共查询到20条相似文献,搜索用时 15 毫秒
1.
Field-scale characterisations of contaminant plumes in groundwater, as well as source zone delineations, are associated with uncertainties that can be considerable. A major source of uncertainty in environmental datasets is due to variability of sampling results, as a direct consequence of the heterogeneity of environmental matrices. We develop a methodology for quantifying uncertainties in field-scale mass flow and average concentration estimations, using integral pumping tests (IPTs), where the contaminant concentration is measured as a function of time in a pumping well. This procedure increases the sampling volume and reduces the effect of small-scale variability that may bias point-scale measurements. In particular, using IPTs, the interpolation uncertainty of conventional point-scale measurements is transformed to a quantifiable uncertainty related to the (unknown) plume position relative to the pumping well. We show that this plume position uncertainty generally influenced the predicted mass flows and average concentrations (of acenapthene, benzene and CHCs) to a greater extent than a boundary condition uncertainty related to the local water balance, considering 19 control planes at a highly heterogeneous industrial site in southwest Germany. Furthermore, large (order of magnitude) uncertainties only occurred if the conditions were strongly heterogeneous in the nearest vicinity of the well. We also develop a consistent methodology for an assessment of the combined effect of uncertainty in hydraulic conditions and uncertainty in reactive transport parameters for delimiting of both contaminant source zones and zones absent of source, based on (downgradient) IPTs. 相似文献
2.
Surface soil samples taken from 55 sampling sites at the urban areas of Shanghai were collected and analyzed for the occurrence of 144 polychlorinated biphenyls (PCBs) by GC-μECD. The results showed that totally 74 PCB congeners were identified and the mean concentration of total PCBs was 3057 ng kg −1 with a range of 232 to 11325 ng kg −1. Compared with the related reports, the level of PCBs contamination in this study was approximately equal to the global background value in soils, but higher than Chinese background for rural and urban soils. According to the compositional profiles of PCBs homologues, a higher proportion of low chlorinated (from tri-CBs to hexa-CBs) was observed. The results indicated that PCB15 + 13, PCB18, PCB28, PCB104 + 47 and PCB153 were the most dominant congeners among the identified PCBs. Through homologues analysis, cluster analysis and principal component analysis (PCA), it was found that PCBs were stretched from mixed local sources, and appeared to be mostly originated by Aroclor 1260- and 1254-like mixtures as well as some samples influenced by Aroclor 1232 and 1242. The correlation analysis showed the relatively good correlation among the PCB homologues and soil total organic carbon (TOC), suggesting important influence of soil TOC on PCBs contamination in soil matrix in Shanghai region. The toxic equivalency (TEQ) concentrations of these six dioxin-like PCBs detected in urban soil samples range from 2.71 to 24.9 pg kg −1-PCDDeq with a mean 8.18 pg kg −1-PCDDeq. 相似文献
3.
Data on herbicide pollution in groundwater are rather scarce; monitoring data are based on single investigation, focussing on limited area and on few compounds of interest. The large number of approved active ingredients (approximately 600 chemicals) makes difficult to obtain an accurate and actual information on herbicide application in different countries, even if herbicides are the second most important class of pesticides used in the European Union. The results of a two-year monitoring campaign undertaken in two areas intensively cultivated at Lombardy, Northern Italy, showed a diffuse groundwater contamination due to active ingredients and their metabolites. More than 50% of samples overcame M.A.C. and the most common herbicides were Atrazine, Terbuthylazine and Metolachlor, while DEA and DET metabolites were often characterized by greater concentrations than their relative active principles. 相似文献
4.
