首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
苏南某市河流水质参数时空变异性研究   总被引:1,自引:0,他引:1  
以苏南某市区320km2内的河流为研究对象,基于对高锰酸盐指数、NH3-N、TP3个主要水质参数的监测,应用地质统计学的变差函数球状模型和Kriging插值法,对河流有机污染指标、富营养化指标进行了空间插值,用以揭示其时空分布特征及变化趋势,并绘制了时空分布等值线图。结果表明,受不同区域污染物来源的差异、不同河道自身条件的差异和不同水期水生植物、入流水量、河水流动性的差异等因素的影响,研究区河流水质参数呈现出不同的时空变异特征;各水质参数污染均相当严重,尤以富营养化指标氮磷最为显著。  相似文献   

2.
3.
Seasonal snowpack chemistry data from the Rocky Mountain region of the US was examined to identify long-term trends in concentration and chemical deposition in snow and in snow-water equivalent. For the period 1993–2004, comparisons of trends were made between 54 Rocky Mountain Snowpack sites and 16 National Atmospheric Deposition Program wetfall sites located nearby in the region. The region was divided into three subregions: Northern, Central, and Southern. A non-parametric correlation method known as the Regional Kendall Test was used. This technique collectively computed the slope, direction, and probability of trend for several sites at once in each of the Northern, Central, and Southern Rockies subregions. Seasonal Kendall tests were used to evaluate trends at individual sites.Significant trends occurred during the period in wetfall and snowpack concentrations and deposition, and in precipitation. For the comparison, trends in concentrations of ammonium, nitrate, and sulfate for the two networks were in fair agreement. In several cases, increases in ammonium and nitrate concentrations, and decreases in sulfate concentrations for both wetfall and snowpack were consistent in the three subregions. However, deposition patterns between wetfall and snowpack more often were opposite, particularly for ammonium and nitrate. Decreases in ammonium and nitrate deposition in wetfall in the central and southern rockies subregions mostly were moderately significant (p<0.11) in constrast to highly significant increases in snowpack (p<0.02). These opposite trends likely are explained by different rates of declining precipitation during the recent drought (1999–2004) and increasing concentration. Furthermore, dry deposition was an important factor in total deposition of nitrogen in the region. Sulfate deposition decreased with moderate to high significance in all three subregions in both wetfall and snowpack. Precipitation trends consistently were downward and significant for wetfall, snowpack, and snow-telemetry data for the central and southern rockies subregions (p<0.03), while no trends were noted for the Northern Rockies subregion.  相似文献   

4.
为明晰长江流域水质时空分布特征并解析污染源,基于长江流域21个水质监测断面2008—2018年的pH、溶解氧(DO)、高锰酸盐指数(CODMn)及氨氮质量浓度([NH3-N])数据,采用M-K趋势检验、相关性分析和层次聚类分析,对流域内水质时空动态变化趋势及特征进行综合识别,并结合绝对主成分回归分析法(APCS-MLR)解析污染物来源。结果表明,研究区内重点断面水质类别以II类为主,占71.39%。在时间上,水质污染程度表现为汛期(5—10月)劣于非汛期(1—4月和11、12月),汛期主要污染指标为DO和CODMn,非汛期主要污染指标为[NH3-N];在空间上,21个监测断面聚类为3组,其水质优劣排序为GⅢ(四川乐山岷江大桥、湖南长沙新港、江西南昌滁搓站点)>GⅡ(中下游及下游)>GⅠ(上游及中上游)。结合主成分分析和多元回归分析得出,在所基于的指标中CODMn和NH3-N是研究区内典型污染物,GⅠ组水体主要受营养盐面源污染和耗氧有机物蓄积污染;GⅡ组水质受工业生产和人类活动影响其营养盐和有机物污染严重,而自然因素影响较弱;GⅢ组站点属局部污染严重,污染源主要是有机物,其次是营养盐。上述研究结果可为长江流域针对性水环境治理、污染控制和改善提供参考。  相似文献   

