首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of chloride, nitrate, perchlorate and sulfate ions on the rates of the decomposition of hydrogen peroxide and the oxidation of organic compounds by the Fenton's process have been investigated. Experiments were conducted in a batch reactor, in the dark at pH < or = 3.0 and at 25 degrees C. Data obtained from Fe(II)/H2O2 experiments with [Fe(II)]0/[H2O2]0 > or = 2 mol mol(-1), showed that the rates of reaction between Fe(II) and H2O2 followed the order SO4(2-) > ClO4(-) = NO3- = Cl-. For the Fe(III)/H2O2 process, identical rates were obtained in the presence of nitrate and perchlorate, whereas the presence of sulfate or chloride markedly decreased the rates of decomposition of H2O2 by Fe(III) and the rates of oxidation of atrazine ([atrazine]0 = 0.83 microM), 4-nitrophenol ([4-NP]0 = 1 mM) and acetic acid ([acetic acid]0 = 2 mM). These inhibitory effects have been attributed to a decrease of the rate of generation of hydroxyl radicals resulting from the formation of Fe(III) complexes and the formation of less reactive (SO4(*-)) or much less reactive (Cl2(*-)) inorganic radicals.  相似文献   

2.
The cyclization of ethyl 2-(aminosulfonyl)benzoate (ASB) to give saccharin was investigated in aqueous solutions at pH between 5.2 and 9.5 and in the temperature range of 296.2-334.2 K. The initial concentration of the reactant was varied between 1.45 x 10(-5) and 3.86 x 10(-4) M. Ultraviolet spectroscopy was used to obtain the kinetic data. The reaction is acid catalyzed and follows pseudo-first-order kinetics. The experimental rate constant, k(obs), increases with temperature and pH. Its dependence on the temperature and pH is well described by: k(obs) = k1 [OH-] = [(2.52 +/- 0.9) x 10(16) exp(-20.2 +/- 1 kcalmol(-1)/RT) s(-1)][OH-] A mechanism is proposed and the half-life of ethyl ASB is calculated.  相似文献   

3.
Yu H  Kennedy EM  Mackie JC  Dlugogorski BZ 《Chemosphere》2007,68(10):2003-2006
Gas phase reaction of CHClF(2) with CH(3)Br in an alumina tube reactor at 773-1123 K as a function of various input ratios of CH(3)Br to CHClF(2) is presented. The major products detected include C(2)F(4), CH(2)CF(2), and CH(4). Minor products include CH(3)Cl, CHF(3), C(2)H(4), C(2)H(2), CH(2)CF-CF(3), and C(2)H(3)F. The reaction produces a high yield of CH(2)CF(2) (53% based on CHClF(2) feed) at 1123 K and an input molar ratio of CH(3)Br to CHClF(2) of 1.8, suggesting that the reaction potentially can be developed as a process to convert two ozone depleting substances (CHClF(2) and CH(3)Br) to a highly valuable chemical, CH(2)CF(2). The reaction of CHClF(2) with CH(3)Cl and CH(3)I was also investigated under similar reaction conditions, to assist in understanding the reaction chemistry involved in the reaction of CHClF(2) with CH(3)Br.  相似文献   

