首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The establishment of an efficient surface water quality monitoring (WQM) network is a critical component in the assessment, restoration and protection of river water quality. A periodic evaluation of monitoring network is mandatory to ensure effective data collection and possible redesigning of existing network in a river catchment. In this study, the efficacy and appropriateness of existing water quality monitoring network in the Kabbini River basin of Kerala, India is presented. Significant multivariate statistical techniques like principal component analysis (PCA) and principal factor analysis (PFA) have been employed to evaluate the efficiency of the surface water quality monitoring network with monitoring stations as the evaluated variables for the interpretation of complex data matrix of the river basin. The main objective is to identify significant monitoring stations that must essentially be included in assessing annual and seasonal variations of river water quality. Moreover, the significance of seasonal redesign of the monitoring network was also investigated to capture valuable information on water quality from the network. Results identified few monitoring stations as insignificant in explaining the annual variance of the dataset. Moreover, the seasonal redesign of the monitoring network through a multivariate statistical framework was found to capture valuable information from the system, thus making the network more efficient. Cluster analysis (CA) classified the sampling sites into different groups based on similarity in water quality characteristics. The PCA/PFA identified significant latent factors standing for different pollution sources such as organic pollution, industrial pollution, diffuse pollution and faecal contamination. Thus, the present study illustrates that various multivariate statistical techniques can be effectively employed in sustainable management of water resources. Highlights ? The effectiveness of existing river water quality monitoring network is assessed ? Significance of seasonal redesign of the monitoring network is demonstrated ? Rationalization of water quality parameters is performed in a statistical framework  相似文献   

2.
Design and redesign of water quality monitoring networks were evaluated for two similarly sized watersheds in the tropical Andes via optimization techniques using geographic information system technology (GIS) and a matter-element analysis of 5-day biological oxygen demand (BOD5) and total suspended solids (TSS). This resulted in a flexible, objectively based design for a 1128-km2 watershed without prior water quality data (La Miel River), and a network redesign of a 1052-km2 watershed with historical water quality monitoring (Chinchiná River). Monitoring design for the undocumented basin incorporated mathematical expressions for physical, anthropological, and historical factors—and was based on clear objectives for diagnosis and intervention of water pollution. Network redesign identified network redundancy, which resulted in a 64% reduction in the number of water quality monitoring stations along the channel, and a 78% reduction of stations throughout the basin. Most tropical drainage basins throughout the world have little to no prior water quality data. But even in well-studied drainage basins like the Chinchiná River, which is among the most thoroughly studied basins in Colombia, redesign of historical and existing monitoring networks will become a standard tool to advance the restoration of polluted surface waters, not only in Colombia, but also throughout the world.  相似文献   

3.
Statistical analyses of health effects of air pollution have increasingly used GIS-based covariates for prediction of ambient air quality in “land use” regression models. More recently these spatial regression models have accounted for spatial correlation structure in combining monitoring data with land use covariates. We present a flexible spatio-temporal modeling framework and pragmatic, multi-step estimation procedure that accommodates essentially arbitrary patterns of missing data with respect to an ideally complete space by time matrix of observations on a network of monitoring sites. The methodology incorporates a model for smooth temporal trends with coefficients varying in space according to Partial Least Squares regressions on a large set of geographic covariates and nonstationary modeling of spatio-temporal residuals from these regressions. This work was developed to provide spatial point predictions of PM2.5 concentrations for the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air) using irregular monitoring data derived from the AQS regulatory monitoring network and supplemental short-time scale monitoring campaigns conducted to better predict intra-urban variation in air quality. We demonstrate the interpretation and accuracy of this methodology in modeling data from 2000 through 2006 in six U.S. metropolitan areas and establish a basis for likelihood-based estimation.  相似文献   