5.
Water repellency can induce preferential flow and thus affect water flow and contaminant transport at hazardous waste sites. Since the spatial patterns of water repellency are mostly unknown, it is problematic to use numerical transport models to predict leachate composition. In this study, the spatial variability of soil water repellency was studied at an industrial site contaminated with tar oil, chromium, copper and arsenic. The persistence of water repellency was assessed by the water drop penetration time (WDPT), and the degree of water repellency was quantified by the ethanol percentage (EP) test. Measurements were made at the soil surface along 3.5-12.1 m long transects at different times between March and October 2002. The spatial variability of WDPT, EP, water content, and organic matter content was quantified by variogram analyses. Both the persistence and the degree of water repellency varied seasonally, with the highest water repellency during the summer months. The correlation lengths of WDPT values ranged between 16 and 406 cm, whereas EP values showed no spatial correlation. For field-moist samples, a critical soil water threshold, below which water repellency prevails, was estimated to be 2.5-4%. For oven dry samples, the WDPT values were dependent on the water content prior to drying. The wide range of correlation lengths and the temporal dynamics of spatial repellency patterns suggest that simulations of solute leaching must consider the spatial and temporal variability of soil hydrophobic properties.  相似文献   

6.
Ross JR  Oros DR 《Chemosphere》2004,57(8):909-920
The composition of PAH in surface waters was examined over a range of spatial and temporal scales to determine distributions, trends, and possible sources. Water samples were collected from 1993 to 2001. PAH in organic extracts were analyzed by gas chromatography-mass spectrometry (GC-MS) and 25 individual target PAH summed to get the total PAH concentration in each water sample. The distribution of median total PAH concentration by estuary segments was Extreme South Bay (120 ng l(-1)) > South Bay (49 ng l(-1)) > North Estuary (29 ng l(-1)) > Central Bay (12 ng l(-1)) > Delta (7 ng l(-1)). Overall, total PAH concentrations were significantly higher in the Extreme South Bay compared to all other segments, and the Central Bay and Delta were significantly lower than all other segments (Kruskal-Wallis, H = 157.27, df = 4, p < 0.0005). This distribution reflects the large urbanized and industrialized areas that border the southern portions of the estuary and the less populated and rural areas that surround the Delta. Temporal trend analysis showed a statistically significant temporal trend in total PAH concentration at only one of the 18 sampling stations situated throughout the estuary (San Jose, significant decrease, p = 0.031, r(2) = 0.386, n = 12). PAH isomer pair ratio analysis showed that PAH in estuary waters were derived primarily from combustion of fossil fuels/petroleum (possible PAH source contributors include coal, gasoline, kerosene, diesel, No. 2 fuel oil, and crude oil) and biomass (possible contributors include wood and grasses), with lesser amounts of PAH contributed from direct petroleum input.  相似文献   

7.
A Seasonal Kendall Trend (SKT) test was applied to precipitation-weighted concentration data from 164 National Atmospheric Deposition Program National Trends Network (NADP/NTN) sites operational from 1985 to 2002. Analyses were performed on concentrations of ammonium, sulfate, nitrate, dissolved inorganic nitrogen (DIN, sum of nitrogen from nitrate and ammonium), and earth crustal cations (ECC, sum of calcium, magnesium, and potassium). Over the 18-year period, statistically significant (p< or =0.10) increases in ammonium concentrations occurred at 93 sites (58%), while just three sites had statistically significant ammonium decreases. Central and northern Midwestern states had the largest ammonium increases. The generally higher ammonium concentrations were accompanied by significant sulfate decreases (139 sites, 85%), and only one significant increase which occurred in Texas. In the west central United States there were significant nitrate increases (45 sites, 27%), while in the northeastern United States there were significant decreases (25 sites, 15%). Significant DIN decreases were observed in the northeastern United States (11 sites, 7%); elsewhere there were significant increases at 75 sites (46%). ECC decreased significantly at 65 sites (40%), predominantly in the central and southern United States, and increased at 11 sites (7%). The concentrations of sulfate, nitrate, and ammonium in precipitation have changed markedly over the time period studied. Such trends indicate changes in the mix of gases and particles scavenged by precipitation, possibly reflecting changes in emissions, atmospheric chemical transformations, and weather patterns.  相似文献   

