20 S than at 30 S. With the exception of the 20-10-20 S semidiurnal cycle, the respiration rate of oyster drills declined as salinity fluctuated in either direction from the acclimation salinity and increased as ambient salinity returned to the acclimation salinity. Semidiurnal cycles (12 h) of fluctuating salinity produced greater changes in the respiration rate of snails than analogous diurnal cycles (24.8 h). A 10-30-10 S pattern of fluctuation caused a greater percentage reduction in the steady state respiration rate of oyster drills than the 30-10-30 S pattern. The respiration rate of blue crabs varied inversely with fluctuating salinity. Relatively minor changes occurred in blue crab respiration rate with fluctuating salinity. Blue crab respiration rate characteristically dropped during the initial phase of declining salinity at a rate directly proportional to the rate of salinity decrease, perhaps representing a metabolic adjustment period by the blue crabs. The respiratory response of T. haemastoma to salinity is consistent with its incomplete volume regulation, while the response of C. sapidus is compatible with its ability to regulate extracellular fluid osmotic and ionic composition.  相似文献   

7.
Adult male Uca rapax, collected from the central coast of Venezuela in early 1994 were gradually acclimated to salinities ranging from 1.7 to 139S. The hemolymph osmolality (791±15 mOsmol in crabs from 26S) changed less than three-fold over the entire range of concentrations tested. The urine was isosmotic with the hemolymph in crabs exposed to dilutions <26S, and significantly hyperosmotic in those exposed to media >34.8S. The hemolymph levels of Na+, Cl, K+, Ca2+ and Mg2+ (320±13, 405±17, 7.8±0.7, 7.2±0.1 and 31±2.2 mmol l–1, respectively, in crabs acclimated to 26S) were maintained fairly constant over the range from 8.7 to 99S, decreasing by 15% in the more dilute media or increasing sharply to about twice those values in crabs from 139S. The excretory organs contributed to the osmoionic regulation of the hemolymph in crabs exposed to <3.5 or to >34.8S, by means of the partial reabsorption or excretion, respectively, of salts from or into the urine. The results described place U. rapax among the most powerful hypo/hyper-regulating crustaceans known.  相似文献   

8.
A salinity dependent mictic response was observed in a clone of Brachionus plicatilis cultured in the 2 to 4 salinity range. This response was related to asexual exponential reproduction rates (G) and could be divided into three categories: (a) no mixis occurred at a salinity of 35 S and above, where G values were lower than 0.30 d-1, (b) low mictic levels in rotifers cultured at 2 and 30 S, where G values ranged between 0.40 to 0.50 d-1, and (c) high mictic levels in rotifers cultured at salinities ranging between 4 and 20 S, where G values ranged between 0.50 to 0.85 d-1. Fluctuations in mictic levels varied with time during the course of the experiments. Results suggest that salinity conditions leading to optimal parthenogenic reproduction also support mixis.  相似文献   

9.
Routine oxygen consumption of very young juveniles (0.1 g) of Penaeus indicus H. Milne Edwards was significantly influenced by ambient temperature and weight of the animal, but not by ambient salinity, when tested at salinities (7, 21, and 35) to which they had been long-term (over 10 days) acclimated. Standard oxygen consumption of young juvenile prawns (1 to 3 g), subjected to step-wise changes in ambient salinity, from sea water to low salinity waters (2 to 6), and measured after short-term (24 h) salinity acclimation at each step, was lowest at salinities where prawns such as those tested occur naturally (10 to 15). The metabolic rates do not appear to have a direct relation to the osmotic gradient, even when the influence of interfering activity is eliminated. It appears that factors other than osmotic gradient will have to be sought in order to explain the metabolic patterns of P. indicus in relation to salinity.  相似文献   

