首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Chemosphere》1987,16(4):809-812
1,2-Chloronitrobenzene, 1,4-chloronitrobenzene, 2,3-dichloronitrobenzene and 3,4-dichloronitrobenzene in aqueous solution were irradiated in the presence of TiO2 with wavelengths λ > 290 nm. Due to the attack of oxygen containing radicals a fast reaction of these stable compounds was observed. Chloronitrophenols and chlorodinitrobenzenes in minor amounts were determined as intermediate products. Continued irradiation leads to total degradation.  相似文献   

2.
Elemental compositions were measured for TSP (total suspended particulate matter), PM2−10 and PM2 (particulate matter with aerodynamic diameters from 2 to 10 μm and less than 2 μm, respectively) in Ho Chi Minh City. Concentrations of 23 elements and particulate mass (PM) were used for receptor modelling to identify and quantify aerosol sources using principal component factor analysis (PCFA). A suite of factors containing similar elements with significant factor loadings were revealed among the factor matrices, thus facilitating the identification of common sources for different aerosol types. These sources include vehicular emissions (Br and Zn), coal burning (Se), industrial processes (Ce, Co, Cr, Pb and Sb), road dust (Al, Ti, V), soil dust (Fe and Th) and biomass burning (K). Marine aerosols (Na and Cl) and mineral fly ash (Sc and La) were revealed only in the PM2−10 model. For TSP, the last four sources are combined in one factor. The last (9th) factor in the PM2 model, characterised by a high loading from PM and insignificant loadings from elements, was attributed to secondary sulphates and organics, although these constituents were not measured in the experiments. Such a remarkable source identification capability of the modelling technique highlights the significance of achieving an optimal factor solution as a crucial step in PCFA, that was done by systematically varying the number of factors retained and carefully evaluating each factor matrix for both model fitting performance and physical reasonableness.  相似文献   

3.
Measurements of C2–C5 hydrocarbons on an hourly basis at the TNO site in Delft from 1982 to 1984 and at Moerdijk over the period 1981–1991 are presented. In combination with meteorological data (wind direction and wind speed) the Delft and Moerdijk series are evaluated to identify source categories, annual variations, background concentrations and trends. The C2–C5 hydrocarbon concentrations at Delft and Moerdijk are determined mainly by emission characteristics and meteorological dispersion; the dominant sources are relatively nearby and atmospheric degradation is not of much importance. Under conditions of high wind speed the concentrations measured at Moerdijk in the marine sector are close to the Atlantic background concentrations in winter and somewhat above this in summer. The continental background concentrations are higher than the marine background concentrations by a factor of almost two. The annual variation of acetylene is more pronounced than that of the other hydrocarbons, most likely due to a different seasonal variation in acetylene emissions. The annual variation of propene is smoother, indicating stronger sources in summer than in winter. This feature of propene is observed in continental as well as in marine sectors. The observations show that at Moerdijk C2–C4 concentrations measured in Rijnmond sector have decreased considerably since the early 1980s, corresponding with changes in emissions in that area. Averaged over all wind directions the trend of all species is downward, but for acetylene the trend is significant at a 95% confidence interval. The acetylene concentrations show an annual downward trend of 3% during the 1980s, supporting other estimates of decreasing hydrocarbon emissions from traffic over this period at the same rate.  相似文献   

4.
Atmospheric C2–C5 hydrocarbons were determined at Deonar, an industrial suburb north of Bombay, India, during 1985. Samples were pre-concentrated on silica gel at −78°C and subsequently desorbed on to a gaschromatographic column for separation and flame ionization detection. The seasonal pattern of the monthly geometric mean hydrocarbon concentrations are used to show that refinery emissions in addition to auto exhaust are a major source of hydrocarbons at Deonar.  相似文献   