4.
Sharma VK  Mishra SK  Ray AK 《Chemosphere》2006,62(1):128-134
Sulfamethoxazole (SMX), a worldwide-applied antibacterial drug, was recently found in surface waters and in secondary wastewater effluents, which may result in ecotoxical effects in the environment. Herein, removal of SMX by environmentally-friendly oxidant, potassium ferrate(VI) (K(2)FeO(4)), is sought by studying the kinetics of the reaction between Fe(VI) and SMX as a function of pH (6.93-9.50) and temperature (15-45 degrees C). The rate law for the oxidation of SMX by Fe(VI) is first-order with respect to each reactant. The observed second-order rate constant decreased non-linearly from 1.33+/-0.08 x 10(3) M(-1)s(-1) to 1.33+/-0.10 x 10(0) M(-1)s(-1) with an increase of pH from 7.00 to 9.50. This is related to protonation of Fe(VI) (HFeO(4)(-) <==> H(+) + FeO(4)(2-); pK(a,HFeO(4)) = 7.23) and sulfamethoxazole (SH <==> H(+) + S(-); pK(a,SH)=5.7). The estimated rate constants were k(11)(HFeO(4)(-) + SH) = 3.0 x 10(4) M(-1)s(-1), k(12)(HFeO(4)(-) + S(-)) = 1.7 x 10(2) M(-1)s(-1), and k(13) (FeO(4)(2-) + SH) = 1.2 x 10(0) M(-1)s(-1). The energy of activation at pH 7.0 was found to be 1.86+/-0.04 kJ mol(-1). If excess potassium ferrate(VI) concentration (10 microM) is used than the SMX in water, the half-life of the reaction using a rate constant obtained in our study would be approximately 2 min at pH 7. The reaction rates are pH dependent; thus, so are the half-lives of the reactions. The results suggest that K(2)FeO(4) has the potential to serve as an oxidative treatment chemical for removing SMX in water.  相似文献   

5.
Light-induced disappearance of nitrite in the presence of iron (III)   总被引:1,自引:0,他引:1  
Zhang H  Bartlett RJ 《Chemosphere》2000,40(4):411-418
Understanding of rapid disappearance of nitrite in natural waters and its impact on nitrogen natural cycling has remained limited. We found that NO2- disappeared rapidly in pH 3.2 aqueous Fe(III) solutions both in sunlight and in 356 nm light. Quantum yields of the NO2- loss at 356 nm were 0.049-0.14 for initial levels of 10-80 microns NO2- and 200 microns Fe(III). The NO2- loss (at 356 nm) followed apparent first-order kinetics. The rate constants were 1.3 x 10(-3) (40 microns NO2-) and 4.1 x 10(-4) s-1 (80 microns NO2-) for 100 microns Fe(III), and 2.3 x 10(-3) (40 microns NO2-) and 7.5 x 10(-4) s-1 (80 microns NO2(-1)) for 200 microns Fe(III) (t1/2 = 8.7, 27.9, 5.1, and 15.3 min, respectively). The rate constants were directly proportional to [Fe(III)]0 and inversely proportional to [NO2-]0. Agreement between the rate constants obtained experimentally and those calculated mechanistically supports the hypothesis that NO2- was oxidized to NO2 by .OH radicals from photolysis of FeOH2+ complexes, and at high [NO2-]0 (e.g., 80 microns) relative to [Fe(III)]0, hydrolysis of NO2 or N2O4 to form NO3- and NO2- could be significant. This study showed that light and Fe(III)-induced oxidation of NO2- (rate = approximately 10(-1)-10(-2) microns s-1) was more rapid than its direct photolysis (rate = approximately 10(-4) microns s-1), and the photolysis could be a significant source of .OH radicals only in cases where the Fe(III) level is much lower than the NO2- level ([Fe(III)]/[NO2-] < 1/80). This study suggests that the light and Fe(III)-induced oxidation of NO2- would be one potential important pathway responsible for the rapid transformation of NO2- in acidic surface waters, especially those affected by acid-mine drainage or volcanic activities. This study also may be of interest for modeling certain acidic atmospheric water environments.  相似文献   

6.
The aim of the present study was to analyze and compare the efficacy of UV photodegradation with that of different advanced oxidation processes (O(3), UV/H(2)O(2), O(3)/activated carbon) in the degradation of naphthalenesulfonic acids from aqueous solution and to investigate the kinetics and the mechanism involved in these processes. Results obtained showed that photodegradation with UV radiation (254 nm) of 1-naphthalenesulfonic, 1,5-naphthalendisulfonic and 1,3,6-naphthalentrisulfonic acids is not effective. Presence of duroquinone and 4-carboxybenzophenone during UV irradiation (308-410 nm) of the naphthalenesulfonic acids increased the photodegradation rate. Addition of H(2)O(2) during irradiation of naphthalenesulfonic acids accelerated their elimination, due to the generation of ()OH radicals in the medium. Comparison between UV photodegradation 254 m and the advanced oxidation processes (O(3), O(3)/activated carbon and UV/H(2)O(2)) showed the low-efficacy of the former in the degradation of these compounds from aqueous medium. Thus, among the systems studied, those based on the use of UV/H(2)O(2) and O(3)/activated carbon were the most effective in the oxidation of these contaminants from the medium. This is because of the high-reactivity of naphthalenesulfonic acids with the *OH radicals generated by these two systems. This was confirmed by the values of the reaction rate constant of *OH radicals with these compounds k(OH), obtained by competitive kinetics (5.7 x 10(9) M(-1) s(-1), 5.2 x 10(9) M(-1) s(-1) and 3.7 x 10(9) M(-1) s(-1) for NS, NDS and NTS, respectively).  相似文献   

