首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Escolar (Lepidocybium flavobrunneum) is a large, mesopelagic fish that inhabits tropical and temperate seas throughout the world, and is a common bycatch in pelagic longline fisheries that target tuna and swordfish. Few studies have explored the biology and natural history of escolar, and little is known regarding its population structure. To evaluate the genetic basis of population structure of escolar throughout their range, we surveyed genetic variation over an 806 base pair fragment of the mitochondrial control region. In total, 225 individuals from six geographically distant locations throughout the Atlantic (Gulf of Mexico, Brazil, South Africa) and Pacific (Ecuador, Hawaii, Australia) were analyzed. A neighbor-joining tree of haplotypes based on maximum likelihood distances revealed two highly divergent clades (δ = 4.85%) that were predominantly restricted to the Atlantic and Indo-Pacific ocean basins. All Atlantic clade individuals occurred in the Atlantic Ocean and all but four Pacific clade individuals were found in the Pacific Ocean. The four Atlantic escolar with Pacific clade haplotypes were found in the South Africa collection. The nuclear ITS-1 gene region of these four individuals was subsequently analyzed and compared to the ITS-1 gene region of four individuals from the South Africa collection with Atlantic clade haplotypes as well as four representative individuals each from the Atlantic and Pacific collections. The four South Africa escolar with Pacific mitochondrial control region haplotypes all had ITS-1 gene region sequences that clustered with the Pacific escolar, suggesting that they were recent migrants from the Indo-Pacific. Due to the high divergence and geographic separation of the Atlantic and Pacific clades, as well as reported morphological differences between Atlantic and Indo-Pacific specimens, consideration of the Atlantic and Indo-Pacific populations as separate species or subspecies may be warranted, though further study is necessary.  相似文献   

2.
The molecular diversity of symbiotic dinoflagellates associated with the widespread western Pacific coral Plesiastrea versipora was explored in order to examine if associations between reef-building corals and symbiotic dinoflagellates change with environment. Several ribosomal DNA genes with different evolutionary rates were used, including the large subunit (28S), the 5.8S region and the internal transcribed spacers (ITS). The phylogenetic analysis of the 28S and 5.8S rDNA regions indicated that a single endosymbiont species, highly related to one of the species of Symbiodinium in clade C (= Symbiodinium goreaui, Trench et Blank), associates with P. versipora along the Ryukyu Archipelago. The persistence of the same endosymbiont within P. versipora across this wide array of latitudes may be a result of such features as the Kuroshio Current, which brings tropical temperatures as far north as Honshu, Japan. Analysis of the faster evolving ITS rDNA region revealed significant genetic variability within endosymbionts from different populations. This variation was due to a high degree of interpopulation variability, based on the proportion of pairwise variation detected among the populations (0.95% approximately). By comparison with other studies, the results also indicate that some ITS1 haplotypes from P. versipora endosymbionts seem to be widely distributed within the western Pacific Ocean, ranging from the Great Barrier Reef to the northeast of the China Sea.  相似文献   

3.
The pelagic copepod Calanus pacificus ranges nearly continuously across temperate-boreal regions of the North Pacific Ocean and is currently divided into three subspecies—C. pacificus oceanicus, C. pacificus californicus, C. pacificus pacificus—based on subtle morphological differences and geographic location. The relation between geography and genetic differentiation was examined for 398 C. pacificus individuals sampled from six widely distributed locations across the North Pacific, including an open ocean site and coastal sites on both sides of the North Pacific basin. For each individual copepod, the DNA sequence was determined for a 421-bp region of the mitochondrial coxI gene (mtCOI). A total of sixty-three different mtCOI sequences, or haplotypes, were detected, with a sequence divergence between haplotypes of 0.2–3.1%. The number and distribution of haplotypes varied with sampling location; 12 haplotypes were distributed across multiple sampling locations, and 51 occurred at only one location. Five genetically distinct populations were detected based on F ST values. Haplotype minimum spanning networks, nucleotide divergence and F ST values indicated that individuals from coastal sites in the North Pacific Ocean were more closely related to each other than to individuals from the open ocean site at Station P. These results provide genetic support for the designation of two subspecies—a coastal subspecies that consists of what is currently referred to as C. p. pacificus and C. p. californicus and an open ocean subspecies C. p. oceanicus. This work also indicates that planktonic copepods with potentially high dispersal capacity can develop genetically structured populations in the absence of obvious geographic barriers between proximate locales within an ocean basin.  相似文献   