5.
Greenhouse gas (GHG) emissions from agriculture are a significant contributor to total Danish emissions. Consequently, much effort is currently given to the exploration of potential strategies to reduce agricultural emissions. This paper presents results from a study estimating agricultural GHG emissions in the form of methane, nitrous oxide and carbon dioxide (including carbon sources and sinks, and the impact of energy consumption/bioenergy production) from Danish agriculture in the years 1990–2010. An analysis of possible measures to reduce the GHG emissions indicated that a 50–70% reduction of agricultural emissions by 2050 relative to 1990 is achievable, including mitigation measures in relation to the handling of manure and fertilisers, optimization of animal feeding, cropping practices, and land use changes with more organic farming, afforestation and energy crops. In addition, the bioenergy production may be increased significantly without reducing the food production, whereby Danish agriculture could achieve a positive energy balance.  相似文献   

6.
To understand the characteristics of non-methane hydrocarbon (NMHC) abundance in an urban air of Nagoya, one of the metropolitan areas of Japan, 48 species of C2–C11 NMHCs were measured with a measurement system, developed in this study, by using gas chromatography with flame ionization detection (GC/FID) continuously for one year from December 2003 to November 2004.Annual mean concentration of NMHCs in normal and propylene equivalent (PE) in Nagoya was compared with those in four urban areas of Seoul, London, Lille, and Dallas to extract characteristics of urban air. While the absolute values of the normal and PE concentrations of alkanes, alkenes, alkyne, and aromatics were significantly different among these urban areas, the proportions of each chemical group to the total NMHC were not so different.In Nagoya, the total normal concentration was high from November to February and low from June to August. The pattern of the seasonal variation was influenced mainly by that of alkanes. On the other hand, the total PE concentration was high from July to December and low from January to June. The pattern of the seasonal variation was influenced mainly by those of alkenes and aromatics. Particularly the normal concentration of isoprene was high from May to September because of large emission associated with activity of plants. As the results, in summer, the PE concentration of isoprene was especially high, and its contribution to the total NMHCs measured in this study was approximately 40%. The total PE concentrations were high in summer when the concentration of OH radicals is also high, suggesting that the productions of ozone and secondary organic aerosol (SOA) are likely to be promoted in summer of Nagoya.  相似文献   

7.
Winter rains have lower NO3 levels but higher SO2−4 levels than snows in the NE United States. In this study, four years of winter precipitation data from SE Michigan were examined to help understand these differences. Although NO3 levels were indeed higher in snow than winter rain, the higher concentrations could be attributed to the generally lower precipitation depths associated with snow events than with rain events. The NO3 concentrations are inversely correlated with precipitation depth. There was no evidence that snow scavenged HNO3 in the air more efficiently than rain.Conversely, SO2−4 was far higher in winter rain than in snow. This could not be explained in terms of ground-level ambient S concentrations or the wind direction from which the storm originated. However, the cloud temperatures were high enough in the case of rain to suggest that the cloud hydrometeors could have been present as liquid droplets rather than ice crystals. The SO2−4 concentrations of the precipitation were highly correlated with the temperatures of the cloud layers. The data suggest that SO2 is incorporated and oxidized to SO2−4 in clouds most efficiently when the hydrometeors are present as liquid droplets. The fact that NO3does not show the same relationship suggests that incorporation of N species into cloud water followed by oxidation is not as important a process for N as for S.  相似文献   

8.
Environmental Science and Pollution Research - It is essential to study CO2 emissions intensity as the most critical factor affecting temperature increase and climate change in a country like Iran,...  相似文献   

9.
10.
Two indicator pollutants, carbon monoxide (CO) for mobile source influence and sulfur dioxide (SO2) for stationary source influence, were used to estimate source-type contributions to ambient NO2 levels in a base year and to predict NO2 concentrations in a future year. For a specific source-receptor pair, the so-called influence coefficient of each of three source categories (mobile sources, power plants, and other stationary sources) was determined empirically from concurrent measurements of CO and SO2 concentrations at the receptor site and CO and SO2 emissions from each source category in the source area. Those coefficients, which are considered time invariant, were used in conjunction with the base year and future year NO x emission values to estimate source-type contribution to ambient NO2 levels at seven study sites selected from the Greater Los Angeles area for both the base year period, 1974 through 1976, and the future goal year of 1987 in which the air quality standards for NO2 are to be attained. The estimated NO2 air quality at the seven sites is found to meet the national annual standard of 5 pphm and over 99.9% of total hours, the California 1-hr NO2 standard of 25 pphm in 1987. The estimated power plant contributions to ambient NO2 levels are found to be considerably smaller than those to total NO x emissions in the area. Providing that reasonably complete air quality and emissions data are available, the present analysis method may prove to be a useful tool in evaluating source contributions to both short-term peak and long-term average NO2 concentrations for use in control strategy development.  相似文献   