10.
Measurements of net photosynthesis of benthic estuarine diatoms were made by polarographic registration of oxygen saturation. A measuring cell was constructed in which media with salinities of 2.0 to 100.7 were pumped over the algae between measurements. Diatoms from unialgal cultures and mixed populations from intertidal flats appeared to be highly tolerant of extreme salinities. During short-term exposures (20 min) the net photosynthesis of the algae did not drop below 70% of the initial values, within the salinity range 4.0 to 60.0. Prolonged exposure (up to 6 h) gave essentially the same results. Populations of benthic diatoms, sampled from field stations with mean salinities of about 30, 12, and below 5, showed only gradual differences in their tolerance of salinities between 2.0 and 33.7. Two species, Navicula arenaria and Nitzschia sigma, were cultured in media ranging in salinity from 8.0 to 45.0 and from 2.0 to 45, respectively. The tolerance to changing salinity was only slightly affected by the salinity of the medium in the preculture. The role of salinity in the production and distribution of intertidal diatoms is discussed.  相似文献   

11.
In our field study we analyzed the C and H isotopic and biochemical (C, N, P, protein, lipid, carbohydrate) composition of the jellyfish Pelagia noctiluca (collected from the Gulf of Trieste in 1985 to 1986) and its presumed diet-net zooplankton. The mean 13C (-18.8) and D (-58.4) ratios of P. noctiluca showed enrichment in heavy isotopes relative to net zooplankton (2 for carbon and 30 for hydrogen). Both the jellyfish and net zooplankton were characterized by a linear correlation between 13C and D. C. N, P, protein, lipid, and carbohydrate contents of P. noctiluca were low on a dry weight basis as compared to net zooplankton. Significantly lower C:N and C:P ratios were found in jellyfish indicating a greater loss of carbon relative to nitrogen and phosphorus along the passage to a higher trophic level. Isotopic and biochemical evidence indicate that, though collected in nearshore waters, P. noctiluca depended on autochthonous marine organic matter.  相似文献   

12.
At 33 salinity a tissue stump formed 2 to 3 d after autotomy and developing ossicles were present by the fourth day inOphiothrix angulata (Say). Regeneration proceeded rapidly from the sixth day until the thirteenth day, when the rate decreased greatly. The length of the regenerated arm and the number of ossicles formed did not vary over a salinity range of 28 to 38 S, but were significantly less at 23 S. The number of ossicles regenerated increased linearly (y=1.9 x-7.7;r=0.9089) with the calcium concentrations ranging from 3.8 to 9.5 mM. No ossicle formation occurred at 3.8 mM calcium concentration. Rate of net uptake of calcium-45 into the ossicles of intact individuals in salinities of 28 and 33 was significantly greater than that in 23 and 38 S. However, net uptake rate of calcium into the soft tissues of the arms was significantly higher at 18S than at the lower two salinities.  相似文献   

13.
The combined effects of salinity and temperature on survival and growth of larvae of the mussel Mytilus edulis (L.) were studied. The effects of salinity and temperature are significantly related only as the limits of tolerance of either factor are approached. Survival of larvae at salinities from 15 to 40 is uniformly good (70% or better) at temperatures from 5° to 20°C, but is reduced drastically at 25 °C, particularly at high (40) and low (20) salinities. Larval growth is rapid at a temperature of 15 °C in salinities from 25 to 35, at 20 °C in salinities from 20 to 35. Optimum growth occurs at 20 °C in salinities from 25 to 30. Growth decreases both at 25° and 10 °C; the decline is most drastic at high (40) and low (20) salinities.Part of a study completed at the Bureau of Commercial Fisheries, Biological Laboratory, Milford, Connecticut, USA, while on a UNESCO Fellowship.  相似文献   