According to its high production and value, Akkar is considered as the second agricultural region in Lebanon. Groundwater constitutes the principal source of water in Akkar including drinking water of local inhabitants in Akkar. As such, the contamination of groundwater by organic pollutants can impact directly the population health. In this study, we evaluated the contamination status of groundwater in this region. Three classes of pesticides including 19 organochlorine (OC) pesticides, 8 organophosphorus (OP) pesticides, and 6 organonitrogen (ON) pesticides were monitored in 15 groundwater samples collected from different villages on the Akkar plain. Samples were extracted by using solid phase extraction (SPE) and analyzed by gas chromatography coupled with mass spectrometry (GC-MS). The results showed high contamination of Akkar groundwater by OCs with levels that can reach 58.9 μg/L. They were detected in the majority of the sample and represent 95–100% of ∑pesticides. Our results showed the recent use of these molecules with an average level of 0.3 and 0.39 μg/L for ∑HCHs and DDTs, respectively. Their concentrations were higher than those observed in the same region in 2014 and other regions elsewhere. OPs were also detected at high levels and among them, methylparathion was the predominant OP detected (44.6 μg/L). For ONs, lower levels were measured in all samples with a mean value of 5.6 μg/L. As a conclusion of this work, groundwater on the plain of Akkar was remarkably contaminated by the studied pesticides; indefinitely, more efforts should be taken to manage the pesticide use in this region, assess, and reduce their effects on human health. In the future, the application of organic farming can be a great solution to the groundwater contamination problem. 相似文献
5.
The toxicity of leachates from two municipal solid waste (MSW) landfills in Southern Italy was characterized using a toxicity identification evaluation procedure. The chemical and physical fractionation techniques were: pH adjustment, pH adjustment/filtration, pH adjustment/C(18) solid phase extraction, graduated pH and EDTA chelation. All the samples exhibited acute toxicity towards the bacterium Vibrio fischeri, the freshwater rotifer Brachionus calyciflorus and the freshwater crustaceans Thamnocephalus platyurus and Daphnia magna. Statistical techniques were used to determine the discriminatory power and the toxicity detection capacity of the different assays and to choose a minimal battery of tests for the toxicity identification of leachates. Toxicity was closely associated with pH, generally increasing at higher pH levels and decliming at lower ones. Furthermore, results showed that toxicants could be characterized as cations, basic chemicals, suspended solids and apolar compounds. 相似文献
6.
This investigation was under taken to evaluate the groundwater resources contamination due to intensive agricultural practices (particularly greenhouses). The study-area is located in the coastal area of the Ragusa province (South-East Sicily), where numerous existing greenhouses may cause the contamination of groundwater systems (unconfined and confined aquifers) beneath the cropped land. The pollution risk is mainly related with the seepage process of macro-elements nitrogen (N), phosphorus (P), potassium (K), held in the irrigation water and the massive use of fertilizers and pesticides, that may pass through the unsaturated zone of the soil profile. Moreover, the area is characterized by the presence of several wells (about 15 wells/km2) for agricultural use that cause the aquifer overexploitation and the consequent risk of seawater intrusion. The agriculture practices adopted in the study area (irrigation volumes, fertilizer concentrations, use of pesticides…) were monitored since February 2009; moreover, the pollution risk of the aquifers was evaluated through the analysis of groundwater water samples collected (monthly) in the monitoring wells; in particular, nitrogen compounds, soluble phosphorous (PO?2?), potassium, as well as the main pesticides commonly used in the study area, were measured.The results show that electrical conductivity and chloride concentration values can cause reduction of production and leaf damage problems, respectively, for most of the monitored farm systems. The high nitrogen compounds concentrations observed in the monitored wells can cause health and environmental problems. Moreover high pesticide contamination of groundwater was found in two of the five monitored wells. 相似文献
7.
To offset the detrimental effects of urbanization on groundwater recharge, stormwater managers are focusing on infiltrating much of the runoff from a site that was generated because of development. For this to be effective, tools are required to predict the potential for contamination resulting from this infiltration for many site conditions, because infiltration should be stressed in areas where the least potential for causing groundwater contamination exists. Factors that influence contamination potential include the pollutant concentration in the runoff directed to the infiltration device and the ability of the underlying soil to remove the pollutant. The groundwater contamination potential of some pollutants, even those with high concentrations and moderate-to-high mobilities, can be reduced with proper pretreatment before infiltration. This paper presents a methodology that can be used to evaluate infiltration as an management option and introduces two different levels of models that could be used to evaluate contamination potential. 相似文献
8.
Environmental Science and Pollution Research - The presence of toxic substances in aquifers, particularly potentially toxic heavy metals, is an important environmental and social concern worldwide.... 相似文献
9.
