首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Degradative fate of 3-chlorocarbazole and 3,6-dichlorocarbazole in soil   总被引:2,自引:1,他引:1  

Background, aim, and scope  

3-Chlorocarbazole and 3,6-dichlorocarbazole were isolated from Bavarian soils. The stereospecific formation of the isomers of these chlorinated carbazols can be explained by quantum mechanical calculations using the DFT method. It was shown that chlorination of carbazole and 3-chlorocarbazole respectively is preferred via the sigma-complexes 3-chlorocarbazole and 3,6-dichlorocarbazole as the most stable products. The dioxin-like toxicological potential of 3,6-dichlorocarbazole, determined by the Micro-EROD Test, is in the range of some picogram TCDD equivalents per milligram carbazole. The degradative fate of 3-chlorocarbazole and 3,6-dichlorocarbazole was analysed within a long-term study (57 days) in soil.  相似文献   

2.
This paper presents accurate predictions of ecologically important properties of nitroaromatic compounds and their derivatives, including vapor pressure, Henry's law constants, water solubility, octanol/water partition coefficients, heats of formation and ionization potentials. The proposed technique of calculations was based on quantum-chemical methods. The relationship between the chemical structure and mentioned physico-chemical parameters of such widespread military produced contaminants as trinitrotoluene and its derivatives was considered. We revealed that the DFT level of theory combined with the COSMO-RS technique is able to predict the studied parameters with an accuracy that results in error bars of less then one logarithmic unit.  相似文献   

3.

Background, aim and scope

Groundwaters and source waters are exposed to environmental pollution due to agricultural and industrial activities that can enhance the leaching of organic contaminants. Pesticides are among the most widely studied compounds in groundwater, but little information is available on the presence of phthalates, alkylphenols and bisphenol A. These compounds are used in pesticide formulations and represent an emerging family of contaminants due to their widespread environmental presence and endocrine-disrupting properties. Knowledge on the occurrence of contaminants in source waters intended for bottling is important for sanitary and regulatory purposes. So the aim of the present study was to evaluate the presence of phthalates, alkylphenols, triazines, chloroacetamides and bisphenol A throughout 131 Spanish water sources intended for bottling. Waters studied were spring waters and boreholes which have a protection diameter to minimize environmental contamination.

Materials and methods

Waters were solid-phase extracted (SPE) and analysed by gas chromatography coupled to mass spectrometry (GC-MS). Quality control analysis comprising recovery studies, blank analysis and limits of detection were performed.

Results and discussion

Using SPE and GC-MS, the 21 target compounds were satisfactorily recovered (77?C124?%) and limits of quantification were between 0.0004 and 0.029???g/L for pesticides, while for alkylphenols, bisphenol A and phthalates the limits of quantification were from 0.0018???g/L for octylphenol to 0.970???g/L for bis(2-ethylhexyl) phthalate. Among the 21 compounds analysed, only 9 were detected at levels between 0.002 and 1.115???g/L. Compounds identified were triazine herbicides, alkylphenols, bisphenol A and two phthalates. Spring waters or shallow boreholes were the sites more vulnerable to contaminants. Eighty-five percent of the samples did not contain any of the target compounds.

Conclusions

Target compounds were detected in a very low concentration and only in very few samples. This indicates the good quality of source waters intended for bottling and the effectiveness of the protection measures adopted in Spain. None of the samples analysed exceeded the maximum legislated levels for drinking water both in Spain and in the European Union.  相似文献   

4.
Kamei I  Kondo R 《Chemosphere》2006,65(7):1221-1227
An experiment was carried out to study the degradation of commercially produced chlornitrofen (2,4,6-trichlorophenyl p-nitrophenyl ether; CNP) herbicide contaminated with 1,3,6,8-tetrachlorodibenzo-p-dioxin (1,3,6,8-tetraCDD) by means of the white rot fungus Phlebia brevispora TMIC33929. Recently, we reported that 1,3,6,8-tetraCDD was degraded by P. brevispora. In the degradation experiment using CNP standard compounds, CNP was transformed into several metabolites including monomethoxylated compounds and 2,4,6-trichlorophenol by P. brevispora. When the mixture of CNP and 1,3,6,8-tetraCDD was treated with P. brevispora, each substrate was degraded and metabolites were detected. The treatment of the commercially produced CNP herbicide by P. brevispora led to the degradation of CNP and contaminated 1,3,6,8-tetraCDD as a result. These results indicate that P. brevispora can degrade CNP and 1,3,6,8-tetraCDD at the same time, and that biological treatment of commercially produced CNP herbicide is possible.  相似文献   