4.
We conducted a phylogeographic study of the meiofaunal nemertean Ototyphlonemertes parmula, an apparent species complex from the littoral zone of coarse-grained beaches, using a 494-bp fragment of the mitochondrial cytochrome oxidase 3 gene (cox3). Six populations from the Gulf and Atlantic coasts of Florida, two from New England, and one from the Caribbean were sampled in March and August 2005. Three major lineages were identified, separated by cox3 sequence divergence of 16–18%, with partially overlapping ranges. Tests for hybridization using ISSR markers detected nuclear gene exchange within but not between the major mitochondrial lineages, indicating the presence of cryptic species. One lineage dominating the Atlantic coast of Florida shows no evidence of geographic structuring. Another lineage shows a phylogenetic break between the Atlantic and Gulf coasts, suggesting that unsuitable habitat may act as a barrier to dispersal. Long-distance migration is evidenced by shared haplotypes between Florida and the eastern Caribbean. Overall, the widespread distribution of individual haplotypes and lack of structuring within geographic regions contrast with O. parmula’s strongly sediment-bound lifestyle. We speculate that dispersal of adults by storms and/or sediment transport may be more important than few and potentially short-lived planktonic larvae to explain geographic diversity in O. parmula and may be important for meiofauna in general.  相似文献   

5.
The distribution and genetic structure of many marine invertebrates in the North Atlantic have been influenced by the Pleistocene glaciation, which caused local extinctions followed by recolonization in warmer periods. Mitochondrial DNA markers are typically used to reconstruct species histories. Here, two mitochondrial markers [16S rDNA and cytochrome c oxidase I (COI)] were used to study the evolution of the widely distributed hydrozoan Obelia geniculata (Linnaeus, 1758) from the North Atlantic and the Pacific and, more specifically, in the context of North Atlantic phylogeography. Samples were collected from six geographic localities between 1998 and 2002. Hydroids from the North Atlantic, North Pacific (Japan), and South Pacific (New Zealand) are reciprocally monophyletic and may represent cryptic species. Using portions of the 16S rDNA and COI genes and the date of the last trans-Arctic interchange (3.1–4.1 million years ago), the first calibrated rate of nucleotide substitutions in hydrozoans is presented. Whereas extremely low substitution rates have been reported in other cnidarians, mainly based on anthozoans, substitution rates in O. geniculata are comparable to other invertebrates. Despite a life history that ostensibly permits substantial dispersal, there is apparently considerable genetic differentiation in O. geniculata. Divergence estimates and the presence of unique haplotypes provide evidence for glacial refugia in Iceland and New Brunswick, Canada. A population in Massachusetts, USA, appears to represent a relatively recent colonization event.Communicated by J.P. Grassle, New Brunswick  相似文献   

6.
Previous studies have shown that the three-spot damselfish species complex [ Dascyllus albisella Gill, D. auripinnis Randall and Randall, D. strasburgi Klausewitz, D. trimaculatus (Ruppell)] is an assemblage of five geographically distinct clades. The one exception was a single D. trimaculatus from French Polynesia, which grouped with "Pacific Rim" individuals. In the present study, an additional 252 individuals from French Polynesia collected between June 1996 and January 2002 were analyzed using PCR amplifications, restriction fragment length polymorphisms, and DNA sequencing of the mitochondrial control region. The French Polynesian D. trimaculatus belong to two distinct clades. One clade comprising 96% of the individuals includes haplotypes found only in French Polynesia. The other clade (4% of the individuals) is comprised of haplotypes that cluster with "Pacific Rim" individuals, a clade with widespread distribution from Japan to the Line Islands and from Wallis to Palau. Present data suggest that a small number of larvae from northwestern reefs (possibly Line Islands) may have occasionally reached and colonized French Polynesian reefs.  相似文献   