11.
We investigated the adsorption and decomposition of sulfamethazine (SMT), which is used as a synthetic antibacterial agent and discharged into environmental water, using high-silica Y-type zeolite (HSZ-385), titanium dioxide (TiO2), and TiO2–zeolite composites. By using ultrapure water and secondary effluent as solvents, we prepared SMT solutions (10 μg/L and 10 mg/L) and used them for adsorption and photocatalytic decomposition experiments. When HSZ-385 was used as an adsorbent, rapid adsorption of SMT in the secondary effluent was confirmed, and the adsorption reached equilibrium within 10 min. The photocatalytic decomposition rate using TiO2 in the secondary effluent was lower than that in ultrapure water, and we clarified the inhibitory effect of ions and organic matter contained in the secondary effluent on the reaction. We synthesized TiO2–zeolite composites and applied them to the removal of SMT. During the treatment of 10 μg/L SMT in the secondary effluent using the composites, 76 % and more than 99 % of the SMT were decomposed within 2 and 4 h by photocatalysis. The SMT was selectively adsorbed onto high-silica Y-type zeolite in the composites. Resultantly, the inhibitory effect of the coexisting materials was reduced, and the composites could remove SMT more effectively compared with TiO2 alone in the secondary effluent.  相似文献   

12.
Short-term elevated O3 reduces photosynthesis, which reduces stomatal conductance (g(s)) in response to increased substomatal CO2 concentration (Ci). Further exposure causes stomata to become sluggish in response to environmental stimuli. Exposure to elevated CO2 stimulates rapid stomata closure in response to increased Ci. This reduction in g(s) may not be sustained over time as photosynthesis down-regulates and with it, g(s). The relationship between g(s) and photosynthesis may not be constant because stomata respond more slowly to environmental changes than photosynthesis, and because elevated CO2 may alter guard cell sensitivity to other signals. Also, reduced stomatal density (and g(s)) in response to long-term CO2 enrichment suggests sustained reduction in g(s). Elevated CO2 is believed to ameliorate the deleterious O3 effects by reducing g(s) and thus the potential O3 flux into leaves. Confirmation that g(s) acclimation to CO2 enrichment does not lessen over time is critical for developing meaningful O3 flux scenarios.  相似文献   

13.
A field experiment was conducted in a rice–winter wheat rotation agroecosystem to quantify the direct emission of N2O for synthetic N fertilizer and crop residue application in the 2002–2003 annual cycle. There was an increase in N2O emission accompanying synthetic N fertilizer application. Fertilizer-induced emission factor for N2O (FIE) averaged 1.08% for the rice season, 1.49% for the winter wheat season and 1.26% for the whole annual rotation cycle. The annual background emission of N2O totaled 4.81 kg N2O–N ha−1, consisting of 1.24 kg N2O–N ha−1 for rice, 3.11 kg N2O–N ha−1 for wheat seasons. When crop residue and synthetic N fertilizer were both applied in the fields, crop residue-induced emission factor for N2O (RIE) was estimated as well. When crop residue was retained at the rate of 2.25 and 4.50 t ha−1 for each season, the RIE averaged 0.64% and 0.27% for the whole annual rotation cycle, respectively. Based on available multi-year data of N2O emissions over the whole rice–wheat rotation cycle at 3 sites in southeast China, the FIE averaged 1.02% for the rice season, 1.65% for the wheat season. On the whole annual cycle, the FIE for N2O ranged from 1.05% to 1.45%, with an average of 1.25%. Annual background emission of N2O averaged 4.25 kg ha−1, ranging from 3.62 to 4.87 kg ha−1. It is estimated that annual N2O emission in paddy rice-based agroecosystem amounts to 169 Gg N2O–N in China, accounting for 26–60% of the reported estimates of total emission from croplands in China.  相似文献   