5.
Zhu L  Ruan X  Chen B  Zhu R 《Chemosphere》2008,70(11):1987-1994
A novel strategy utilizing the phenyls interaction and the hydrophobic affinity of available siloxane surface in the interlayer of bentonite was proposed to improve the sorption capabilities of organobentonites for water soluble aromatic contaminants. A unique organobentonite (65BTMA) was synthesized by intercalating benzyltrimethylammonium cation (BTMA+) into the interlayer of a reduced-charge bentonite with cation exchange capacity (CEC) of 65 cmol kg−1. Phenol, aniline and toluene were used as model compounds of water soluble aromatic contaminants. Their respective removal efficiencies by 65BTMA were achieved at 83.3%, 89.2% and 97.3% at the initial concentration of 20 mg l−1. To reveal the sorption mechanism, sorption characteristics of aromatic contaminants to 65BTMA were compared with that of aliphatic contaminants in similar molecular size. And various organobentonites were prepared by combining TMA+ (tetramethylammonium), BTMA+, HTMA+ (heptyltrimethylammonium) and CTMA+ (cetyltrimethylammonium) with two bentonites (CEC = 108 and 65 cmol kg−1). To 65BTMA, sorption magnitudes of aromatic contaminants were much greater than that of aliphatic compounds with similar size; and dramatically higher than those to other organobentonites at low pollutant concentrations. These observations revealed that the strong phenyls interactions contributed significantly to sorb the aqueous soluble aromatic contaminants to 65BTMA (>90%), and which favored to design uniquely powerful sorbents.  相似文献   

6.
Eighteen organochlorine contaminants from the water samples of the Yangtse River have been qualitatively and quantitatively analyzed. The analysis of polychlorinated organic compounds (PCOCs) extracted by C18 Solid Phase Extract (SPE) was performed using HP6890 gas chromatograph coupled by ECD detector. The analytical results demonstrate that the analytical methods are reliable based on the fact that most of the recoveries for the targeted compounds are 60-90%. Most of the concerned contaminants, i.e. chlorinated pesticides and PCBs were found in the water samples of the Yangtse River, but their concentration was very low, <2.97 ng l(-1), which is far less than 1 microg l(-1)--the standard of drinking water of China. It is apparent that the PCOCs were in high concentration during the dry season, and in low concentration during the rainy season. The situation of PCOCs contamination in the water of the Yangtse River in 1999 was greatly improved in comparison with 10 years ago.  相似文献   

7.
Since the so-called emerging contaminants were established as a new group of pollutants of environmental concern, a great effort has been devoted to the knowledge of their distribution, fate and effects in the environment. After more than 20 years of work, a significant improvement in knowledge about these contaminants has been achieved, but there is still a large gap of information on the growing number of new potential contaminants that are appearing and especially of their unpredictable transformation products. Although the environmental problem arising from emerging contaminants must be addressed from an interdisciplinary point of view, it is obvious that analytical chemistry plays an important role as the first step of the study, as it allows establishing the presence of chemicals in the environment, estimate their concentration levels, identify sources and determine their degradation pathways. These tasks involve serious difficulties requiring different analytical solutions adjusted to purpose. Thus, the complexity of the matrices requires highly selective analytical methods; the large number and variety of compounds potentially present in the samples demands the application of wide scope methods; the low concentrations at which these contaminants are present in the samples require a high detection sensitivity, and high demands on the confirmation and high structural information are needed for the characterisation of unknowns. New developments on analytical instrumentation have been applied to solve these difficulties. Furthermore and not less important has been the development of new specific software packages intended for data acquisition and, in particular, for post-run analysis. Thus, the use of sophisticated software tools has allowed successful screening analysis, determining several hundreds of analytes, and assisted in the structural elucidation of unknown compounds in a timely manner.  相似文献   

8.
9.
Laboratory thermal decomposition studies were performed to evaluate potential emissions from sewage sludge incinerators. Precisely controlled thermal decomposition experiments were conducted on sludge spiked with mixtures of hazardous organic compounds, on mixtures of pure compounds without sludge, and on unspiked sludge. Experiments were conducted in nitrogen and air atmospheres with gas phase reaction times of 2.0 seconds over the temperature range 300 degrees C-1000 degrees C. It was found that sludge inhibited the decomposition of moderately stable spiked contaminants but accelerated the decomposition of the most stable components. This effect was attributed to radical scavengers produced by the sludge matrix at lower temperatures which then decomposed at higher temperatures. A multiple hearth simulation study suggested that most of the organic material present in the sludge matrix is vaporized within the upper hearths that are held at lower temperatures and may consequently escape from such incinerators undestroyed. A number of stable byproducts resulted from the sludge decomposition that may be of environmental concern.  相似文献   

10.
Laboratory thermal decomposition studies were performed to evaluate potential emissions from sewage sludge incinerators. Precisely controlled thermal decomposition experiments were conducted on sludge spiked with mixtures of hazardous organic compounds, on mixtures of pure compounds without sludge, and on unspiked sludge. Experiments were conducted in nitrogen and air atmospheres with gas phase reaction times of 2.0 seconds over the temperature range 300°C-1000°C.