7.
The population genetic structure of the neon damselfish (Pomacentrus coelestis) in the northwestern Pacific Ocean was revealed by the hypervariable control region of the mitochondrial gene (343 bp). In total, 170 individuals were sampled from 8 localities distributed between Taiwan and Japan, and 71 haplotypes were obtained through sequence alignment. High haplotype diversity (= 0.956 ± 0.008) with low nucleotide diversity (π = 0.010 ± 0.006) was observed, and the results of the mismatch distribution test suggested that a historical population expansion after a period of population bottleneck might have occurred among P. coelestis populations. Based on the results of the UPGMA tree and AMOVA (Φct = 0.193, < 0.05) analyses, fish populations from eight localities could be divided into two groups: one includes populations from localities around mainland Japan, and the other includes those from Okinawa and southern Taiwan. A genetic break was found between populations from mainland Japan and Okinawa, and this break was congruent with the pattern of phenotypic variations documented in previous studies. This evidence supports the latitudinal variation of reproductive traits among P. coelestis populations likely being genetically based. It is suggested that the changes in sea level and sea surface temperatures during past glaciations might have resulted in population bottlenecks in P. coelestis and the modern populations in the northern West Pacific are likely the results of recolonization after such events. The Kuroshio Current acts not only as a vehicle for larval transport along its pathway (between populations in southern Taiwan and Okinawa) but also as a barrier for larval dispersal across the Kuroshio axis (between populations in mainland Japan and Okinawa). Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
Blue mussels in the genus Mytilus first arrived in the Atlantic Ocean from the Pacific during the Pliocene, following the opening of the Bering Strait. Repeated periods of glaciation throughout the Pleistocene led to re-isolation of the two ocean basins and the allopatric divergence of Mytilus edulis in the Atlantic and M. trossulus in the Pacific. Mytilus trossulus has subsequently colonized the northwest Atlantic (NW Atlantic) so that the two species are presently sympatric and hybridize throughout much of the Canadian Maritimes and the Gulf of Maine. To estimate when M. trossulus arrived in the NW Atlantic, we have examined sequence variation within a portion of the female mtDNA lineage large untranslated region (F-LUR) for 156 mussels sampled from three Pacific and eleven Atlantic populations of M. trossulus. Although we found no evidence of reciprocal monophyly for Pacific and NW Atlantic M. trossulus, limited gene flow between ocean basins has led to the divergence of unique sequence clades within each ocean basin. In contrast, relative genetic homogeneity indicates high levels of gene flow within each basin. Coalescence-based analysis of the F-LUR sequences suggests that M. trossulus recolonized the NW Atlantic from the northeast Pacific subsequent to a demographic expansion in the Pacific that occurred ~96,000 years before present (ybp). Estimates of timing of divergence for Pacific and NW Atlantic populations and the time since expansion among NW Atlantic sequence clades indicate that M. trossulus arrived in the NW Atlantic more recently, between 20,000 and 46,000 ybp. Given that these estimates overlap with the dates of peak ice in the NW Atlantic during the last glacial maximum (LGM, ~18,000–21,000 ybp), we suggest that colonization of the NW Atlantic by M. trossulus occurred during, but more likely just subsequent to, the LGM and was followed by rapid temporal and spatial expansion in the region.  相似文献   

9.
The presence of the paralytic shellfish poisoning (PSP) dinoflagellate Alexandrium catenella in the north western (NW) Mediterranean Sea has been known since 1983. From this date on, the species has spread along the Spanish and Italian coastlines. Information concerning A. catenella isolates in the NW Mediterranean Sea was gained through phylogenetic studies. Twenty established toxic cultures of A. catenella taken from various NW Mediterranean Sea locations were analysed by nucleotide sequencing of the 5.8S rDNA and internal transcribed spacer regions. These rDNA ribosomal markers resulted useful in delineating the phylogenetic position of this species in the genus Alexandrium as well as in determining relationships between A. catenella isolates from different geographic areas. The phylogenetic position of the Mediterranean A. catenella ribotype, when compared to the “Alexandrium tamarense/catenella/fundyense species complex”, fits this species complex well. All the Mediterranean A. catenella isolates were constituted by only one genetic ribotype. By comparing the isolate sequences with those of other geographic areas, it revealed that the Mediterranean A. catenella ribotype was closely related to the A. catenella from Japan, Western Pacific Ocean. It was also evident that in temperate Japanese waters, a genetic variability was detected within A. catenella isolates; in fact, all strains resulted divergent showing as many as 15 mutational steps. The possibility that A. catenella has been recently introduced into the Mediterranean basin from temperate Asian areas is discussed.  相似文献   