7.
Gallard H  De Laat J 《Chemosphere》2001,42(4):405-413
The rates of degradation of 1,2,4-trichlorobenzene (TCB), 2,5-dichloronitrobenzene (DCNB), diuron and isoproturon by Fe(II)/H2O2 and Fe(III)/H2O2 have been investigated in dilute aqueous solution ([Organic compound]0 approximately 1 microM, at 25.0 +/- 0.2 degrees C and pH < or = 3). Using the relative rate method with atrazine as the reference compound, and the Fe(II)/H2O2 (with an excess of Fe(II)) and Fe(III)/H2O2 systems as sources of OH radicals, the rate constants for the reaction of OH* with TCB and DCNB were determined as (6.0 +/- 0.3)10(9) and (1.1 +/- 0.2)10(9) M(-1) s(-1). Relative rates of degradation of diuron and isoproturon by Fe(II)/H2O2 were about two times smaller in the absence of dissolved oxygen than in the presence of oxygen. These data indicate that radical intermediates are reduced back to the parent compound by Fe(II) in the absence of oxygen. Oxidation experiments with Fe(III)/H2O2 showed that the rate of decomposition of atrazine markedly increased in the presence of TCB and this increase has been attributed to a regeneration of Fe(II) by oxidation reactions of intermediates (radical species and dihydroxybenzenes) by Fe(III).  相似文献   

8.
Eleven urinary metabolites from [14C]propachlor were either identified or characterized by mass spectrometry. Those identified were 2-[S-(N-acetyl)cysteinyl]-N-isopropylacetanilide, 2-(methylsulfonyl)-acetanilide, 4'-hydroxy-2-(methylsulfonyl)-acetanilide, and 4'-hydroxyacetanilide. Those characterized were N-(1-hydroxyisopropyl)-2-(methylsulfonyl) acetanilide and its glucuronide, the glucuronides of 4'-hydroxy-N-isopropyl-2-(methylsulfonyl)acetanilide, N-(1-hydroxyisopropyl) aniline, 4'-hydroxy-2-(methylsulfonyl)acetanilide, and either N-(1-hydroxy-isopropyl) acetanilide or 2-hydroxy-N-isopropylacetanilide.  相似文献   

9.
Wang CH  Chen CL  Weng HS 《Chemosphere》2004,57(9):1131-1138
La(1-x)Sr(x)FeO(3) (x=0.0-1.0) perovskites were prepared and tested for the combustion of methane. X-ray diffraction (XRD) patterns revealed the presence of a single perovskite structure for substitutions 0x0.3, however Fe(2)O(3), SrCO(3) and SrFeO(3) phases were observed for substitutions x>0.3. The results of activity test indicate that with La(1-x)Sr(x)FeO(3) as the catalyst, the combustion of methane can take place at low temperatures around 400 degrees C. Partial substitution of La with Sr increases the activity and an optimal substitution fraction (x=0.5) exists in the La(1-x)Sr(x)FeO(3) catalysts. Catalyst activity can be well correlated to the product of the specific surface area and atomic ratio of Fe to La+Sr on the catalyst surface. Experimental results of O(2)-TPD and CH(4)-TPD in the range of 350-500 degrees C indicate that the amount of oxygen desorbed from the La(1-x)Sr(x)FeO(3) catalysts is far larger than that of methane. Therefore, it can be proposed that the catalytic oxidation of CH(4) over these catalysts proceeds with the surface reaction between CH(4) in the gas phase and the adsorbed O(2). Addition of water vapor or CO(2) to the feed inhibited catalyst activity, but the inhibition was reversible and became negligible at high reaction temperature.  相似文献   