4.
Development of a Marine Sediment Pollution Index.   总被引:5,自引:0,他引:5  
To facilitate translation of the state of marine sediment quality for public information, a pollution index was developed from the results of a routine monitoring program. Principal component analysis (PCA) of 24 variables at 64 monitoring stations from 1987 to 1997 was carried out to identify the most important parameters that were applied in the index formulation. Of the 24 variables, six (Cr, Cu, Ni, chemical oxygen demand, Zn, Mn) were selected on the basis of their high PCA loadings. The derived Marine Sediment Pollution Index, rating from 0 to 100, reflected the general trend in the monitoring areas. The index was also found to have a significant negative correlation (P < 0.05) with the benthic species diversity and toxicity of the sediment, indicating its usefulness in reflecting marine sediment quality. The application of PCA to identify important variables from a monitoring program would reduce sampling resources, as parameters that did not show significant spatial or temporal variations could be analyzed in a lesser frequency than those that were identified to be more important from the results of PCA.  相似文献   

5.
This paper presents a modification of chemical oxygen demand (COD) monitoring giving a better indication of the pollution level compared with the conventional COD method for rivers with a high content of sediments. The correlation between the sediment organic carbon and COD was investigated using sediments sampled in the middle Yellow River, China. Partitioning of the sediment organic carbon between the water and sediment phases was also investigated using batch experiments, with the sediment concentration varying from 20 to 400 g/L. As a result, the COD modification equations are proposed for both turbid water (mixture of water and sediment) and supematant water (filtrate using a 0.45-microm membrane). The modified COD in turbid water and supernatant water could be 40 and 10% less than the monitored COD values, respectively. These results may have a significant influence on the assessment of water quality class in the Yellow River.  相似文献   

6.
Geochemical and mineralogical changes were evaluated at a field Fe0-PRB at the Oak Ridge Y-12 site concerning operation performance during the treatment of U in high NO3- groundwater. In the 5-yr study period, the Fe0 remained reactive as shown in pore water monitoring data, where increases in pH and the removal of certain ionic species persisted. However, coring revealed varying degrees of cementation. After 3.8-yr treatment, porosity reduction of up to 41.7% was obtained from mineralogical analysis on core samples collected at the upgradient gravel-Fe0 interface. Elsewhere, Fe0 filings were loose with some cementation. Fe0 corrosion and pore volume reduction at this site are more severe due to the presence of NO3- at a high level. Tracer tests indicate that hydraulic performance deteriorated: the flow distribution was heterogeneous and under the influence of interfacial cementation a large portion of water was diverted around the Fe0 and transported outside the PRB. Based on the equilibrium reductions of NO3- and SO4(2-) by Fe0 and mineral precipitation, geochemical modeling predicted a maximum of 49% porosity loss for 5 yr of operation. Additionally, modeling showed a spatial distribution of mineral precipitate volumes, with the maximum advancing from the interface toward downgradient with time. This study suggests that water quality monitoring, coupled with hydraulic monitoring and geochemical modeling, can provide a low-cost method for assessing PRB performance.  相似文献   

7.
The objective of this study was to establish whether EU and UN-ECE/ICP-Forests monitoring data (i) provide the variables necessary to apply the flux-based modeling methods and (ii) meet the quality criteria necessary to apply the flux-based critical level concept. Application of this model has been possible using environmental data collected from the EU and UN-ECE/ICP-Forests monitoring network in Switzerland and Italy for 2000-2002. The test for data completeness and plausibility resulted in 6 out of a possible total of 20 Fagus sylvatica L. plots being identified as suitable from Switzerland, Italy, Spain, and France. The results show that the collected data allow the identification of different spatial and temporal areas and periods as having higher risk to ozone than those identified using the AOT40 approach. However, it was also apparent that the quality and completeness of the available data may severely limit a complete risk assessment across Europe.  相似文献   

8.
Je CH  Hayes DF  Kim KS 《Chemosphere》2007,70(2):187-195
Environmental remediations such as dredging operations cause contaminated sediments from the bottom of water bodies to become suspended into the water column. These resuspended particles are significant water quality concerns and cause adverse effects to aquatic organisms. In this paper, we present a vertically integrated two-dimensional flocculent sediment transport model to better model concentration changes of resuspended bottom sediments. The flocculent transport model has been applied to the Savannah River cutterhead dredge field study involving the resuspension of bottom sediments. The results showed that the model predictions correlate reasonably well with field data. These comparisons suggest that the flocculent sediment transport model can be used to predict the concentration profiles of a plume of toxic compounds resulting from cutterhead dredge operation.  相似文献   