14.
Environmental Science and Pollution Research - The present study proposed the relationship among private investment in information and communication technology (ICT), carbon emissions (CO2),...  相似文献   

15.
Environmental Science and Pollution Research - As an energy-intensive industry in China, it is critical to promote energy conservation and carbon emission reduction in the nonferrous metal industry...  相似文献   

16.
Environmental Science and Pollution Research - In the present study, a detailed investigation was carried out on MoO3 alumina-supported catalysts behavior in selective catalytic reduction of SO2 to...  相似文献   

17.
18.
The purpose of this work is to contribute to the understanding of the photochemical air pollution in central-southern of the Iberian Peninsula, analysing the behaviour and variability of oxidant levels (OX?=?O3?+?NO2), measured in a polluted area with the highest concentration of heavy industry in central Spain. A detailed air pollution database was observed from two monitoring stations. The data period used was 2008 and 2009, around 210,000 data, selected for its pollution and meteorological statistics, which are very representative of the region. Data were collected every 15 min, however hourly values were used to analyse the seasonal and daily ozone, NO, NO2 and OX cycles. The variation of OX concentrations with NO x is investigated, for the first time, in the centre of the Iberian Peninsula. The concentration of OX was calculated using the sum of a NO x -independent ‘regional’ contribution (i.e. the O3 background), and a linearly NO x -dependent ‘local’ contribution. Monthly dependence of regional and local OX concentration was observed to determine when the maximum values may be expected. The variation of OX concentrations with levels of NO x was also measured, in order to pinpoint the atmospheric sources of OX in the polluted areas. The ratios [NO2]/[OX] and [NO2]/[NO x ] vs. [NO x ] were analysed to find the fraction of OX in the form of NO2, and the possible source of the local NO x -dependent contribution, respectively. The progressive increase of the ratio [NO2]/[OX] with [NO x ] observed shows a greater proportion of OX in the form of NO2 as the level of NO x increases. The higher measured values in the ratio [NO2]/[NO x ] should not be attributed to NO x emissions by vehicles; they could be explained by industrial emission, termolecular reactions or formaldehyde and HONO directly emitted by vehicles exhausts. We also estimate the rate of NO2 photolysis, J NO2?=?0.18–0.64 min?1, a key atmospheric reaction that influence O3 production and then the regional air quality. The first surface plot study of annual variation of the daily mean oxidant levels, obtained for this polluted area may be used to improve the atmospheric photochemical dynamic in this region of the Iberian Peninsula where there are undeniable air quality problems.  相似文献   

19.
Based on available literature data of [NO2 ], steady-state [·OH], and ·OH generation rate upon nitrate photolysis in environmental aqueous samples under sunlight, the steady-state [·NO2], could be calculated. Interestingly, one to two orders of magnitude more ·NO2 would be formed in photochemical processes in atmospheric water droplets compared to transfer from the gas phase. The relative importance of nitrite oxidation compared to nitrate photolysis as an ·NO2 source would be higher in atmospheric than in surface waters. The calculated levels of ·NO2 could lead to substantial transformation of phenol into nitrophenols in both atmospheric and surface waters.  相似文献   

20.

Introduction

Korea has been making efforts to reduce greenhouse gas (GHG) emissions, including a voluntary commitment to the target of a 30% reduction, based on business-as-usual of the total GHG emission volume, by 2020; 2006 IPCC Guidelines provided default values, applying country-specific emission factors was recommended when estimating national greenhouse gas emissions.

Results and discussion

This study focused on anthracite produced in Korea in order to provide basic data for developing country-specific emission factor. This study has estimated CO2 emission factors to use worksheet of which five steps consisted according to the fuel analysis method.

Conclusion

As a result, the average of net colorific value for 3 years (2007??2009) was 4,519 kcal/kg, and the CO2 emission factor was calculated to be 111,446 kg/TJ, which is about 11.8% lower than the 2006 IPCC guidelines default value, and about 7.9% higher than the US EPA emission factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号