10.
Lee ES  Woo NC  Schwartz FW  Lee BS  Lee KC  Woo MH  Kim JH  Kim HK 《Chemosphere》2008,71(5):902-910
Release and spreading of permanganate (MnO(4)(-)) in the well-based controlled-release potassium permanganate (KMnO(4)) barrier system (CRP system) was investigated by conducting column release tests, model simulations, soil oxidant demand (SOD) analyses, and pilot-scale flow-tank experiments. A large flow tank (L x W x D=8m x 4m x 3m) was constructed. Pilot-scale CRP pellets (OD x L=0.05 m x1.5m; n=110) were manufactured by mixing approximately 198 kg of KMnO(4) powders with paraffin wax and silica sands in cylindrical moulds. The CRP system (L x W x D=3m x 4m x 1.5m) comprising 110 delivery wells in three discrete barriers was constructed in the flow tank. Natural sands (organic carbon content=0.18%; SOD=3.7-11 g MnO(4)(-)kg(-1)) were used as porous media. Column release tests and model simulations indicated that the CRP system could continuously release MnO(4)(-) over several years, with slowly decreasing release rates of 2.5 kg d(-1) (day one), 109 g d(-1) (day 100), 58 g d(-1) (year one), 22 g d(-1) (year five), and 12 g d(-1) (year 10). Mean MnO(4)(-) concentrations within the CRP system ranged from 0.5 to 6 mg l(-1) during the 42 days of testing period. The continuously releasing MnO(4)(-) was gradually removed by SOD limiting the length of MnO(4)(-) zone in the porous media. These data suggested that the CRP system could create persistent and confined oxidation zone in the subsurface. Through development of advanced tools for describing agent transport and facilitating lateral agent spreading, the CRP system could provide new approach for long-term in situ treatment of contaminant plumes in groundwater.  相似文献   

11.
Das BK  Das N 《Chemosphere》2005,61(2):186-191
Static bioassays of 96 h duration were conducted in the laboratory using fry of common carp (Cyprinus carpio), adult tubificid worm (Branchiura sowerbyi) and adult copepod plankton (Cyclops viridis) to determine LC50 values of Cu and CaO to these organisms and effects of interaction between Cu and CaO. Ninety-six hour LC(50) values of Cu to fry of common carp, worm and copepod were found to be 1.40 mgl(-1), 0.08 mgl(-1) and 0.03 mgl(-1) respectively. CaO up to 500 mgl(-1) did not produce any mortality of the fry of common carp up to 96 h. But 96 h LC50 values of CaO to worm and copepod were 83.00 mgl(-1) and 27.80 mgl(-1) respectively. When common carp fry, worm and the copepod were exposed to respective LC50 dose of Cu in presence of varying concentration of CaO, mortality of the organisms significantly reduced and was found inversely correlated with the doses of CaO [y = 48.36-0.807x, r = -0.99 (n = 7) for fish; y = 44.46-0.146x, r = -0.97 (n = 7) for worm; y = 49.46-0.66x, r = -0.99 (n = 7) for the copepod]. The present results indicate that CaO is non-toxic to fish and is capable of reducing the toxicity of Cu to fish while CaO and Cu are antagonistic to each other for the worm and the copepod. Potential of using CaO as antitoxic agent for Cu in water is discussed.  相似文献   

