首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A study has been conducted to enhance degradation of a mixture of polycyclic aromatic hydrocarbons (PAHs) by combining biodegradation with hydrogen peroxide oxidation in a former manufactured gas plant (MGP) soil. An active bacterial consortium enriched from the MGP surface soil (0-2 m) biodegraded more than 90% of PAHs including 2-, 3-, and 4-ring hydrocarbons in a model soil. The consortium was also able to transform about 50% of 4- and 5-ring hydrocarbons in the MGP soil. As a chemical oxidant, Fenton's reagent (H2O2 + Fe2+) was very efficient in the destruction of a mixture of PAHs (i.e., naphthalene (NAP), fluorene (FLU), phenanthrene (PHE), anthracene (ANT), pyrene (PYR), chrysene (CHR), and benzo(a)pyrene (BaP)) in the model soil; noticeably, 84.5% and 96.7% of initial PYR and BaP were degraded, respectively. In the MGP soil, the same treatment destroyed more than 80% of 2- and 3-ring hydrocarbons and 20-40% of 4- and 5-ring compounds. However, the low pH requirement (pH 2-3) for optimum Fenton reaction made the process incompatible with biological treatment and posed potential hazards to the soil ecosystem where the reagent was used. In order to overcome such limitation, a modified Fenton-type reaction was performed at near neutral pH by using ferric ions and chelating agents such as catechol and gallic acid. By the combined treatment of the modified Fenton reaction and biodegradation, more than 98% of 2- or 3-ring hydrocarbons and between 70% and 85% of 4- or 5-ring compounds were degraded in the MGP soil, while maintaining its pH about 6-6.5.  相似文献   

2.
Bogan BW  Sullivan WR 《Chemosphere》2003,52(10):1717-1726
Six soils, obtained from grasslands and wooded areas in Northeastern Illinois, were physicochemically characterized. Measured parameters included total organic carbon (TOC) content, contents of humic acid, fulvic acid and humin, pore volume and pore size distribution, and chemical makeup of soil organic matter (determined using solid-state 13C-NMR). Moistened, gamma-sterilized soils were spiked with 200 ppm of either phenanthrene or pyrene (including 14C label); following 0, 40, or 120 days of aging, the contaminant-spiked soils were then inoculated with Mycobacterium austroafricanum strain GTI-23, and evolution of 14CO2 was assessed over a 28-day period. Results for both phenanthrene and pyrene indicated that increased contact time led to increased sequestration and reduced biodegradation, and that TOC content was the most important parameter governing these processes. One soil, although only tested with phenanthrene, showed significantly lower-than-expected sequestration (higher-than-expected mineralization) after 40 days of aging, despite a very high TOC value (>24%). Because the level of sequestration in this soil was proportional to the others after 120 days of aging, this implies some difference in the temporal progression of sequestration in this soil, although not in its final result. The primary distinguishing feature of this soil was its considerably elevated fulvic acid content. Further experiments showed that addition of exogenous fulvic acid to a soil with very low endogenous humic acids/fulvic acids content greatly enhanced pyrene mineralization by M. austroafricanum. Extractabilities of 13 three- to six-ring coal tar PAHs in n-butanol from the six soils after 120 days of sequestration were strongly TOC-dependent; however, there was no discernible correlation between n-butanol extractability and mycobacterial PAH mineralization.  相似文献   

3.
《Chemosphere》1986,15(5):589-594
Gaseous o-terphenyl, 1-phenylnaphthalene, and 9-phenylanthracene were submitted to gamma rays. The yields of cyclization products, polycyclic aromatic hydrocarbons, show that at least one twentieth of the intermediates formed undergo intramolecular reaction.  相似文献   

4.
Uptake of polycyclic aromatic hydrocarbons by maize plants   总被引:5,自引:0,他引:5  
Roots and above-ground parts (tops) of maize plants, comprising cuticles, leaves and stems, have been exposed separately to polycyclic aromatic hydrocarbons (PAHs) by means of air-tight bicameral exposure devices. Maize roots and tops of plants directly accumulate PAHs from aqueous solutions and from air in proportion to exposure levels. Root and leaf concentration factors (log RCF and log LCF) are log-linear functions of log-based octanol-water partition coefficient (log Kow) and log-based octanol-air partition coefficient (log Koa). The PAHs' concentrations among cuticles, leaves and stems display good correlations with each other. PAH concentrations in each part of the plant tested correlated positively with atmospheric PAHs' concentrations. Comparisons between PAHs' concentrations of root epidermis and root tissue showed similar correlations. Bulk concentrations of contaminants in various plant tissues differed greatly, but these differences disappeared after normalization to lipid contents suggesting lipid-based partitioning of PAHs among maize tissues.  相似文献   