8.
Artificial-lawn mats were used as sediment traps in floodplains to measure sediment input and composition during flood events. To estimate the natural variability, 10 traps were installed during two flood waves at three different morphological units in a meander loop of the River Elbe. The geochemical composition of deposited and suspended matter was compared. The sediment input showed weak correlations with concentration and composition of river water. It also correlated poorly with flood duration and level as well as distance of trap position from the main river. This is due to the high variability of the inundation, different morphological conditions and the variability of sources. The composition of the deposits and the suspended matter in the river water was comparable. Hence, for the investigated river reach, the expected pollution of the floodplain sediments can be derived from the pollution of the suspended matter in the river during the flood wave.  相似文献   

9.
Systematic measurement of fine particulate matter (aerodynamic diameter less than 2.5 microm [PM2.5]) mass concentrations began nationally with implementation of the Federal Reference Method (FRM) network in 1998 and 1999. In California, additional monitoring of fine particulate matter (PM) occurred via a dichotomous sampler network and several special studies carried out between 1982 and 2002. The authors evaluate the comparability of FRM and non-FRM measurements of PM2.5 mass concentrations and establish conversion factors to standardize fine mass measurements from different methods to FRM-equivalent concentrations. The authors also identify measurements of PM2.5 mass concentrations that do not agree with FRM or other independent PM2.5 mass measurements. The authors show that PM2.5 mass can be reconstructed to a high degree of accuracy (r2 > 0.9; mean absolute error approximately 2 microg m(-3)) from PM with an aerodynamic diameter < or =10 microm (PM10) mass and species concentrations when site-specific and season-specific conversion factors are used and a statewide record of fine PM mass concentrations by combining the FRM PM2.5 measurements, non-FRM PM2.5 measurements, and reconstructions of PM2.5 mass concentrations. Trends and spatial variations are evaluated using the integrated data. The rates of change of annual fine PM mass were negative (downward trends) at all 22 urban and 6 nonurban (Interagency Monitoring of Protected Visual Environments [IMPROVE]) monitoring locations having at least 15 yr of data during the period 1980-2007. The trends at the IMPROVE sites ranged from -0.05 to -0.25 microg m(-3) yr(-1) (median -0.11 microg m(-3) yr(-1)), whereas urban-site trends ranged from -0.13 to -1.29 microg m(-3) yr(-1) (median -0.59 microg m(-3) yr(-1)). The urban concentrations declined by a factor of 2 over the period of record, and these decreases were qualitatively consistent with changes in emissions of primary PM2.5 and gas-phase precursors of secondary PM. Mean PM2.5 mass concentrations ranged from 3.3 to 7.4 microg m(-3) at IMPROVE sites and from 9.3 to 37.1 microg m(-3) at urban sites.  相似文献   

10.
Contamination of industrial sites by wood preservatives such as chromated copper arsenate (CCA) may pose a serious threat to groundwater quality. The objective of this study was to characterise the spatial variability of As and Cr concentrations in the solid phase and in the soil water at a former wood impregnation plant and to reveal the fundamental transport processes. The soil was sampled down to a depth of 2m. The soil water was extracted in situ from the vadose zone over a period of 10 months at depths of 1 and 1.5m, using large horizontally installed suction tubes. Groundwater was sampled from a depth of 4.5m. Results showed that arsenic and chromium had accumulated in the upper region of the profile and exhibited a high spatial variability (As: 21-621 mg kg(-1); Cr: 74-2872 mg kg(-1)). Concentrations in the soil water were high (mean As 167 microg L(-1); Cr: 62 microg L(-1)) and also showed a distinct spatial variability, covering concentration ranges up to three orders of magnitude. The variability was caused by the severe water-repellency of the surface soil, induced by the concurrent application of creosote wood preservatives, which leads to strong preferential flow as evident from a dye experiment. In contrast to soil water concentrations, only low As concentrations (<12 microg L(-1)) were detected in the groundwater. High Cr concentrations in the groundwater (approx. 300 microg L(-1)), however, illustrated the pronounced mobility of chromium. Our study shows that at sites with a heterogeneous flow system in the vadose zone a disparity between flux-averaged and volume-averaged concentrations may occur, and sampling of soil water might not be adequate for assessing groundwater concentrations. In these cases long-term monitoring of the groundwater appears to be the best strategy for a groundwater risk assessment.  相似文献   