14.
B. Ganning 《Marine Biology》1971,8(4):271-279
The ostracod fauna of Baltic brackish-water rockpools is made up of two groups: permanent members of the pools, and occasional guests from the littoral zone. The former group consists of Heterocypris salinus, H. incongruens and Cypridopsis aculeata. These species are characterized by rapid development (which starts when the water temperature approaches 15°C), a short life span, and 2 or 3 separate generations during the summer and autumn. The number of generations is determined by water temperature. Hibernation always takes place as eggs. Hatching and development during the late spring or early summer has been found to be mostly simultaneous. The spawning of the 3 species always starts epidemically. Reproduction is entirely parthenogenetic in the investigated area. Under natural conditions, C. aculeata may be found with either H. salinus or H. incongruens, but these two latter species have never been recorded together. H. incongruens is less tolerant to high salinities than the other 2 species and, even after successive adaptation, it does not resist salinities higher than 16. H. salinus has been found in 35.2 S in the field, and has been kept in 30 S in the laboratory after successive adaptation. The optimum salinity-temperature range for this species is 5 to 10 S and 15°C, when both survival and development are considered. Corresponding figures for C. aculeata are 0.5 to 20 S and 15°C, although this species, like H. salinus, survives longest at 5°C. The very rapid development, parthenogenetic reproduction and short life span of these species must be considered as favourable adaptations to the variable and unstable environment of the rockpool ecosystems.  相似文献   

15.
In a study to assess qualitatively the importance of organic matter derived from kelp production in the Aleutian Islands of subarctic Alaka, replicated samples of autotrophic sources and primary and secondary consumer organisms were sampled for 13C among sources, sites, (treatment) islands, and years. Unanticipated variation in the 13C of kelps occurred among overtly similar sites at different islands. Variation in the 13C of the surface canopy-forming kelp Alaria fistulosa was particularly extreme, ranging from-15.5 to-28.0 compared to the understory kelps, Laminaria spp. A. fistulosa 13C varied by as much as 6 to 7 among similar sites at a given island within years, and by as much as 3 to 4 between years at the same sampling site. In serveral cases, 13C variation was weakly tracked by some consumer organisms, suggesting that even detritus pathways through the food web can be localized and tightly coupled. Dynamic cycles in the concentration and 13C of dissolved inorganic carbon (DIC) and aqueous CO2 concentration ([CO2]aq) were measured at three sites on one island. The 13C or organic carbon fixed by A. fistulosa, calculated from diurnal DIC concentration and 13C measurements, varied by 15 and varied inversely with [CO2]aq concentrations. Local DIC variability, probably resulting from high productivity and decreased turbulence in dense kelp habitats, provides a possible mechanism of variation in kelp 13C. The short-term variability in the 13C of organic carbon fixed by kelps indicates that sampling methodology and design must assess this potential variation in marine macrophyte 13C before making assumptions about the transfer of 13C-invariate organic matter to higher trophic levels. On the positive side, a predictable relationship between [CO2]aq concentration and kelp 13C offers a potentially robust means to assess productivity effects on CO2 limination in kelps and other complex aquatic macrophyte habitats.  相似文献   

16.
This study documents the effects of short-term (24h) sublethal copper exposures on undirected swimming activity and photobehavior of Balanus improvisus stage II nauplii. All Cu treatments were static, with temperature and salinity conditions at 20°C and 15 or 30. The 24h LC 50 estimate for Cu is 88 ppb at 15 and >200 ppb at 30. Sub-lethal Cu concentrations cause reductions in swimming speed, which decrease progressively with increasing Cu dose. At 50 ppb Cu, this was significant primarily at light intensities below the phototactic threshold. At higher Cu concentrations, significant reductions in mean linear velocity occurred at most light intensities tested. At 30, 50 and 100 ppb Cu also reduce the positive phototactic response and 150 ppb Cu causes reversal of phototaxis at optimal intensities. Photokinesis is reduced at 100 ppb Cu and disappears at 150 ppb Cu. At 15, the behavioral effects of 50 ppb Cu resemble those occurring with 150 ppb Cu at 30. Swimming speed and photobehavior show promise as sensitive behavioral indicators of copper toxicity. Additional research is required to determine if these responses apply to a broad range of pollutants and to other planktonic organisms. There is also a need to further evaluate the significance of these behavioral effects ecologically.Contribution No. 181 from the EPA Environmental Research Laboratory, Narragansett, RI 02882, USA  相似文献   