5.
Xia XH  Yu H  Yang ZF  Huang GH 《Chemosphere》2006,65(3):457-466
The contamination of polycyclic aromatic hydrocarbons (PAHs) has become one of the major problems in the Yellow River of China. As the Yellow River is the most turbid large river in the world, it remains unknown to which extent the high suspended sediment content in the river may affect the fate and effect of PAHs. Here we report the effect of sediment on biodegradation of chrysene, benzo(a)pyrene and benzo(g,h,i)perylene with phenanthrene as a co-metabolism substrate in natural waters from the Yellow River. Biodegradation kinetics of the PAHs in the river water with various levels of sediment contents were studied in the laboratory by fitting with a biodegradation kinetics model for organic compounds not supporting growth. The results indicated that the biodegradation rates of PAHs increased with the sediment content in the water. When the sediment contents were 0, 4 and 10 g/l, the biodegradation rate constants of chrysene with the initial concentration of 3.80 microg/l were 0.053, 0.084 and 0.111 d(-1), respectively. Further studies suggested the enhanced biodegradation rate in the presence of sediment was caused by the following mechanisms: (1) the population of PAH-degrading bacteria in the water system was found to increase with the sediment content; the bacteria population on sediment phase was far greater than that on water phase during the cultivation process; (2) the sorption of PAHs on the sediment phase was well described by the dual adsorption-partition model. Although the sorption capacity of PAH per unit weight of sediment decreased with the increase of the sediment content, the amount of sorbed PAH increased with the sediment content; and, (3) the desorption of PAHs from the solid phase led to a higher concentration near the water-sediment interface. Since the bacteria were also attached to the interface, this resulted in an increased contact chance between the bacteria and PAHs.  相似文献   

6.
Biodegradation of polycyclic aromatic hydrocarbons by a mixed culture   总被引:39,自引:0,他引:39  
Yuan SY  Wei SH  Chang BV 《Chemosphere》2000,41(9):1463-1468
We investigated the potential biodegradation of polycyclic aromatic hydrocarbons (PAHs) by an aerobic mixed culture utilizing phenanthrene as its carbon source. Following a 3-5 h post-treatment lag phase, complete degradation of 5 mg/l phenanthrene occurred within 28 h (optimal conditions determined as 30 degrees C and pH 7.0). Phenanthrene degradation was enhanced by the individual addition of yeast extract, acetate, glucose or pyruvate. Results show that the higher the phenanthrene concentration, the slower the degradation rate. While the mixed culture was also capable of efficiently degrading pyrene and acenaphthene, it failed to degrade anthracene and fluorene. In samples containing a mixture of the five PAHs, treatment with the aerobic culture increased degradation rates for fluorene and anthracene and decreased degradation rates for acenaphthene, phenanthrene and pyrene. Finally, it was observed that when nonionic surfactants were present at levels above critical micelle concentrations (CMCs), phenanthrene degradation was completely inhibited by the addition of Brij 30 and Brij 35, and delayed by the addition of Triton X100 and Triton N101.  相似文献   

7.
Uptake of vapor and particulate polycyclic aromatic hydrocarbons by cabbage   总被引:1,自引:0,他引:1  
Polycyclic aromatic hydrocarbons (PAHs) in cabbage (aerial part), air (gas and particles) and soil samples collected from two sites in Tianjin, China were measured. Although the levels of PAHs in all samples from the heavily contaminated site B were higher than those from the less contaminated site A, the PAH profiles were similar, suggesting the similarity in source type. PAH concentrations in cabbages were positively correlated to either gas or particle-bound PAHs in air. A multivariate linear regression with cabbage PAH as a function of both gas and particle-bound PAHs in air was established to quantitatively characterize the relationship between them. Inclusion of soil PAH concentrations would not improve the model, indicating that the contribution of soil PAHs to cabbage (aerial part) accumulation was insignificant.  相似文献   