It was found that sludge inhibited the decomposition of moderately stable spiked contaminants but accelerated the decomposition of the most stable components. This effect was attributed to radical scavengers produced by the sludge matrix at lower temperatures which then decomposed at higher temperatures. A multiple hearth simulation study suggested that most of the organic material present In the sludge matrix is vaporized within the upper hearths that are held at lower temperatures and may consequently escape from such incinerators undestroyed. A number of stable byproducts resulted from the sludge decomposition that may be of environmental concern.  相似文献   

11.
光催化处理饮用水微量污染物以及在饮用水消毒和杀菌方面的研究是近年来研究的热点.本文论述了 TiO2光催化处理饮用水中的微量卤代物、腐殖质、微生物代谢产物,以及杀灭细菌、真菌和病毒等微生物的研究进展.探讨了光催化杀灭微生物的作用机制,最后对该研究领域的发展方向提出建议和展望.  相似文献   

12.
Many pharmaceuticals and related metabolites are not efficiently removed in sewage treatment plants and enter into surface water. There, they might be subject of drinking water abstraction and treatment by ozonation. In this study, a systematic approach for producing and effect-based testing of transformation products (TPs) during the drinking water ozonation process is proposed. For this, two pharmaceutical parent substances, three metabolites and one environmental degradation product were investigated with respect to their biodegradability and fate during drinking water ozonation. The Ames test (TA98, TA100) was used for the identification of mutagenic activity present in the solutions after testing inherent biodegradability and/or after ozonation of the samples. Suspicious results were complemented with the umu test. Due to the low substrate concentration required for ozonation, all ozonated samples were concentrated via solid phase extraction (SPE) before performing the Ames test. With the exception of piracetam, all substances were only incompletely biodegradable, suggesting the formation of stable TPs. Metformin, piracetam and guanylurea could not be removed completely by the ozonation process. We received some evidence that technical TPs are formed by ozonation of metformin and piracetam, whereas all tested metabolites were not detectable by analytical means after ozonation. In the case of guanylurea, one ozonation TP was identified by LC/MS. None of the experiments showed an increase of mutagenic effects in the Ames test. However, the SPE concentration procedure might lead to false-positive results due to the generation of mutagenic artefacts or might lead to false-negative results by missing adequate recovery efficiency. Thus, these investigations should always be accompanied by process blank controls that are carried out along the whole ozonation and SPE procedure. The study presented here is a first attempt to investigate the significance of transformation products by a systematic approach. However, the adequacy and sensitivity of the methodology need to be further investigated. The approach of combining biodegradation and ozonation with effect-based assays is a promising tool for the early detection of potential hazards from TPs as drinking water contaminants. It can support the strategy for the evaluation of substances and metabolites in drinking water. A multitude of possible factors which influence the results have to be carefully considered, among them the selectivity and sensibility of the mutagenicity test applied, the extraction method for concentrating the relevant compounds and the biocompatibility of the solvent. Therefore, the results have to be carefully interpreted, and possible false-negative and false-positive results should be considered.  相似文献   

13.
Peat samples from four ombrotrophic and two minerotrophic peat bogs in New Brunswick, Canada, have been analyzed for polychlorinated dioxins and furans (PCDD/DF's) as well as other organochlorine compounds. Data from each bog show occasional low levels of 2,3,7,8-substituted tetra-through octachloro dioxins and furans. Mono-through trichlorodioxins and furans have also been identified.

A consistent pattern was observed among the TCDD's and TCDF's which was reproducible across all peat samples analyzed. A single TCDF isomer (2468-TCDF) predominates over all other isomers whereas two isomers of TCDD were prominent (1,3,6,8-TCDD and 1,3,7,9-TCDD). This distinct isomer pattern is present at all depths and is different from that of atmospheric deposition or known sources of PCDD/DF's (eg. fly ash, pulp and paper effluent etc). The pattern is replicated with in vitro oxidative coupling of 2,4-dichlorophenol at pH 2.9 using a commercially available chloroperoxidase from the fungus Caldariomyces fumago.