10.
The kuruma shrimp Penaeus japonicus is widely distributed throughout the Indo-West Pacific. Two morphologically similar varieties, I and II, are recognized from the South China Sea. The two varieties are characterized by different color banding patterns on the carapace, but there are no distinct differences in morphometric traits between them based on measurement of 13 characters. Sequence data and restriction profiles of the mitochondrial genes reveal that these two varieties represent distinct clades, with sequence divergences of about 1% (473 bp) in 16S rRNA, 6–7% (504 bp) in cytochrome oxidase I, and 16–19% (470 bp) in the control region. Analysis of amplified fragment length polymorphism confirms that the two varieties are genetically distinct. We also investigated the geographical distribution of the two varieties in the western Pacific by analyzing specimens collected from Japan and Singapore. Shrimps from Japan and Singapore have been found to belong to varieties I and II, respectively, suggesting that the two varieties have different geographical distribution. Phylogenetic study reveals that the two varieties are more closely related to each other than to the other phylogenetically related Penaeus species. Results from this study suggest the occurrence of two cryptic species in the kuruma shrimp P. japonicus.Communicated by M.S. Johnson, Crawley  相似文献   

11.
Marine mussels (Mytilus spp.) belong to a group of benthic species crucial to coastal ecosystems in Europe and are important for the cultivation industry. In the present study, the nuclear adhesive protein marker (Me15/16) was used for identification of Mytilus species in coastal areas, on a large geographic scale in Europe. Pure M. edulis populations were found in the White Sea and Iceland. M. edulis, M. trossulus and their hybrids were found in the Baltic Sea and the North Sea (Oosterschelde, The Netherlands). M. galloprovincialis, M. edulis and their hybrids occurred in Ireland. M. galloprovincialis populations were observed in the Sea of Azov (Black Sea), the Mediterranean and Portugal. The mitochondrial (mt) DNA coding-region ND2-COIII was studied by PCR (polymerase chain reaction) and RFLP (restriction fragment length polymorphism) assay methods. The mtDNA control region was studied by PCR. Substantial differentiation in the frequency of female haplotypes among the studied populations in Europe was observed. Despite isolation between the Mytilus taxa on a macro-geographic scale, considerable mitochondrial gene flow occurred between populations, with introgression in hybrid zones on a more local geographic scale in Europe. MtDNA of the Atlantic Iberian (Portugal) population of M. galloprovincialis was more similar to mtDNA in populations of M. galloprovincialis and M. edulis from the Atlantic coasts of the Ireland and M. edulis from the North Sea, than to M. galloprovincialis from the Mediterranean. Lower polymorphism of mtDNA in populations of the Baltic and Azov Sea mussels in comparison with other European populations was observed and can be explained by the recent history of both seas after the Pleistocene glaciation. In the M. galloprovincialis population from the Azov Sea, the presence of the male-inherited (M) genome was demonstrated for the first time by sequencing the control region and was observed at high frequency. Possible influence of mussel culture on geographic distribution of the Mytilus taxa in Europe is discussed.  相似文献   