8.
Chemical methods to predict the bioavailable fraction of organic contaminants are usually validated in the literature by comparison with established bioassays. A soil spiked with polycyclic aromatic hydrocarbons (PAHs) was aged over six months and subjected to butanol, cyclodextrin and tenax extractions as well as an exhaustive extraction to determine total PAH concentrations at several time points. Earthworm (Eisenia fetida) and rye grass root (Lolium multiflorum) accumulation bioassays were conducted in parallel. Butanol extractions gave the best relationship with earthworm accumulation (r2 ≤ 0.54, p ≤ 0.01); cyclodextrin, butanol and acetone-hexane extractions all gave good predictions of accumulation in rye grass roots (r2 ≤ 0.86, p ≤ 0.01). However, the profile of the PAHs extracted by the different chemical methods was significantly different (p < 0.01) to that accumulated in the organisms. Biota accumulated a higher proportion of the heavier 4-ringed PAHs. It is concluded that bioaccumulation is a complex process that cannot be predicted by measuring the bioavailable fraction alone.  相似文献   

9.
The hydrogenation of polycyclic aromatic hydrocarbons (PAHs) (naphthalene, anthracene, and phenanthrene) catalyzed by metalloporphyrins based on cobalt, nickel or iron was studied in aqueous solutions at room temperature and ambient pressure. Nickel porphyrin (P1) activated by nanosized zero-valent iron (nano-ZVI) and cobalt porphyrins (P2) and (P4) activated by titanium(III) citrate as the electron donor were demonstrated to be promising catalysts for the reductive hydrogenation of PAHs. In particular, partially saturated di-, tetra-, and octahydrogenated products were obtained for anthracene or phenanthrene using a nickel porphyrin activated by nano-ZVI, while naphthalene was transformed to tetralin. Systems containing cobalt porphyrins activated by titanium(III) citrate exhibited a high selectivity and activity toward hydrogenation of anthracene, producing 9,10-dihydroanthracene. However, no formation of hydrogenated hydrocarbons was observed from naphthalene or phenanthrene using cobalt porphyrins.  相似文献   

10.
Polycyclic aromatic hydrocarbons (PAHs) and potentially toxic elements (PTEs) were monitored over 56 days in calcareous contaminated-soil amended with either or both biochar and Eisenia fetida. Biochar reduced total (449 to 306 mg kg−1) and bioavailable (cyclodextrin extractable) (276 to 182 mg kg−1) PAHs, PAH concentrations in E. fetida (up to 45%) but also earthworm weight. Earthworms increased PAH bioavailability by >40%. Combined treatment results were similar to the biochar-only treatment. Earthworms increased water soluble Co (3.4 to 29.2 mg kg−1), Cu (60.0 to 120.1 mg kg−1) and Ni (31.7 to 83.0 mg kg−1) but not As, Cd, Pb or Zn; biochar reduced water soluble Cu (60 to 37 mg kg−1). Combined treatment results were similar to the biochar-only treatment but gave a greater reduction in As and Cd mobility. Biochar has contaminated land remediation potential, but its long-term impact on contaminants and soil biota needs to be assessed.  相似文献   

11.
12.
Active biomonitoring of polycyclic aromatic hydrocarbons by means of mosses   总被引:1,自引:0,他引:1  
Spherical bags, packed with 20 g of peat moss (Sphagnum spp.), were exposed to ambient air at a distance of 1 km from a plant manufacturing electrodes for the production of aluminium, near Rotterdam, The Netherlands. In these bags, the concentrations of six polycyclic aromatic hydrocarbons were determined, and compared with the concentrations in moss bags that had been exposed in relatively clean areas. From the results it can be concluded that, in addition to their useful application for biomonitoring of heavy metals, mosses can be applied in active biomonitoring of polycyclic aromatic hydrocarbons in ambient air.  相似文献   