11.
Liaohe River Basin is an important region in northeast China, which consists of several main rivers including Liao River, Taizi river, Daliao River, and Hun River. As a highly industrialized region, the basin receives dense waste discharges, causing severe environmental problems. In this study, the spatial and temporal distribution of aqueous polycyclic aromatic hydrocarbons (PAHs) in Liaohe River Basin from 50 sampling sites in both dry (May) and level (October) periods in 2012 was investigated. Sixteen USEPA priority PAHs were quantified by gas chromatography/mass selective detector. The total PAH concentration ranged from 111.8 to 2,931.6 ng/L in the dry period and from 94.8 to 2766.0 ng/L in the level period, respectively. As for the spatial distribution, the mean concentration of PAHs followed the order of Taizi River > Daliao River > Hun River > Liao River, showing higher concentrations close to large cities with dense industries. The composition and possible sources of PAHs in the water samples were also determined. The fractions of low molecular weight PAHs ranged from 58.2 to 93.3 %, indicating the influence of low or moderate temperature combustion process. Diagnostic ratios, principal component analysis, and hierarchical cluster analysis were used to study the possible source categories in the study area, and consistent results were obtained from different techniques, that PAHs in water samples mainly originated from complex sources, i.e., both pyrogenic and petrogenic sources. The benzo[a]pyrene equivalents (EBaP) characterizing the ecological risk of PAHs to the aquatic environment suggested that PAHs in Liaohe River Basin had already caused environmental health risks.  相似文献   

12.
13.
The Detroit Exposure and Aerosol Research Study (DEARS) provided data to compare outdoor residential coarse particulate matter (PM10–2.5) concentrations in six different areas of Detroit with data from a central monitoring site. Daily and seasonal influences on the spatial distribution of PM10–2.5 during Summer 2006 and Winter 2007 were investigated using data collected with the newly developed coarse particle exposure monitor (CPEM). These data allowed the representativeness of the community monitoring site to be assessed for the greater Detroit metro area. Multiple CPEMs collocated with a dichotomous sampler determined the precision and accuracy of the CPEM PM10–2.5 and PM2.5 data.CPEM PM2.5 concentrations agreed well with the dichotomous sampler data. The slope was 0.97 and the R2 was 0.91. CPEM concentrations had an average 23% negative bias and R2 of 0.81. The directional nature of the CPEM sampling efficiency due to bluff body effects probably caused the negative CPEM concentration bias.PM10–2.5 was observed to vary spatially and temporally across Detroit, reflecting the seasonal impact of local sources. Summer PM10–2.5 was 5 μg m?3 higher in the two industrial areas near downtown than the average concentrations in other areas of Detroit. An area impacted by vehicular traffic had concentrations 8 μg m?3 higher than the average concentrations in other parts of Detroit in the winter due to the suspected suspension of road salt. PM10–2.5 Pearson Correlation Coefficients between monitoring locations varied from 0.03 to 0.76. All summer PM10–2.5 correlations were greater than 0.28 and statistically significant (p-value < 0.05). Winter PM10–2.5 correlations greater than 0.33 were statistically significant (p-value < 0.05). The PM10–2.5 correlations found to be insignificant were associated with the area impacted by mobile sources during the winter. The suspected suspension of road salt from the Southfield Freeway, combined with a very stable atmosphere, caused concentrations to be greater in this area compared to other areas of Detroit. These findings indicated that PM10–2.5, although correlated in some instances, varies sufficiently across a complex urban airshed that that a central monitoring site may not adequately represent the population's exposure to PM10–2.5.  相似文献   