In this paper, the integral groundwater investigation method is used for the quantification of PCE and TCE mass flow rates at an industrialized urban area in Linz, Austria. In this approach, pumping wells positioned along control planes perpendicular to the groundwater flow direction are operated for a time period on the order of days and sampled for contaminants. The concentration time series of the contaminants measured during operation of the pumping wells are then used to determine contaminant mass flow rates, mean concentrations and the plume shapes and positions at the control planes. The three control planes used in Linz were positioned downstream of a number of potential source zones, which are distributed over the field site. By use of the integral investigation method, it was possible to identify active contaminant sources, quantify the individual source strength in terms of mass flow rates at the control planes and estimate the contaminant plume position relative to the control planes. The source zones emitting the highest PCE and TCE mass flow rates could be determined, representing the areas where additional investigation and remediation activities will be needed. Additionally, large parts of the area investigated could be excluded from further investigation and remediation activities. 相似文献
10.
Despite the fact that creosote mainly consists of polycyclic aromatic hydrocarbons (PAHs), more polar compounds like phenolics, benzenes and N-, S-, O-heterocyclics dominate the groundwater downstream from creosote-contaminated sites. In this study, bioassay-directed fractionation, combined with fullscan GC-MS, identified organic toxicants in creosote-contaminated groundwater. An organic extract of creosote-contaminated groundwater was fractionated on a polar silica column using high performance liquid chromatography (HPLC), and the toxicity of the fractions was measured by the Microtox-bioassay. PAHs, which comprise up to 85% of pure creosote, accounted for only about 13% of total toxicity in the creosote-contaminated groundwater, while methylated benzenes, phenolics and N-heterocyclics accounted for ca. 80% of the measured toxicity. The fraction containing alkylated quinolines was the most toxic single fraction, accounting for 26% of the total measured toxicity. The results imply that focus on PAHs may underestimate risks associated with creosote-contaminated groundwater, and that environmental risk assessment should focus to a higher degree on substituted PAHs and phenolics because they are more toxic than the unsubstituted ones. Additionally, benzenes and N-heterocyclics (e.g., alkylated quinolines) should be assessed. 相似文献
11.
At the field scale, the biodegradation rate is usually estimated from analytical solutions to single species transport with first-order reactions, using measured data as input. Because many contaminants, e.g., chlorinated solvents, are degraded in a sequential pattern, with degradation products further reacting to produce new species, it is of great interest to quantify the transformation rate of every reaction. The conventional inverse solutions for identifying the transformation rates are limited to single species problems. In the present study, we propose a successive optimization approach to identify the biodegradation rate for each species by using a previously developed analytical solution to multi-species first-order reactive transport using data obtained at the field scale. By specifying a link between analytical solutions to sequentially reactive transport problems and optimization methods and assuming constant transport parameters (velocity, dispersivities, and retardation factors), the first-order transformation rates are optimized successively from parent species to its daughter species. 相似文献
12.
Groundwater pollution of the watershed is mainly influenced by the multifaceted interactions of natural and anthropogenic processes. In this study, classic chemical and multivariate statistical methods were utilized to assess the groundwater quality and ascertain the potential contamination sources affecting the groundwater quality of Galma sub-watershed in a tropical savanna. For this purpose, the data set of 18 groundwater quality variables covering 57 different sampling boreholes (BH) was used. The groundwater samples essentially contained the cations in the following order of dominance: Ca2+ ?>?Na+ ?>?Mg2+ ?>?K+. However, the anions had HCO3–?>?Cl–?>?SO4–2?>?NO3– respectively. The hydrochemical facies classified the groundwater types of the sub-watershed into mixed Ca–Mg–Cl type of water, which means no cations and anions exceeds 50%. The second dominant water type was Ca–Cl. The Mg–HCO3 water type was found in BH 9, and Na–Cl water type in BH 29 of the studied area. The weathering of the basement rocks was responsible for the concentrations of these ions in the groundwater chemistry of the sub-watershed. Hierarchical cluster analysis (HCA) grouped the groundwater samples (boreholes) into five clusters that are statistically significant regarding the similarities of groundwater quality characteristics. The principal component analysis (PCA) extracted two major principal components explained around 65% of the variance and suggested the natural and anthropogenic processes especially the agricultural pollutants including synthetic fertilizers, and leaching of agricultural waste as the main factors affecting the groundwater quality. The integrated method proved to be efficient and robust for groundwater quality evaluation, as it guaranteed the precise assessment of groundwater chemistry in the sub-watershed of the tropical savanna. The findings of this investigation could be useful to the policy makers for developing effective groundwater management plans for the groundwater resources and protection of the sub-watershed. 相似文献
13.