12.
Sagitta elegans and S. setosa are the two dominant chaetognaths in the North-East (NE) Atlantic. They are closely related and have a similar ecology and life history, but differ in distributional ranges. Sagitta setosa is a typical neritic species occurring exclusively above shelf regions, whereas S. elegans is a more oceanic species with a widespread distribution. We hypothesised that neritic species, because of smaller and more fragmented populations, would have been more vulnerable to population bottlenecks resulting from range contractions during Pleistocene glaciations than oceanic species. To test this hypothesis we compared mitochondrial Cytochrome Oxidase II DNA sequences of S. elegans and S. setosa from sampling locations across the NE Atlantic. Both species displayed very high levels of genetic diversity with unique haplotypes for every sequenced individual and an approximately three times higher level of nucleotide diversity in S. elegans (0.061) compared to S. setosa (0.021). Sagitta setosa mitochondrial DNA (mtDNA) haplotypes produced a star-like phylogeny and a uni-modal mismatch distribution indicative of a bottleneck followed by population expansion. In contrast, S. elegans had a deeper mtDNA phylogeny and a multi-modal mismatch distribution as would be expected from a more stable population. Neutrality tests indicated that assumptions of the standard neutral model were violated for both species and results from the McDonald-Kreitman test suggested that selection played a role in the evolution of their mitochondrial DNA. Congruent with these results, both species had much smaller effective population sizes estimated from genetic data when compared to census population sizes estimated from abundance data, with a factor of ~108–109 difference. Assuming that selective effects are comparable for the two species, we conclude that the difference in genetic signature can only be explained by contrasting demographic histories. Our data are consistent with the hypothesis that in the NE Atlantic, the neritic S. setosa has been more severely affected by population bottlenecks resulting from Pleistocene range shifts than the more oceanic S. elegans.  相似文献   

13.
Prevailing oceanographic processes, pelagic larvae, adult mobility, and large populations of many marine species often leads to the assumption of wide-ranging populations. Applying this assumption to more localized populations can lead to inappropriate conservation measures. The Pacific ocean perch (Sebastes alutus, POP) is economically and ecologically valuable, but little is known about its population structure and life history in Alaskan waters. Fourteen microsatellite loci were used to characterize geographic structure and connectivity of POP collections (1999–2005) sampled along the continental shelf break from Dixon Entrance to the Bering Sea. Despite opportunities for dispersal, there was significant, geographically related genetic structure (F ST = 0.0123, P < 10−5). Adults appear to belong to neighborhoods at geographic scales less than 400 km, and possibly as small as 70 km, which indicates limited dispersal throughout their lives. The population structure observed has a finer geographic scale than current management, which suggests that measures for POP fisheries conservation should be revisited.  相似文献   

14.
Fish belonging to the genus Macroramphosus are distributed throughout the Atlantic, Indian and Pacific oceans. Some authors consider this genus monotypic, Macroramphosus scolopax being the only valid species. Other authors consider (based on several morphological and ecological characters) that another species (Macroramphosus gracilis) exists and occurs frequently in sympatry with the first one. Intermediate forms are also reported in literature. In this paper, using the mitochondrial control region and the nuclear first S7 intron markers, we failed to find genetic differences between individuals considered to belong to both species as well as the intermediate forms. Our results suggest that in the northeastern Atlantic, Macroramphosus is represented by a single species, M. scolopax, with different morphotypes interbreeding in the sampling areas.  相似文献   

15.
Life-history features of the sympatric amphipods Themisto pacifica and T. japonica in the western North Pacific were analyzed based on seasonal field samples collected from July 1996 through July 1998, and data from laboratory rearing experiments. T. pacfica occurred throughout the year, with populations peaking from spring to summer. In contrast, T. japonica were rare from autumn to early winter, but became abundant in late winter to spring. Mature T. pacifica females and juveniles occurred together throughout the year, indicating year-round reproduction. Mature T. japonica females were observed only in spring, and juveniles occurred irregularly in small numbers, suggesting limited, early-spring reproduction in this study area. Size composition analysis of T. pacifica identified a total of eight cohorts over the 2 years of the study. Due to the smaller sample size and rarity of mature females (>9.6 mm) and males (>7.1 mm), cohort analyses of T. japonica were not comparable. Laboratory rearing of specimens at 2°C, 5°C, 8°C and 12°C revealed that a linear equation best expressed body length growth by T. pacifica, while a logistic equation best expressed body length growth by T. japoncia. Combining these laboratory-derived growth patterns with maturity sizes of wild specimens, the minimum and maximum generation times of females at a temperature range of 2–12°C were computed as 32 days (12°C) and 224 days (2°C), respectively, for T. pacifica, and 66 days (12°C) and 358 days (2°C), respectively, for T. japonica. The numbers of eggs or juveniles in females marsupia increased with female body length and ranged from 23 to 64 for T. pacifica and from 152 to 601 for T. japonica. Taking into account the number of mature female instars, lifetime fecundities were estimated as 342 eggs for T. pacifica and 1195 eggs for T. japonica. Possible mechanisms for the coexistence of these two amphipods in the Oyashio region are also discussed.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