12.
To help elucidate the mechanism of dechlorination of chlorinated triazines via metallic iron, terbutylazine (TBA: 2-chloro-4-ethylamino-6-terbutylamino-1,3,5-triazine), deisopropyl atrazine (DIA: 2-amino-4-chloro-6-ethylamino-1,3,5-triazine), and chlorinated dimethoxy triazine (CDMT: 2-chloro-4,6-dimethoxy-1,3,5-triazine) were degraded via zero valent iron under controlled pH conditions. The lower the solution pH the faster the degradation, with surface area normalized pseudo first order rate constants ranging from 2 (+/- 1)x10(-3) min(-1) m(-2) l for TBA at pH 2.0 to 4 (+/- 2)x10(-5) min(-1) m(-2) l for CDMT at pH 4.0. Hydrogenolysis (dechlorinated) products were observed for TBA and CDMT. Electrochemical reduction on mercury showed similar behavior for all of the triazines studied; the initial product of CDMT bulk electrolysis was the dechlorinated compound. The iron results are consistent with a mechanism involving the addition of surface hydrogen to the surface associated triazine.  相似文献   

13.
The aqueous photocatalytic degradation of cyanate (NCO(-)), which is a long-lived neurotoxin formed during the remediation of cyanide in industrial waste streams, was studied in the ferrate(VI)-UV-TiO2-NCO(-) system. Kinetics measurements of the photocatalytic reduction of ferrate(VI) were carried out as a function of [NCO(-)], [ferrate(VI)], [O(2)], light intensity (I(o)), and amount of TiO2 in suspensions at pH 9.0. The photocatalytic reduction rate of ferrate(VI) in the studied system can be expressed as -d[Fe(VI)]/dt=kI(o)(0.5) [NCO(-)] [TiO2]. The rate of photocatalytic oxidation of cyanate with ferrate(VI) was greater than the rate in the analogous system without ferrate(VI). The possibility of involvement of reactive ferrate(V) species for this enhancement was determined by studying the reactivity of ferrate(V) with NCO(-) in a homogeneous solution using a premix pulse radiolysis technique. The rate constant for the reaction of ferrate(V) and NCO(-) in alkaline medium was estimated to be (9.60+/-0.07) x 10(2) M(-1) s(-1), which is much slower than the ferrate(VI) self-decomposition reaction (k approximately 10(7) M(-1) s(-1)). An analysis of the kinetic data in the Fe(VI)-UV-TiO2-NCO(-) system suggests that ferrate(V) is not directly participating in the oxidation of cyanate. Possible reactions in the system are presented to explain results of ferrate(VI) reduction and oxidation of cyanate.  相似文献   

14.
Ferrate(VI) oxidation of zinc-cyanide complex   总被引:5,自引:0,他引:5  
Zinc-cyanide complexes are found in gold mining effluents and in metal finishing rinse water. The effect of Zn(II) on the oxidation of cyanide by ferrate(VI) (Fe(VI)O(4)(2-), Fe(VI)) was thus investigated by studying the kinetics of the reaction of Fe(VI) with cyanide present in a potassium salt of a zinc cyanide complex (K(2)Zn(CN)(4)) and in a mixture of Zn(II) and cyanide solutions as a function of pH (9.0-11.0). The rate-law for the oxidation of Zn(CN)(4)(2-) by Fe(VI) was found to be -d[Fe(VI)]/dt=k[Fe(VI)][Zn(CN)(4)(2-)](0.5). The rate constant, k, decreased with an increase in pH. The effect of temperature (15-45 degrees C) on the oxidation was studied at pH 9.0, which gave an activation energy of 45.7+/-1.5kJmol(-1). The cyanide oxidation rate decreased in the presence of the Zn(II) ions. However, Zn(II) ions had no effect on the cyanide removal efficiency by Fe(VI) and the stoichiometry of Fe(VI) to cyanide was approximately 1:1; similar to the stoichiometry in absence of Zn(II) ions. The destruction of cyanide by Fe(VI) resulted in cyanate. The experiments on removal of cyanide from rinse water using Fe(VI) demonstrated complete conversion of cyanide to cyanate.  相似文献   