9.
青山水库底泥磷释放与库区水体磷浓度的关系   总被引:5,自引:0,他引:5  
通过对青山水库底泥磷释放特性的实验结果分析,对照库区水体浓度监测的数据,确定了库区各测点底磷释放量与水体浓度之间的关系,进而为库区环境总量控制与各支流的分配计算提供了依据。同时也为防止水库的进一步富营养化,进而改善水质提供了新的思路。  相似文献   

10.
Contributions of the emissions from a U.K. regulated fossil-fuel power station to regional air pollution and deposition are estimated using four air quality modeling systems for the year 2003. The modeling systems vary in complexity and emphasis in the way they treat atmospheric and chemical processes, and include the Community Multiscale Air Quality (CMAQ) modeling system in its versions 4.6 and 4.7, a nested modeling system that combines long- and short-range impacts (referred to as TRACK-ADMS [Trajectory Model with Atmospheric Chemical Kinetics-Atmospheric Dispersion Modelling System]), and the Fine Resolution Atmospheric Multi-pollutant Exchange (FRAME) model. An evaluation of the baseline calculations against U.K. monitoring network data is performed. The CMAQ modeling system version 4.6 data set is selected as the reference data set for the model footprint comparison. The annual mean air concentration and total deposition footprints are summarized for each modeling system. The footprints of the power station emissions can account for a significant fraction of the local impacts for some species (e.g., more than 50% for SO2 air concentration and non-sea-salt sulfur deposition close to the source) for 2003. The spatial correlation and the coefficient of variation of the root mean square error (CVRMSE) are calculated between each model footprint and that calculated by the CMAQ modeling system version 4.6. The correlation coefficient quantifies model agreement in terms of spatial patterns, and the CVRMSE measures the magnitude of the difference between model footprints. Possible reasons for the differences between model results are discussed. Finally, implications and recommendations for the regulatory assessment of the impact of major industrial sources using regional air quality modeling systems are discussed in the light of results from this case study.  相似文献   

11.
Geochemical and mineralogical changes were evaluated at a field Fe0-PRB at the Oak Ridge Y-12 site concerning operation performance during the treatment of U in high NO3- groundwater. In the 5-year study period, the Fe0 remained reactive as shown in pore-water monitoring data, where increases in pH and the removal of certain ionic species persisted. However, coring revealed varying degrees of cementation. After 3.8-year treatment, porosity reduction of up to 41.7% was obtained from mineralogical analysis on core samples collected at the upgradient gravel-Fe0 interface. Elsewhere, Fe0 filings were loose with some cementation. Fe0 corrosion and pore volume reduction at this site are more severe due to the presence of NO3- at a high level. Tracer tests indicate that hydraulic performance deteriorated: the flow distribution was heterogeneous and under the influence of interfacial cementation a large portion of water was diverted around the Fe0 and transported outside the PRB. Based on the equilibrium reductions of NO3- and SO4(2-) by Fe0 and mineral precipitation, geochemical modeling predicted a maximum of 49% porosity loss for 5 years of operation. Additionally, modeling showed a spatial distribution of mineral precipitate volumes, with the maximum advancing from the interface toward downgradient with time. This study suggests that water quality monitoring, coupled with hydraulic monitoring and geochemical modeling, can provide a low-cost method for assessing PRB performance.  相似文献   

12.

We studied the phosphorus dynamics in a former wetland, which had been converted to a celery farm, and now consists of two shallow, flooded ponds that are being proposed for aquatic habitat restoration. However, like many agricultural areas, this site is plagued by phosphorus legacy issues. Proposed restoration includes hydrologic reconnection of these ponds to its adjacent stream, which are now isolated from one another by an earthen berm, to create a wetland complex. One of the two flooded ponds was partially dredged, whereas the other one has remained undredged. Water column, sediment pore water, and sediment total phosphorus concentrations were significantly greater in the undredged pond compared to the dredged pond, but in both cases phosphorus levels in the water columns (mean TP 929 vs. 133 μg/L in undredged vs. dredged ponds, respectively) would exacerbate downstream water quality issues if hydrologic reconnection occurred without first addressing the phosphorus issue. Sediment isotherm and maximum sorption data indicated that the sediments are close to phosphorus saturation in the undredged pond; simulated dredging of the cores revealed that exposure of deeper sediment layers would increase sorption capacity. Pore water SRP concentrations increased with sediment depth and were significantly greater in the undredged vs. dredged pond at both the 1–4-cm depth (2249 vs. 112 μg/L) and 14–17-cm depth (5506 vs. 222 μg/L). This study provides a framework for other projects that need to balance the competing demands of habitat restoration vs. water quality when restoring wetlands that have been converted to agricultural production.