14.
Two bacterial tests employing Photobacterieum phosphoreum (Microtox bioluminescence test) and Salmonella typhimurium TA 1535 pSK1002 (umu-assay) were evaluated to estimate the cytotoxic and genotoxic potential of water samples from the selected rivers in Germany as well as the primary and secondary effluents of some sewage treatment plants. Rainbow trout (Onchorynchus mykiss) were exposed to different concentrations (20-40%) of secondary effluent in the model online aquatic monitoring plant WaBoLu-Aquatox. The toxic potential of water samples from the exposure tanks was determined in two prokaryotic test systems and the biomarkers acethylcholinesterase (AChE) activity in muscle tissue and DNA unwinding assay in liver tissue of fish. Samples from the tested rivers showed no inhibition of the bioluminescence of P. phosphoreum or growth of umu-bacteria. Only primary effluent samples from the treatment plants at the Saale River inhibited the light emission or the growth of test bacteria by more than 20%. The induction ratio of umu-bacteria was in most of the river samples less than the threshold for genotoxicity (IR < 1.5). Only some samples from the Saale River, especially at sites downstream of secondary effluents caused genotoxic responses in the umu-assay. Samples of primary effluents contained the greatest genotoxic potential up to GEUI = 6 which was not detectable in samples of secondary effluents. A concentration range 20-40% secondary effluent inhibited AChE activity in muscle tissue and significantly increased DNA fragmentation in liver tissue of rainbow trout. In contrast, no cytotoxic or genotoxic responses in the umu-assay were caused by water samples. Both bacterial methods can be successfully used to analyse the cytotoxic and genotoxic response of industrial and domestic wastewater and to estimate the effectiveness of sewage treatment units. However, because of their low sensitivity and high susceptibility, they are not reliable as a single test for the detection of cytotoxicity and genotoxicity in surface water. The application of prokaryotic tests systems with biomarkers such as AChE activity and DNA fragmentation in different tissues of test organisms seems to be a useful combination for the assessment of cytotoxic and genotoxic potential in surface water and secondary effluent.  相似文献   

15.
Lang Q  Zhang Q  Jaffé R 《Chemosphere》2002,47(4):427-441
Atmospheric particulate matter and both wet and dry deposition was collected over a period of nine months at one location in the metropolitan area of Miami, Florida. Molecular distributions and concentrations of n-alkanes, fatty acids, polycyclic aromatic hydrocarbons (PAHs) and hopanes were determined using weekly composite samples over this time period in order to determine temporal variability, and their possible dependence on climatic parameters such as temperature, rainfall and wind direction and frequency. Based on molecular distributions of the compounds studied, potential emission sources for the atmospheric particles were assessed and suggested to be mainly derived from automobile exhaust and natural sources. Although wet and dry deposition processes were observed to remove about equal amounts of organic aerosols from the Miami atmosphere, dry deposition was dominant in the removal of anthropogenically derived compounds such as PAHs and hopanes. Only very limited seasonal trends were observed, while wind direction and frequency was found to be the most important meteorological parameter controlling the temporal variability of the organic aerosols. This is the first detailed report of this nature for the Miami area.  相似文献   

16.
Aerosol water content (AWC) of urban atmospheric particles was investigated based on the hygroscopic growth measurements for 100 and 200 nm particles using a hygroscopicity tandem differential mobility analyzer in Sapporo, Japan in July 2006. In most of the humidogram measurements, presence of less and more hygroscopic mode was evident from the different dependence on relative humidity (RH). The volume of liquid water normalized by that of dry particle (Vw(RH)/Vdry) was estimated from the HTDMA data for 100 and 200 nm particles. The RH dependence of Vw(RH)/Vdry was well represented by a fitted curve with a hygroscopicity parameter κeff. The κeff values for 200 nm particles were in general higher than those for 100 nm particles, indicating a higher hygroscopicity of 200 nm particles. Based on the κeff values, the volume mixing ratios of water-soluble inorganic compounds (ammonium sulfate equivalent) were estimated to be on average 31% and 45% for 100 and 200 nm particles, respectively. The diurnal variation of κeff, with relatively higher values in the noontime and nighttime and lower values in the morning and evening hours, was observed for both particle sizes. The Vw(RH)/Vdry values under ambient RH conditions were estimated from κeff to range from 0.05 to 2.32 and 0.06 to 2.43 for 100 nm and 200 nm particles, respectively. The degree of correlation between κeff and Vw(RH)/Vdry at ambient RH suggests a significant contribution of the variation of κeff to atmospheric AWC in Sapporo.  相似文献   