16.
The milkfish, Chanos chanos (Forsskål, 1775) is a pelagic, monotypic gonorhynchiform widely distributed in the tropical Indo-Pacific. This study evaluates temporal variability of milkfish samples from the Philippine archipelago, and spatial variability at two geographic scales based on restriction fragment length polymorphism (RFLP) analysis of a portion of the mitochondrial control region. High levels of genetic diversity characterize the milkfish control region (mean h=0.908, =1.59%), with 74 haplotypes detected among the 367 fish analyzed. For temporal analysis of Philippine samples, milkfish were collected over 2 years from three sites (inter-annual variation), and sampled twice within a year during different seasons at four sites (intra-annual variation). No significant temporal variability was detected between or within years. Significant spatial differentiation among the Philippine samples was observed (FST=0.006, P<0.05), with two northeastern samples, Claveria and Dingalan, found to be genetically distinct. However, an hierarchical analysis of molecular variance (AMOVA), where samples were grouped into four geographic regions, revealed very low levels of genetic partitioning, with less than 1% of the total variation attributed to between-region differences, and lack of genetic structure. Nonetheless, the existence of putative northeastern Philippine populations is not discounted. Strong genetic structure across broad geographical scales was revealed by AMOVA, with 11% of the molecular variance based on haplotype frequencies allocated between three distinct groups: Indian Ocean, west Pacific (Philippines) and north central Pacific (Hawaii) The broad-scale genetic structure points to limited gene flow among disjunct Indo-Pacific populations.Communicated by T. Ikeda, Hakodate  相似文献   

17.
In a previous study on the kuruma shrimp Penaeus japonicus from the South China Sea, we detected high genetic divergence between two morphologically similar varieties (I and II) with distinct color banding patterns on the carapace, indicating the occurrence of cryptic species. In the present study, we clarify the geographical distribution of the two varieties in the western Pacific by investigating the genetic differentiation of the shrimp from ten localities. Two Mediterranean populations are also included for comparison. Based on the mitochondrial DNA sequence data, the shrimps are separated into two distinct clades representing the two varieties. Variety I comprises populations from Japan and China (including Taiwan), while variety II consists of populations from Southeast Asia (Vietnam, Singapore and the Philippines), Australia and the Mediterranean. Population differentiation is evident in variety II, as supported by restriction profiles of two mitochondrial markers and analysis of two microsatellite loci. The Australian population is genetically diverged from the others, whereas the Southeast Asian and Mediterranean populations show a close genetic relationship. Variety I does not occur in these three localities, while a small proportion of variety II is found along the northern coast of the South China Sea and Taiwan, which constitute the sympatric zone of the two varieties. The present study reveals high genetic diversity of P. japonicus. Further studies on the genetic structure of this species complex, particularly the populations in the Indian Ocean and Mediterranean, are needed not only to understand the evolutionary history of the shrimp, but also to improve the knowledge-based fishery management and aquaculture development programs of this important biological resource.  相似文献   