17.
The seasonal variations in distribution and abundance of the common zooplankton species in the Bristol Channel and Severn Estuary were related to the salinity regimes observed over the period November 1973 to February 1975. The dominant constituents in all regions were the calanoid copepods, which reached maximum densities in July: approximately 100 times their winter levels. Four zooplankton assemblages were recognised using an objective classification program which computed similarity coefficients and used group-average sorting. The assemblages existed along the salinity gradient observed from the Severn Estuary to the Celtic Sea. The assemblages were classified as true estuarine, estuarine and marine, euryhaline marine and stenohaline marine and were characterized by the copepods Eurytemora affinis (Poppe) (<30S), Acartia bifilosa var. inermis (rose) (27 to 33.5S), Centropages hamatus (Lilljeborg) (31 to 35S) and Calanus helgolandicus (Claus) (>33S), respectively.  相似文献   

18.
Tigriopus brevicornis (O. F. Müller) were collected in 1992 from rock pools close to U.M.B.S. Millport, Isle of Cumbrae, U.K. and acclimated to various combinations of salinity and temperature for at least 1 wk prior to laboratory experiments. Higher salinities of acclimation enhanced tolerance to high salinity stress, while tolerance of low salinities was hardly affected by acclimation salinity. Acclimation to low temperature (10°C) extended the survivable salinity range for T. brevicornis. High-salinity acclimation enhanced the survivable temperature range. Copepods acclimated to 60 survived significantly lower and higher temperatures than did 34-acclimated individuals. At high temperature, 75-acclimated female copepods had the highest median lethal temperature, 38.9°C. Females were significantly more resistant to high temperatures than males. The copepods were seen to have a very low median lethal temperature when frozen into solid ice for 2 h; 50% mortality occurred at-16.9°C in 10°C, 34-acclimated T. brevicornis. Salinity preference experiments demonstrated an ability to discriminate between salinities differing by as little as 3. Copepods acclimated to 34 chose salinities near their acclimation salinity; individuals acclimated to 5 favoured slightly higher salinities, while copepods acclimated to 60 chose rather lower salinities.  相似文献   

19.
The six-rayed starfish Leptasterias hexactis (Stimpson, 1862) is seasonally exposed to low salinities in southeastern Alaska. Individuals that were gradually exposed to reduced salinities in the laboratory had a 28-d TLm of 12.9 S. The activity of L. hexactis, as measured by its activity coefficient, varied directly with salinity. Individual feeding rates of the starfish on similarly exposed Mytilus edulis, measured daily for 21 d at salinities of 30, 20 and 15 S, also varied directly with salinity. The dry weight of mussel tissue consumed was 8.84, 8.49 and 0.58 mg ·starfish-1·d-1 at 20, 20 and 15 S. Expressed as percent of dry starfish weight, the daily feeding rate was 1.35, 0.76 and 0.10% at 30, 20 and 15 S. Absorption efficiency decreased from 64% at 30 S to 49% at 20 S, further reducing the energy available for metabolism. Growth, measured in terms of changes in total dry weight or dry weight of soft tissues, also varied directly with salinity. Although exposure to hyposmotic conditions did induce stress responses, as indicated by reductions in activity, feeding, absorption efficiency and growth rates, L. hexactis maintained positive growth for at least a 3-wk period in the laboratory at 20 S and 13°CC. The population of L. hexactis investigated must be considered euryhaline and brief periods of exposure to hyposmotic conditions should not limit its distribution.  相似文献   

20.
Variation in cod stock strength in the Baltic Sea is considered to be dependent on abiotic conditions such as salinity and water oxygen content in the spawning areas (the Baltic deep basins). Spawning cod were caught off northern Gotland, Sweden, from April to June in 1989 and 1990. Our investigation revealed a reduction in spermatozoan motility and a subsequent reduction in the percentage of fertilized eggs in salinities of 10 to 12. Normal egg development required a minimum salinity of 11. This coincides with the osmolality of the seminal plasma and egg yolk; i.e., the Baltic cod is adapted to hyperosmotic conditions for spawning and is thus totally dependent on periodical inflows of saline water from the North Sea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号