17.
To delineate the character of contaminations in the Grand Canal, China, a three-year study (2004-2006) was conducted to investigate variations the water quality in the canal. Results showed that the variation of water quality within the Grand Canal was of there is remarkable spatial and seasonal heterogeneity regarding water quality within the Canal. Values of contaminants in dry-season were obviously higher than those in wet-season. Sites influenced strongly by industry and urbanization showed higher contents of nutrients and lower levels of dissolved oxygen in water body; moreover these sites were severely polluted by dissolved metals with the contents of cadmium, chromium and copper exceeding the Criteria Maximum Concentration (CMC), US EPA. Multivariate statistical analysis suggested nutrient and dissolved metals pollution was the dominant environmental problems within the Canal. Anthropogenic influences played a dominant role in the character of contaminations in the Grand Canal.  相似文献   

18.
New data on trace metal distribution in bottom sediments of Peter the Great Bay (the Sea of Japan) are presented. Much higher concentrations were detected near the most likely anthropogenic sources of trace metal inputs (waste water discharges from Vladivostok and Nakhodka, and the Vladivostok coastal landfill). Sediments in these contaminated areas were up to 700 ppm in Zn, 530 ppm in Pb, 7 ppm in Cd and 3 ppm in Hg. River runoff is of minor importance as a metal source in the investigated areas. The spatial distribution of trace metals outside the areas directly influenced by sewage discharges is regulated by natural processes such as sediment sorting by grain size. Based on radiometric dating of sediment cores, increases in the trace metal content of bottom sediments near Vladivostok begun in approximately 1945.  相似文献   

19.
Data from the U.S. Environmental Protection Agency Air Quality System, the Southeastern Aerosol Research and Characterization database, and the Assessment of Spatial Aerosol Composition in Atlanta database for 1999 through 2002 have been used to characterize error associated with instrument precision and spatial variability on the assessment of the temporal variation of ambient air pollution in Atlanta, GA. These data are being used in time series epidemiologic studies in which associations of acute respiratory and cardiovascular health outcomes and daily ambient air pollutant levels are assessed. Modified semivariograms are used to quantify the effects of instrument precision and spatial variability on the assessment of daily metrics of ambient gaseous pollutants (SO2, CO, NOx, and O3) and fine particulate matter ([PM2.5] PM2.5 mass, sulfate, nitrate, ammonium, elemental carbon [EC], and organic carbon [OC]). Variation because of instrument imprecision represented 7-40% of the temporal variation in the daily pollutant measures and was largest for the PM2.5 EC and OC. Spatial variability was greatest for primary pollutants (SO2, CO, NOx, and EC). Population-weighted variation in daily ambient air pollutant levels because of both instrument imprecision and spatial variability ranged from 20% of the temporal variation for O3 to 70% of the temporal variation for SO2 and EC. Wind  相似文献   

20.
Polecats (Mustela putorius) in Britain are currently expanding their range eastwards from Wales to reoccupy central and eastern areas of England. Second-generation anticoagulant rodenticides (SGARs), to which polecats are exposed by eating contaminated prey, are used more extensively in these central and eastern regions, leading to fears of increased exposure, and possible resultant mortality. We measured bromadiolone, difenacoum, flocoumafen and brodifacoum concentrations in the livers of 50 polecats from areas that included newly recolonised habitats and found that at least one SGAR was detected in the livers of 13 out of 37 (35.1%) male and 5 out of 13 (38.5%) female polecats. Difenacoum and bromadiolone were detected most frequently. We then combined these data with measurements on another 50 individuals from earlier studies to create a dataset for 100 polecats collected throughout the 1990s from across the whole of their current range. Using this dataset, we determined if there was any evidence that contamination in polecats had increased during the 1990s and whether animals from England were more contaminated than those from Wales, as might be expected given regional differences in the patterns of SGAR use. Overall, 31 of the 100 polecats analysed to date contained SGAR residues. The incidence was a little higher (40%) in animals that died between January and June and this probably better reflects the overall proportion of animals that are sub-lethally exposed. There was no statistically significant change during the 1990s in the proportion of polecats exposed to SGARs nor any evidence that greater use of SGARs in England resulted in more contamination of polecats. Contrary to expectation, the proportion of animals that contained difenacoum was marginally higher in Wales than elsewhere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号