Significant incorporation of 36Cl-occurred in peat. Autoclaving decreased incorporation while adding casein hydrolysate increased it. The incorporation mirrored the metabolic activity (CO2 production) of samples consistent with organochlorine synthesis being due to biological activity.

Total Organic Halide (TOX) levels in peat show a wide range in values reaching ca. 1000 ppm at mid-depth in the ombrotrophic Kelly's Bog. TOX in Kelly's Bog occurs at all depths and, since the topography probably excludes leaching from surrounding areas, a local origin of organochlorines is suggested.

Chloroform and a range of chlorinated aromatic compounds (chlorophenols, chlorophenoxy and chlorobenzoic acid derivatives) have also been identified in peat.

Our findings to date are consistent with hypothesis for a biogenic origin for at least some of the organochlorine compounds, including some of the PCDD/DF's, found in peat bogs.  相似文献   


14.
Triolein-containing semipermeable membrane devices (SPMDs) were employed as passive samplers to provide data on the bioavailable fraction of organic, waterborne, organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs) and polynuclear aromatic hydrocarbons (PAHs) in streams flowing through a highly polluted industrial area of Bitterfeld in Saxony-Anhalt, Germany. The contamination of the region with organic pollutants originates in wastewater effluents from the chemical industry, from over one-hundred years of lignite exploitation, and from chemical waste dumps. The main objective was to characterise time-integrated levels of dissolved contaminants, to use them for identification of spatial trends of contamination, and their relationship to potential pollution sources. SPMDs were deployed for 43 days in the summer of 1998 at four sampling sites. The total concentration of pollutants at sampling sites was found to range from a low of 0.8 microgram/SPMD to 25 micrograms/SPMD for PAHs, and from 0.4 microgram/SPMD to 22 micrograms/SPMD for OCPs, respectively. None of the selected PCB congeners was present at quantifiable levels at any sampling site. A point source of water pollution with OCPs and PAHs was identified in the river system considering the total contaminant concentrations and the distribution of individual compounds accumulated by SPMDs at different sampling sites. SPMD-data was also used to estimate average ambient water concentrations of the contaminants at each field site and compared with concentrations measured in bulk water extracts. The truly dissolved or bioavailable portion of contaminants at different sampling sites ranged from 4% to 86% for the PAHs, and from 8% to 18% for the OCPs included in the estimation. The fraction of individual compounds found in the freely dissolved form can be attributed to the range of their hydrophobicity. In comparison with liquid/liquid extraction of water samples, the SPMD method is more suitable for an assessment of the background concentrations of hydrophobic organic contaminants because of substantially lower method quantification limits. Moreover, contaminant residues sequestered by the SPMDs represent an estimation of the dissolved or readily bioavailable concentration of hydrophobic contaminants in water, which is not provided by most analytical approaches.  相似文献   

15.
BACKGROUND: The continuous progress in analytical techniques has improved the capability of detecting chemicals and recognizing new substances and extended the list of detectable contaminants widespread in all environmental compartments by human activities. Most concern is focused on water contamination by emerging compounds. By contrast, scarce attention is paid to the atmospheric sector, which in most cases represents the pathway of diffusion at local or global scale. Information concerning a list of organic pollutants is provided in this paper. METHODS: The volatile methyl tert-butyl ether and siloxanes are taken as examples of information insufficient with regard to the potential risk induced by diffusion in the atmosphere. Illicit drugs, whose presence in the air was ascertained although by far unexpected, are considered to stress the needs of investigating not solely the environmental compartments where toxic substances are suspected to display their major influence. Finally, the identification of two recognized emerging contaminants, i.e., tris(2-chloroisopropyl) phosphate and N,N-diethyl-m-toluamide, in aerosols originally run to characterize other target compounds is presented with the purpose of underlining the wide diffusion of the organic emerging contaminants in the environment.  相似文献   

16.
The efficiency of several lab scale treatments (aerobic, anaerobic and ozone or combination of these) was evaluated using two packaging board mill whitewaters. The effect of the different treatments on the elimination of the organic load, the chemical oxygen demand (COD) and the toxicity was tested as well as the relationship between these parameters. Biocides, phenolic compounds, surfactants, plasticiziers and wood extractives were identified in untreated and treated whitewaters by liquid chromatography coupled with mass spectrometry (LC-MS) or gas chromatography coupled with mass spectrometry (GC-MS). A strong dependency on the water type and treatment efficiency was observed, being the combination of anaerobic and aerobic treatments the best option to reduce the organic contaminants in these waters, although in some cases, the toxicity did not decrease. However, ozone as post-treatment permitted a further reduction of organic compounds, toxicity and COD.  相似文献   