Environmental Science and Pollution Research - Critical periods (CPs) and critical source areas (CSAs) refer to the high-risk periods and areas of nonpoint source (NPS) pollution in a watershed,... 相似文献
14.
A new kind of biodegradable polymer, PBS, was used as both carbon source and biofilm support in a fixed-bed reactor to remove nitrate from groundwater. The experimental results showed that the denitrifying bacteria can easily attach to the surface of PBS granules and adapt to use PBS as carbon source. The SEM observation indicated that the fine biofilm can develop on the surface of PBS granules within 15 days. The denitrification rate increased with temperature increase in the range of 10-35°C, the maximum denitrification rate reached 1.00 mg/g.d at 35°C. Continuous experiment results showed that nitrate (50 mg/l) can be removed effectively and nitrite did not accumulate in the effluent. 相似文献
15.
在广东东莞地区采集了59组地下水水样和9组地表水水样,采用气相色谱-质谱联用技术进行测定,结果表明,地下水中邻苯二甲酸酯(PAEs)的检出率为39.0%,6种PAEs的质量浓度在未检出~6.70 μg/L.其中,邻苯二甲酸双(2-乙基己基)酯(DEHP)检出率最高,为22.O%,最大值为6.20 μg/L;邻苯二甲酸二... 相似文献
16.
Environmental Science and Pollution Research - Groundwater salinization and interaction between Playa Lake and regional groundwater were investigated using multi-chemo-isotopic evidences. Forty... 相似文献
17.
This study aimed to provide the first and comprehensive data on the occurrence of 17 target pharmaceuticals and personal care products (PPCPs) in urban water environment in Singapore. Meanwhile, this study also verified the suitability of these PPCPs as specific markers of raw wastewater contamination in receiving water bodies in highly urbanized areas where both surface water and groundwater are not impacted by the discharge of treated wastewater effluents. Analytical results of wastewater showed that among 17 target PPCPs examined, only 5 PPCPs were detected in 100 % of raw wastewater samples, including acetaminophen (ACT), carbamazepine (CBZ), caffeine (CF), diethyltoluamide (DEET), and salicylic acid (SA). Similarly, these PPCPs were found in most surface water and groundwater. Interestingly, the three PPCPs (ACT, CBZ, and SA) were only detected in surface water and groundwater in the sampling sites close to relatively older sewer systems, while they were absent in background samples that were collected from the catchment with no known wastewater sources. This suggests that ACT, CBZ, and SA can be used as specific molecular markers of raw wastewater in surface water and groundwater. This study also confirmed that CF and DEET were not really associated with wastewater sources, thus cannot serve well as specific molecular markers of wastewater contamination in receiving water bodies. To the best knowledge of the authors, the use of ACT and SA as specific molecular markers of raw wastewater contamination in urban surface waters and groundwater was first reported. Further studies on the use of ACT, CBZ, and SA along with other chemical/microbial markers are recommended to identify and differentiate contamination sources of surface waters/groundwater. 相似文献
18.
农业面源污染是水体中COD、氮、磷等指标的主要来源。它包括农药化肥施用、畜禽养殖和农村生活污水排放。对农业源水污染物进行削减是实现污染物总量控制的重要手段。通过详细总结国内外现有农业源水污染物削减技术方法,分析对比其优缺点和实用性,筛选出适用于不同农业污染来源的污水处理技术。结果表明,畜禽养殖废水的适宜处理技术有厌氧/缺氧/好氧(A/A/O)、序批式活性污泥法(SBR)、膜生物反应器(MBR)、升流式厌氧污泥床(UASB)、厌氧沼气池;农地施肥污水的适宜处理技术有SBR、MBR、UASB;农村生活污水的适宜处理技术有厌氧沼气池、生物滴滤池、人工湿地、稳定塘。 相似文献
19.
