首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
Nitrous oxide (N2O) is one of the potent greenhouse gases (GHG) that depletes the stratospheric ozone. Nitrogen fertilizers are considered to be a major source of nitrous oxide (N2O) emissions from arable soils. To investigate the characteristics of N2O emission, its influencing factors, and its response to nitrogen application in dry grassland in the Loess Plateau, one of the most intensively used agricultural regions in China, we conducted a field trial with two treatments including N0 (0 kg hm-2) and N150 (150 kg hm-2) at the Qingyang Loess Plateau grassland agricultural research station of Lanzhou University. An LGR-N2O/CO gas analyzer was used to monitor the emissions. The results showed that the N2O fluxes of the N0 and N150 treatments during the monitoring period were -0.0036 and 0.0118 mg m-2 h-1, respectively; the flux in case of the N150 treatment was significantly higher than that for the N0 treatment. The N2O emission flux has a distinct diurnal variation characteristic, which first showed the trend of decreasing and then increasing. Regression analysis indicated a significant positive correlation between the N2O flux and the surface soil water content at a depth of 10 cm. The N2O emission flux increased by 131.3%, compared with that during the non-precipitation days. At the same time, the N2O emission flux showed a trend of decreasing with the increase of the surface soil temperature at a depth of 10 cm. The daily emission characteristics indicated that there may be a significant underestimation of the N2O flux at the daily or longer time-scale, based on the N2O flux value measured at 9:00-11:00. In summary, the N2O emissions from the sown alfalfa grassland of the eastern Gansu are strongly affected by precipitation and nitrogen application and have obvious daily dynamic characteristics. It is recommended that the accuracy and representativeness of N2O emission flux data be enhanced by continuous dynamic measurement using the instrument. © 2018 Science Press. All rights reserved.  相似文献   

2.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号