18.
The horizontal and vertical movements of bigeye (Thunnus obesus Lowe, 1839) and skipjack (Katsuwonus pelamis Linnaeus, 1758) tunas within large multi-species aggregations associated with moored buoys or a drifting vessel were investigated, using ultrasonic telemetry and archival tags, along with sonar imaging, in the equatorial eastern Pacific Ocean (at 2°S–95°W and 2°N–95°W). Four sets of observations, each consisting of the concurrent monitoring of pairs of skipjack and/or bigeye with implanted acoustic or archival tags, were conducted in May 2002 and 2003. Ultrasonic telemetry data were not collected until 24 h or more after the fish were tagged and released, to avoid any abnormal behavior as a consequence of tagging. The pairs of acoustically tagged bigeye and skipjack, and also the entire aggregations, were primarily upcurrent of the moored buoy and downcurrent of the drifting vessel during the day. At night the aggregations were observed to be more diffuse, and the fish were feeding on organisms of the deep scattering layer. The aggregations returned to positions upcurrent of the buoy or downcurrent of the drifting vessel at dawn, commonly breezing at the surface within cohesive monospecific schools. The bigeye and skipjack had concurrent changes in depth records, occupying significantly greater mean depths at night than during the day, in most cases. When associated with a moored buoy, bigeye depth distributions were deeper during the day and night than those of skipjack, but bigeye depth distributions were shallower during the day and night than those of skipjack when associated with the drifting vessel. Simultaneous depth records of a large and a small bigeye with archival tags associated with a moored buoy also indicated diel changes in depth. The mean depth at night was significantly less than during the day for the larger bigeye, but the mean depth during the day was significantly less than during the night for the smaller bigeye. The mean depths during the day and night were significantly greater for the larger bigeye than the smaller.Electronic Supplementary Material  Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00227-004-1480-xCommunicated by J.P. Grassle, New Brunswick  相似文献   

19.
Spatio-temporal variability in settlement and recruitment, high mortality during the first life-history stages, and selection may determine the genetic structure of cohorts of long-lived marine invertebrates at small scales. We conducted a spatial and temporal analysis of the common Mediterranean Sea urchin Paracentrotus lividus to determine the genetic structure of cohorts at different scales. In Tossa de Mar (NW Mediterranean), recruitment was followed over 5 consecutive springs (2006–2010). In spring 2008, recruits and two-year-old individuals were collected at 6 locations along East and South Iberian coasts separated from 200 to over 1,100 km. All cohorts presented a high genetic diversity based on a fragment of mtCOI. Our results showed a marked genetic homogeneity in the temporal monitoring and a low degree of spatial structure in 2006. In 2008, coupled with an abnormality in the usual circulation patterns in the area, the genetic structure of the southern populations studied changed markedly, with arrival of many private haplotypes. This fact highlights the importance of point events in renewing the genetic makeup of populations, which can only be detected through analysis of the cohort structure coupling temporal and spatial perspectives.  相似文献   

20.
Molecular systematic analyses of marine taxa are crucial for recording ocean biodiversity, so too are elucidation of the history of population divergence and the dynamics of speciation. In this paper we present the joined phylogeography of the calanoid copepod Calanus helgolandicus (Claus 1863) from the North East (NE) Atlantic and the Adriatic Sea and the closely related C. euxinus (Hulsemann 1991) from the Black Sea based on sequences of a mitochondrial Cytochrome Oxidase subunit I (COI) fragment. Coalescent-based Bayesian methods and minimum spanning networks are used to reconstruct the history of population divergence. Our results reveal that copepod populations from all three basins share a great number of haplotypes and demonstrate a close genetic affinity of C. euxinus with C. helgolandicus. The data do not support significant genetic structuring among samples within seas. Coalescent analyses suggest divergences between NE Atlantic, Mediterranean, and Black Sea populations dating back to the middle Pleistocene, with the NE Atlantic–Mediterranean divergence being the earliest and the Mediterranean–Black Sea divergence the most recent. These middle Pleistocene dates are much older than the estimated dates of colonisation of the Mediterranean and Black Seas based on paleoclimatic scenarios. Our results do not rule out that the assumed colonisations took place but they indicate that the populations colonising the Mediterranean and the Black Sea were already, and have since remained, diverged. The chaetognath Sagitta setosa, which has a comparable distribution pattern and feeds upon the copepods, provides a unique opportunity to compare phylogeographic patterns and distinguish among alternative hypotheses. The dates produced in this paper are in agreement with those estimated elsewhere for S. setosa. We propose that a great deal of the genetic make-up of marine planktonic populations comprises divergences that date back to long before the last glacial maximum. We consider questions on the taxonomic status of C. euxinus to remain open. However, its high genetic affinity to the C. helgolandicus calls for further investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号