  相似文献   

13.
Emissions from automobiles and trucks operating on public roads represent a major portion of the air pollutants included in emission inventories. When emission data are prepared for air quality modeling studies, such as those supporting development of a State Implementation Plan, an emission processor matches the spatial and temporal resolution of the emissions to the requirements of the modeling study. However, the spatial location of vehicular emissions is not known and must be estimated. This paper presents a methodology for determining the spatial distribution of the roads belonging to a road class using geospatial data functions, such as those commonly provided by a geographic information system. Vehicle-miles traveled (VMT) are then allocated to medium-resolution (12 x 12-km) and fine-resolution (4 x 4-km) modeling grids using both this methodology and the existing top-down methodology, which uses population density. The results show a significant difference in the spatial distribution of VMT between these two methodologies. Based upon these results, we recommend using the road class-specific methodology in lieu of the population methodology for spatially allocating vehicular emissions for medium- and finer-resolution modeling grids.  相似文献   

14.
A GIS-based multimedia watershed model: development and application   总被引:1,自引:0,他引:1  
Coulibaly L  Labib ME  Hazen R 《Chemosphere》2004,55(7):1067-1080
A multimedia model was developed using publicly available geographical information system (GIS) data, chemical release information and local monitoring networks to assess the fate of trichloroethene (TCE) within the Passaic River Watershed. Seven environmental media, air, water, sediment, surface soil, terrestrial vegetation, root zone soil and vadose zone soil, were modeled in this study along with their sub-compartments. The Passaic River Watershed is described using the NJDEP geographical information system (GIS) resources, the United States Geological Survey (USGS) and the United States Soil Conservation Services (US SCS) soil data. The introduction of spatial resolution to a multimedia, unsteady state model is performed in this work, and represents an important step in expanding the use of equilibrium models to provide far reaching information on the fate of toxic contaminants within a given environmental unit. The spatial representation of cross-boundary fluxes was successfully demonstrated with the use of sub-watershed as an environmental unit and the direct assessment of TCE for each of the 11 sub-watersheds that make up the Passaic River Basin in northern New Jersey. Important data gaps identified during the development of this model include the lack of comprehensive monitoring data on organic contaminants, and non-uniformity among available physical environmental data from different government agencies.  相似文献   

15.
ABSTRACT

Emissions from automobiles and trucks operating on public roads represent a major portion of the air pollutants included in emission inventories. When emission data are prepared for air quality modeling studies, such as those supporting development of a State Implementation Plan, an emission processor matches the spatial and temporal resolution of the emissions to the requirements of the modeling study. However, the spatial location of vehicular emissions is not known and must be estimated. This paper presents a methodology for determining the spatial distribution of the roads belonging to a road class using geospatial data functions, such as those commonly provided by a geographic information system. Vehicle-miles traveled (VMT) are then allocated to medium-resolution (12 x 12-km) and fine-resolution (4 x 4-km) modeling grids using both this methodology and the existing top-down methodology, which uses population density. The results show a significant difference in the spatial distribution of VMT between these two methodologies. Based upon these results, we recommend using the road class-specific methodology in lieu of the population methodology for spatially allocating vehicular emissions for medium- and finer-resolution modeling grids.  相似文献   