15.
Liu SM  Chi WC 《Chemosphere》2003,52(6):951-958
This paper investigates the anaerobic biotransformation of three isomers of phthalic acid and benzoic acid in sediment slurries under four different atmospheres [N(2), N(2)/H(2) (19:1, v/v), CO(2), and CO(2)/H(2) (4:1, v/v)]. Significant differences were observed in lag periods and biotransformation rates among the phthalic acid isomers and under the different atmospheres. In most cases, the relative biotransformation rates of the three isomers of phthalic acid were ortho-phthalic acid>isophthalic acid>terephthalic acid. Benzoate was transformed faster than any isomer of phthalic acid. Since biotransformation of phthalic acid isomers in sediment slurries was enhanced by high initial levels of H(2) and CO(2) in the headspace, we propose a pathway for phthalic acid biodegradation in which the initial transformation to benzoate is CO(2)-H(2) dependent. Acetogenic bacteria were investigated for their possible involvement in this transformation reaction, but when MPN counts were used to compare the growth dynamics of acetogenic bacteria with the time course of the terephthalic acid transformation under N(2)/H(2) (19:1, v/v) and CO(2)/H(2) (4:1, v/v) atmospheres, the results were inconclusive.  相似文献   

16.
Bulk deposition measurements were made in northern France for a number of organochlorines (PCBs, HCB, pp'DDE, alpha-HCH and gamma-HCH) over a 1-y period, at urban, semi-rural, rural and forest sites located in accordance with prevailing wind direction. The west-east rise of PCB bulk deposition (average annual values as sigma 7) ranged from 12.2 to 46.8 ng l(-1) and showed the anthropogenic influence arising from towns, industries, storage areas and landfills over continental areas. The values were maximal at the urban site 3, Paris (122 ng l(-1)) and were still high at the eastern site 6, Abreschviller near landfills (62 ng l(-1)). Also, the highest annual deposits were found at sites 3 and 6 (Paris and Abreschviller), 38.6 and 47.3 microgm-2, respectively, i.e. 3.6 and 4 times higher than the western site value: Pleumeur. A temporal trend was observed, at the urban site where a rise occurred (up to 441 ng l(-1)) in March and April. PCB distribution according to the chlorination degree displayed high proportions of 3 Cl and 4 Cl congeners, particularly in the forest area. Annual gamma-hexachlorocyclohexane (gamma-HCH) concentration values at sites 1 (Ouessant) and 2 (Pleumeur) were close to the background noise (1.7 ng l(-1)). At the agricultural (4) and the urban (3) sites, values were maximal (19.2 and 15.9 ng l(-1)) with peaks in spring and autumn. At Pleumeur, without any local input, negative correlations were found between PCB/temperature (r = -0.503, p < 0.05), HCB/temperature ( r = -0.549, p < 0.01) and gamma-HCH/temperature ( r = -0.675, p < 0.01). A clear influence of south-west winds upon the magnitude of PCB fluxes throughout the sites was noticed. Whereas there was no global decrease of PCB contamination since 1986, the general trend of gamma-HCH total deposits was a 10-time fall, as a result of the restricting legislation in use.  相似文献   

17.
Tropical peatland could be a source of greenhouse gases emission because it contains large amounts of soil carbon and nitrogen. However these emissions are strongly influenced by soil moisture conditions. Tropical climate is characterized typically by wet and dry seasons. Seasonal changes in the emission of carbon dioxide (CO(2)), methane (CH(4)) and nitrous oxide (N(2)O) were investigated over a year at three sites (secondary forest, paddy field and upland field) in the tropical peatland in South Kalimantan, Indonesia. The amount of these gases emitted from the fields varied widely according to the seasonal pattern of precipitation, especially methane emission rates were positively correlated with precipitation. Converting from secondary forest peatland to paddy field tended to increase annual emissions of CO(2) and CH(4) to the atmosphere (from 1.2 to 1.5 kg CO(2)-C m(-2)y(-1) and from 1.2 to 1.9 g CH(4)-C m(-2)y(-1)), while changing land-use from secondary forest to upland tended to decrease these gases emissions (from 1.2 to 1.0 kg CO(2)-C m(-2)y(-1) and from 1.2 to 0.6 g CH(4)-C m(-2)y(-1)), but no clear trend was observed for N(2)O which kept negative value as annual rates at three sites.  相似文献   