Historic emissions from ore smelters typically cause regional soil contamination. We developed a modelling approach to assess the impact of such contamination on groundwater and surface water load, coupling unsaturated zone leaching modelling with 3D groundwater transport modelling. Both historic and predictive modelling were performed, using a mass balance approach for three different catchments in the vicinity of three smelters. The catchments differ in their hydrology and geochemistry. The historic modelling results indicate that leaching to groundwater is spatially very heterogeneous due to variation in soil characteristics, in particular soil pH. In the saturated zone, cadmium is becoming strongly retarded due to strong sorption at neutral pH, even though the reactivity of the sandy sediments is low. A comparison between two datasets (from 1990 to 2002) on shallow groundwater and modelled concentrations provided a useful verification on the level of statistics of "homogeneous areas" (areas with comparable land use, soil type and geohydrological situation) instead of comparison at individual locations. While at individual locations observations and the model varies up to two orders of magnitude, for homogeneous areas, medians and ranges of measured concentrations and the model results are similar. A sensitivity analysis on metal input loads, groundwater composition and sediment geochemistry reveals that the best available information scenario based on the median value of input parameters for the model predicts the range in observed concentrations very well. However, the model results are sensitive to the sediment contents of the reactive components (organic matter, clay minerals and iron oxides). Uncertainty in metal input loads and groundwater chemistry are of lesser importance. Predictive modelling reveals a remarkable difference in geochemical and hydrological controls on subsurface metal transport at catchment-scale. Whether the surface water load will peak within a few decades or continue to increase until after 2050 depends on the dominant land use functions in the areas, their hydrology and geochemical build-up. 相似文献
20.
A natural gradient emplaced-source (ES) controlled field experiment was conducted at the Borden aquifer research site, Ontario, to study the transport of dissolved plumes emanating from residual dense nonaqueous-phase liquid (DNAPL) source zones. The specific objective of the work presented here is to determine the effects of solute and co-solute concentrations on sorption and retardation of dissolved chlorinated solvent-contaminant plumes. The ES field experiment comprised a controlled emplacement of a residual multicomponent DNAPL below the groundwater table and intensive monitoring of dissolved-phase plumes of trichloromethane (TCM), trichloroethylene (TCE), and perchloroethylene (PCE) plumes continuously generated in the aquifer down gradient from gradual source dissolution. Estimates of plume retardation (and dispersion) were obtained from 3-D numerical simulations that incorporated transient source input and flow regimes monitored during the test. PCE, the most retarded solute, surprisingly exhibited a retardation factor approximately 3 times lower than observed in a previous Borden tracer test by Mackay et al. [Water Resour. Res. 22 (1986) 2017] conducted approximately 150 m away. Also, an absence of temporal trend in PCE retardation contrasted with the previous Borden test. Supporting laboratory studies on ES site core indicated that sorption was nonlinear and competitive, i.e. reduced sorption of PCE was observed in the presence of TCE. Consideration of the effects of relatively high co-solute (TCE) concentration (competitive sorption) in addition to PCE concentration effects (nonlinear sorption) was necessary to yield laboratory-based PCE retardation estimates consistent with the field plume values. Concentration- and co-solute-based sorption and retardation analysis was also applied to the previous low-concentration pulse injection test of Mackay et al. [Water Resour. Res. 22 (1986) 2017] and was able to successfully predict the temporal field retardation trends observed in that test. While it is acknowledged that other "nonideal transport" effects may contribute, our analysis predicts differences in the PCE retardation magnitude and trend between the two experiments that are consistent with field observations based on the marked solute concentration differences that resulted from contrasting source conditions. Solute and co-solute concentration effects have heretofore received little attention, but may have wide significance in aquifers contaminated by point-source pollutants because many plumes contain mixed solutes over wide concentration ranges in strata that are likely subject to nonlinear sorption. 相似文献
|