13.
Zhu L  Feng S 《Chemosphere》2003,53(5):459-467
Water solubility enhancements of naphthalene (Naph), acenaphthylene (Acen), anthracene (An), phenanthrene (Phen) and pyrene (Py) by micellar solutions of single and mixed anionic-nonionic surfactants were measured and compared. Effects of typical inorganic ions, such as NH(4)(+), Na(+) and Mg(2+) coexisted with the organic pollutants (in soils) on water solubilities of polycyclic aromatic hydrocarbons (PAHs) in the presence of single and mixed surfactants were also investigated. Solubilities of PAHs in water are greatly enhanced in a linear fashion by each of Triton X-100 (TX100), Triton X-305 (TX305), Brij 35, and sodium dodecyl sulfate (SDS). Solubility enhancement efficiencies of surfactants above the critical micelle concentration (CMC) follow the order of TX100>Brij 35>TX305>SDS. PAHs are solubilized synergistically in mixed anionic-nonionic surfactant solutions, especially at low surfactant concentrations. The synergistic power of the mixed surfactants is SDS-TX305>SDS-Brij 35>SDS-TX100. Synergistic effect of a given mixed-surfactant solution on different PAHs also appears to be linearly related to the solute logK(ow). The noted synergism for the mixed surfactants is attributed to the formation of mixed micelles, the lower CMC of the mixed-surfactant solutions, and the increase of the solute's molar solubilization ratio or micellar partition coefficients (K(mc)) because of the lower polarity of the mixed micelles. Suitable quantity of inorganic cations can enhance the solubilization capacities of anionic-nonionic mixed surfactants, the effect being Mg(2+)>NH(4)(+)>Na(+). The water solubility of pyrene was slightly increased by anthracene and significantly increased by 1,2,3-TCB in the presence of SDS-Brij 35. Mixed surfactants may improve the performance of surfactant-enhanced remediation of soils and sediments by decreasing the applied surfactant level and thus the remediation cost.  相似文献   

14.
通过在堆肥中加入经过驯化的降解菌这种土壤有机污染生物修复技术 ,对堆肥中多环芳烃的浓度变化进行监测 ,从而了解降解菌对堆肥中多环芳烃的降解作用。实验结果表明 ,降解菌的加入能明显地提高多环芳烃的降解率 ,本次实验中 ,菲、芴的去除率提高了 2 5 %左右 ,芘的去除率提高了约 4 5 %。  相似文献   

15.
Muckian L  Grant R  Doyle E  Clipson N 《Chemosphere》2007,68(8):1535-1541
Bacterial community structure was examined in polycyclic aromatic hydrocarbon (PAH) contaminated soil taken from a timber treatment facility in southern Ireland. Profiles of soil bacterial communities were generated using a molecular fingerprinting technique, terminal restriction fragment length polymorphism (TRFLP), and results were interpreted using sophisticated multivariate statistical analysis. Findings suggested that there was a correlation between PAH structure and bacterial community composition. Initial characterisation of soil from the timber treatment facility indicated that PAH contamination was unevenly distributed across the site. Bacterial community composition was correlated with the type of PAH present, with microbial community structure associated with soil contaminated with two-ringed PAHs only being distinctly different to communities in soils contaminated with multi-component PAH mixtures. Typically the number of bacterial ribotypes detected in samples did not appear to be adversely affected by the level of contamination.  相似文献   

16.
17.
An optimized method for the analysis of polycyclic aromatic hydrocarbons (PAH) in atmospheric aerosols with short sampling times (1h) has been used to determine the daily variations of PAH in the atmosphere. Of the various physicochemical parameters controlling the disappearance of PAH, the most important seem to be the thermic dependence and the chemical reactions with gaseous pollutants (NOx, O3, HNO3, OH). The RDI is used to identify the different sources of urban pollution: domestic heating, vehicle traffic (petrol and diesel), refineries, foundries, incinerators and power stations (coal, gas and oil) and to quantify the results for standard conditions. The characteristic concentration ratios from each source are often different from those in the literature, where the data are based on long sampling times and are affected by PAH reactivity differences. The results obtained are parameters for setting up a mathematical model for calculating concentrations of PAH at any receptor site.  相似文献   