18.
Everted sacs of rat small intestine metabolized crufomate (4-tert-butyl-2-chlorophenyl methyl methylphosphoramidate) under in vitro conditions to form six 14C-labeled metabolites in quantities sufficient for isolation and identification. These metabolites were 4-tert-butyl-2-chlorophenyl methyl phosphoramidate (25%), 2-chloro-4(2-hydroxy-1,1-dimethylethyl)phenyl methyl methylphosphoramidate (19%), 2-[3-chloro-4-[[(methoxy) (methyl-amino)phosphoinyl]oxy]phenyl]-2-methylpropionic acid (2%), 4-tert-butyl-2-chlorophenol (0.8%) and its glucuronide (6%), and the aromatic glucuronide of 2-chloro-4(2-hydroxy-1,1-dimethylethyl)phenol (1%). These intestinal metabolites may represent precursory stages in the overall metabolism of crufomate.  相似文献   

19.
Chen S  Liu Y 《Chemosphere》2007,67(5):1010-1017
In this paper, the photocatalytic degradation of glyphosate selected as the deputy of organic pollutant in aqueous solution with TiO(2) powder as a photocatalyst has been studied. The effects of various parameters, such as the amount of the photocatalyst, illumination time, initial pH value, electron acceptors, metal ions, and anions on the photocatalytic degradation of glyphosate were investigated. From the studies, the best condition for the effect of the parameters on the photocatalytic degradation of glyphosate was obtained. The results show that the optimum amount of the photocatalyst used is 6.0 g l(-1) for the photocatalytic reactions. The photodegradation efficiency of glyphosate increases with the increase of the illumination time. With the addition of Fe(3+), Cu(2+), H(2)O(2), K(2)S(2)O(8) or KBrO(3), the photocatalytic degradation of glyphosate is accelerated. However, with the addition of Na(+), K(+), Mg(2+), Ca(2+), Zn(2+), Co(2+) and Ni(2+), or with the addition of trace amounts of Cl(-), Br(-), SO(4)(2-), there are no obvious effects on the reactions. Acidic or alkaline mediums are favorable for the photocatalytic degradation of glyphosate. The possible roles of the additives on the reactions and the possible mechanisms of effect were discussed.  相似文献   

20.
An efficient sequential, biological and photocatalytic treatment to reduce the pollutant levels in wastewater due to the bleaching process during paper production is reported. For a biological pre-treatment, 800 ml of non-sterilized effluent was inoculated with Trametes versicolor immobilized in polyurethane foam, with 25 g l(-1) glucose, 6.75 mM CuSO(4), and 0.22 mM MnSO(4) added, and cultured at 25 degrees C with an air flow of 800 ml min(-1) for 8d. The fungus did not inhibit growth of the heterotropic populations of the effluent. After 4d of culture, the chemical oxygen demand (COD) reduction and colour removal (CR) were 82% and 80%, respectively, with laccase (LAC) and manganese peroxidase (MnP) activities of 345 U l(-1) and 78 U l(-1), respectively. The COD reduction and CR correlated positively (p<0.0001) with LAC and MnP activities. Chlorophenol removal was 99% of pentachlorophenol, 99% of 2,3,4,6-tetrachlorophenol (2,3,4,6-TCP), 98% of 3,4-dichlorophenol (3,4-DCP) and 77% of 4-chlorophenol (4-CP), while 2,4,5-trichlorophenol (2,4,5-TCP) increased to 0.2 mg l(-1). The pre-treated effluent was then exposed to a photocatalytic treatment. The treatment with photolysis resulted in 9% CR and 46% COD reduction, 42% CR and 60% COD reduction by photocatalysis, and 62% CR and 85% COD reduction by heterogeneous photocatalysis with the system TiO(2)/Ru(x)Se(y) (Fig. 4). With this treatment the bacterial and fungal populations also decreased by 5 logarithmic units with respect to the biological treatment alone (Fig. 5). The total sequential treatment resulted in a 92% CR (from 5800 UC), 97% COD reduction (from 59 g l(-1)) and 99% chlorophenol removal at 96 h and 20 min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号