17.
In this paper we show that oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs) are important cocontaminants that should be taken into account during risk assessment and remediation of sites with high levels of PAHs. The presented data, which have been collected both from our own research and the published literature, demonstrate that oxy-PAHs are abundant but neglected contaminants at these sites. The oxy-PAHs show relatively high persistency and because they are formed through transformation of PAHs, their concentrations in the environment may even increase as the sites are remediated by methods that promote PAH degradation. Furthermore, we show that oxy-PAHs are toxic to both humans and the environment, although the toxicity seems to be manifested through other effects than those known to be important for polycyclic aromatic compounds in general, that is, mutagenicity and carcinogenicity. Finally, we present data that support the hypothesis that oxy-PAHs are more mobile in the environment than PAHs, due to their polarity, and thus have a higher tendency to spread from contaminated sites via surface water and groundwater. We believe that oxy-PAHs should be included in monitoring programs at PAH-contaminated sites, even if a number of other toxicologically relevant compounds that may also be present, such as nitro-PAHs and azaarenes, are not monitored. This is because oxy-PAH levels are difficult to predict from the PAH levels, because their environmental behavior differs substantially from that of PAHs, and oxy-PAHs may be formed as PAHs are degraded.  相似文献   

18.
Among the different organic pollutants, persistent organic pollutants and emerging organic contaminants (EOCs) are of particular concern due to their potentially dangerous effects on the ecosystems and on human health. In the framework of the analysis of some of these organic pollutants in water samples, sorptive extraction devices have proven to be adequate for their monitoring. The efficiency of four commercially available and low-cost polymeric materials [polypropylene, poly(ethylene terephthalate), Raffia, and polyethersulfone (PES)] for the simultaneous extraction of 16 organic compounds from five different families from environmental water samples was evaluated in this work. Firstly, the homogeneity of the sorbent materials was confirmed by means of Raman spectroscopy. After the optimization of the parameters affecting the extraction and the liquid desorption steps, it was found that PES showed the largest efficiencies for slightly polar analytes and, to a lesser extent, for nonpolar analytes. Additionally, Raffia rendered good extraction efficiencies for nonpolar compounds. Thus sorptive extraction methods followed by large volume injection-programmable temperature vaporizer-gas chromatography-mass spectrometry were validated using PES and Raffia as sorbent materials. The validation of the method provided good linearity (0.978?r 2?r 2?-1 level). Finally, these materials were applied to the analysis of contaminants in environmental water samples.  相似文献   

19.
The discovery that natural and synthetic chemicals, in the form of excreted hormones and pharmaceuticals, as well as a vast array of compounds with domestic and industrial applications, can enter the environment via wastewater treatment plants and cause a wide variety of environmental and health problems even at very low concentrations, suggests the need for improvement of water recycling. Three Australian wastewater recycling schemes, two of which employ reverse osmosis (RO) technology, the other applying ozonation and biological activated carbon filtration, have been studied for their ability to remove trace organic contaminants including 11 pharmaceutically active compounds and two non-steroidal estrogenic compounds. Contaminant concentrations were determined using a sensitive analytical method comprising solid phase extraction, derivatization and GC with MS using selected ion monitoring. In raw wastewater, concentrations of analgesics and non-steroidal anti-inflammatory medications were comparable to those found in wastewaters around the world. Remarkably, removal efficiencies for the three schemes were superior to literature values and RO was responsible for the greatest proportion of contaminant removal. The ability of RO membranes to concentrate many of the compounds was demonstrated and highlights the need for continued research into monitoring wastewater treatment, concentrate disposal, improved water recycling schemes and ultimately, safer water and a cleaner environment.  相似文献   

20.
Advances in analytical methods have led to the identification of several classes of organic chemicals that are associated with adverse environmental effects. Two such classes of organic chemicals, gasoline oxygenates and sex hormones, are used to illustrate challenges associated with the biodegradation of trace organic contaminants. Gasoline oxygenates can be present in groundwater, alone, or commingled with xylene, at appreciable concentrations. However, target-treated water standards dictate that gasoline oxygenates be reduced to the microgram-per-liter concentration range before consumption. Sex hormones, on the other hand, are present in wastewater matrixes in the part-per-trillion concentration range, and the biggest challenge that must be met, before optimizing their removal, is facilitating their detection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号