18.
Polycyclic aromatic hydrocarbons (PAHs) are a group of toxic, persistent, bioaccumulating organic compounds containing two or more fused aromatic rings. They are listed by the U.S. Environmental Protection Agency as priority pollutants because of their carcinogenicity and toxicity. Employing ozonation as a remediation technique, this work investigated the treatability of a sediment sample from a freshwater boat slip subjected to coal tar contamination over a long period. The contaminated sediment sample contained high levels of PAHs in the forms of naphthalene, phenanthrene, pyrene, and benzo[a]pyrene, among other byproducts present in the humic and solid phases of the sediment. The objectives of this work were to examine (1) the degradation of PAHs in the contaminated sediment as treated by ozonation in the slurry form, (2) the effects of ozonation upon the soil matrix and the biodegradability of the resultant PAH intermediates, and (3) the feasibility of a combined technique using O3 as a pretreatment followed by biological degradation. The sediment was made into 3% w/w soil slurries and ozonated in a 1.7-L semi-batch, well-stirred reactor equipped with pH control and a cold trap for the gaseous effluent. Samples were collected after different ozonation durations and tested for biochemical oxygen demand (BOD), chemical oxygen demand (COD), UV absorbance, and toxicity, along with quantitative and qualitative determinations of the parent and daughter intermediates using gas chromatography/flame ionization detection (GC/FID), GC/mass spectrometry (MS), and ion chromatography (IC) techniques. The GC/MS technique identified 16 compounds associated with the humic and solid phases of the sediment. Intermediates identified at different ozonation times suggested that the degradation of PAHs was initiated by an O3 attack resulting in ring cleavage, followed by the intermediates' oxidation reactions with O3 and the concomitant OH radical toward their mineralization. Results suggested that ozonation for 2 hr removed 50-100% of various PAHs in the solid and liquid phases (as well as the aqueous and gaseous media resulting from the treatment process) of the sediment sample and that organic and inorganic constituents of the sediment were also altered by ozonation. Measurements and comparisons of BOD, COD, UV absorbance, and toxicity of the samples further suggested that ozonation improved the bioavailability and biodegradability of the contaminants, despite the increased toxicity of the treatment effluent. An integrated chemical-biological system appeared to be feasible for treating recalcitrant compounds.  相似文献   

19.
Contamination of rivers in Tianjin, China by polycyclic aromatic hydrocarbons   总被引:30,自引:0,他引:30  
Tianjin urban/industrial complex is highly polluted by some persistent organic pollutants. In this study, the levels of 16 priority polycyclic aromatic hydrocarbons (PAHs) were tested in sediment, water, and suspended particulate matter (SPM) samples in 10 rivers in Tianjin. The total concentration of 16 PAHs varied from 0.787 to 1943 microg/g dry weight in sediment, from 45.81 to 1272 ng/L in water, and from 0.938 to 64.2 microg/g dry weight in SPM. The levels of PAHs in these media are high in comparison with values reported from other river and marine systems. Variability of total concentrations of PAHs in sediment, water, and SPM from nine different rivers is consistent with each other. No obvious trends of total PAHs concentration variations were found between upstream and downstream sediment, water, and SPM samples for most rivers, which indicate local inputs and disturbances along these rivers. The spatial distributions of three-phase PAHs are very similar to each other, and they are also similar to those found in topsoil. However, their chemical profiles are significantly different from that of topsoil. The change of profiles is consistent with the different aqueous transport capability of 16 PAHs. Low molecular weight PAHs predomination suggests a relatively recent local source and coal combustion source of PAHs in the study area.  相似文献   

20.
Binding of two model polycyclic aromatic hydrocarbons (PAHs), phenanthrene and pyrene, by humic acids (HAs) isolated from an organic substrate at different stages of composting and a soil was investigated using a batch fluorescence quenching method and the modified Freundlich model. With respect to soil HA, the organic substrate HA fractions were characterized by larger binding affinities for both phenanthrene and pyrene. Further, isotherm deviation from linearity was larger for soil HA than for organic substrate HAs, indicating a larger heterogeneity of binding sites in the former. The composting process decreased the binding affinity and increased the heterogeneity of binding sites of HAs. The changes undergone by the HA fraction during composting may be expected to contribute to facilitate microbial accessibility to PAHs. The results obtained also suggest that bioremediation of PAH-contaminated soils with matured compost, rather than with fresh organic amendments, may result in faster and more effective cleanup.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号