16.
本文以长江口潮滩沉积物的系统磁性测量为基础,对照化学分析和粒度分析等数据,初步探讨了潮滩沉积物的磁性特征与重金属元素含量的相关联系及其机理,建立了重金属元素含量与磁参数的定量关系模型,并揭示了长江口潮滩重金属污染的空间特征及其与沉积环境的联系。本项工作成功地探索了利用磁信息研究潮滩重金属污染的技术路线和应用前景,指出了在一定区域内,利用适量样品的磁性测量与重金属元素分析数据,建立其定量回归模型的可行性。从而可以在区域污染调查中,通过广泛的磁数据测量,由经验公式定量地估算不同滩地部分的重金属元素含量,以全面了解潮滩重金属污染的空间分布,分析其规律和机理。由于磁测方法具有快速、简便、经济、易行等特点,它为大范围的潮滩重金属污染研究提供了一项实用有效的辅助手段。  相似文献   

17.
Yan M  Kahawita R 《Chemosphere》2007,67(5):879-885
Non-point source pollution originating from surface applied chemicals in either liquid or solid form as part of agricultural activities, appears in the surface runoff caused by rainfall. The infiltration and transport of these pollutants has a significant impact on subsurface and riverine water quality. The present paper describes the development of a unified 2-D mathematical model incorporating individual models for infiltration, adsorption, solubility rate, advection and diffusion, which significantly improve the current practice on mathematical modeling of pollutant evolution in shallow water. The governing equations have been solved numerically using cubic spline integration. Experiments were conducted at the Hydrodynamics Laboratory of the Ecole Polytechnique de Montreal to validate the mathematical model. Good correspondence between the computed results and experimental data has been obtained. The model may be used to predict the ultimate fate of surface applied chemicals by evaluating the proportions that are dissolved, infiltrated into the subsurface or are washed off.  相似文献   

18.
An examination of the intra-SMSA distribution of carbon monoxide exposure   总被引:1,自引:0,他引:1  
Although fixed-site monitoring data have been used to estimate the spatial pattern of human exposure, the intra-urban distribution of actual exposure has not been documented. This paper used the data collected during the Environmental Protection Agency's (EPA) field investigation of personal exposure to carbon monoxide (CO) to investigate the nature of the distribution of CO with respect to residential location in the Washington, D.C. SMSA. Dot-distribution maps and analysis of variance were used to document the spatial pattern of individual-level in-home CO concentrations. The results show sampled individuals living in the SMSA center are exposed to statistically significantly higher levels of CO than are those living in the suburbs. The most important implications of this work are for exposure modeling. Further investigation is needed to determine whether incorporation of a geographic component will improve exposure prediction.  相似文献   

19.
Although fixed-site monitoring data have been used to estimate the spatial pattern of human exposure, the intra-urban distribution of actual exposure has not been documented. This paper used the data collected during the Environmental Protection Agency’s (EPA) field investigation of personal exposure to carbon monoxide (CO) to investigate the nature of the distribution of CO with respect to residential location In the Washington, D.C. SMSA. Dot-distribution maps and analysis of variance were used to document the spatial pattern of individual-level in-home CO concentrations. The results show sampled individuals living in the SMSA center are exposed to statistically significantly higher levels of CO than are those living in the suburbs. The most important Implications of this work are for exposure modeling. Further investigation is needed to determine whether incorporation of a geographic component will improve exposure prediction.  相似文献   

20.
The development of techniques for real-time monitoring of water quality is of great importance for effectively managing inland water resources. In this study, we first analyzed the absorption and fluorescence properties in a large subtropical reservoir and then used a chromophoric dissolved organic matter (CDOM) fluorescence monitoring sensor to predict several water quality parameters including the total nitrogen (TN), total phosphorus (TP), chemical oxygen demand (COD), dissolved organic carbon (DOC), and CDOM fluorescence parallel factor analysis (PARAFAC) components in the reservoir. The CDOM absorption coefficient at 254 nm (a(254)), the humic-like component (C1), and the tryptophan-like component (C3) decreased significantly along a gradient from the northwest to the lake center, northeast, southwest, and southeast region in the reservoir. However, no significant spatial difference was found for the tyrosine-like component (C2), which contributed only four marked peaks. A highly significant linear correlation was found between the a(254) and CDOM concentration measured using the CDOM fluorescence sensor (r 2?=?0.865, n?=?76, p?相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号