首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Respiration rates and elemental composition (carbon and nitrogen) were determined for four dominant oncaeid copepods (Triconia borealis, Triconia canadensis, Oncaea grossa and Oncaea parila) from 0–1,000 m depth in the western subarctic Pacific. Across the four species of which dry weight (DW) varied from 2.0 to 32 μg, respiration rates measured at in situ temperature (3°C) increased with DW, ranging from 0.84 to 7.4 nl O2 individual−1 h−1. Carbon (C) and nitrogen (N) composition of the four oncaeid species ranged from 49–57% of DW and 7.0–10.3% of DW, respectively, and the resultant C:N ratios were 4.8–8.3. The high C contents and C:N ratios were reflected by large accumulation of lipids in their body. Specific respiration rates (SR, a fraction of body C respired per day) ranged between 0.5 and 1.3% day−1. Respiration rates adjusted to a body size of 1 mg body N (i.e. adjusted metabolic rates, AMR) of the four oncaeid species [0.6–1.1 μl O2 (mg body N)−0.8 h−1 at 3°C] were significantly lower than those (1.7–5.1) reported in the literature for oithonid and calanoid copepods at the same temperature. The present results indicate that lower metabolic expenditure due to less active swimming (pseudopelagic life mode) together with rich energy reserve in the body (as lipids) are the characters of oncaeid copepods inhabiting in the epi- and mesopelagic zones of this region.  相似文献   

2.
Two species of salps, Salpa thompsoni and Ihlea racovitzai, were sampled during three cruises to the Lazarev Sea, Southern Ocean, in summer (December–January) 2005/2006, Autumn (April–May) 2004 and Winter (July–August) 2006. Dry weight, carbon, nitrogen, protein, lipid and carbohydrate contents were measured to characterize the potential value of salps as a food source for predators in the Antarctic ecosystem. Biochemical composition measurements showed that despite having a high percentage of water (~94% of wet weight), both species had relatively high carbon and protein contents in their remaining dry weight (DW). In particular I. racovitzai showed high carbon (up to 22% of DW) and protein (up to 32% of DW) values during all seasons sampled, compared to lower values for S. thompsoni (carbon content only about 15% of the DW, protein content about 10% of the DW). At the same time, carbohydrates (CH) and lipids (Lip) only accounted for a small portion of salp DW in both species (1.4% CH and 3.6% Lip for I. racovitzai; 2.1% CH and 2.9% Lip for S. thompsoni). There was little variability in the biochemical composition of either salp species between the seasons sampled. Both biochemical composition and life cycle characteristics suggest that Antarctic salps, especially I. racovitzai, may be important prey items for both cold and warm-blooded predators in an environment where food is often very scarce.  相似文献   

3.
Detailed determination of Salpa thompsoni elemental composition has been carried out on specimens collected in the Eastern Bellingshausen Sea and at the northern edge of the Weddell Gyre during austral autumn (April and May) of 1996 and 2001. More than 170 Antarctic tunicates S. thompsoni were analysed to determine wet weight (WW), dry weight (DW), ash-free dry weight (AFDW) and elemental composition (C, N content, proteins, carbohydrates and lipids) of different sizes and stages. Dry weight comprised 6.4% (aggregate form) to 7.7% (solitary form) of the WW. AFDW amounted to ~44% of the DW. Carbon and nitrogen contents (Carbon: 17–22%, Nitrogen: 3–5% of the DW) of both aggregate and solitary forms were found to be high relative to data reported in the literature. Although some unidentified organic compounds are not included in our carbon budget, the findings of this study show higher than previously reported nutritional values of S. thompsoni. In spite of this, a shift from a krill-dominated towards a salp-dominated ecosystem would have dramatic consequences for organisms at higher trophic levels.  相似文献   

4.
Dry weight, total carbon, hydrogen and nitrogen contents were studied in Anomalocera patersoni, Pontella mediterranea, P. lo biancoï and Labidocera wollastoni as a function of sex and developmental stage. 629 individuals were analysed over the year. Protein content was calculated from the nitrogen values, and results are presented as percent dry weight. C:H and C:N ratios were also determined. The lowest contents of carbon (32.4%) and nitrogen (9.3%) were determined for female L. wollastoni, the highest carbon content (43.3%) for female P. lo biancoï, and the highest nitrogen content (11.5%) for female P. lo biancoï and male A. patersoni. This range agrees with the data in the literature for marine copepods. According to available data on biochemical composition of zooplankton in relation to depth, the Pontellidae contain a high amount of proteins. The carbon:nitrogen ratio displays great stability within a species, indicating a constant elementary composition during development from copepodite to adult. Nevertheless, there is a statistically significant discrepancy between the C:N ratios for A. patersoni and P. mediterranea which is due to a higher rate of increase in carbon content in A. patersoni. As a whole, interspecific variations were small (C:N ranged between 3.4 and 3.8) compared to those recorded in true planktonic species. This appears to be an important characteristic of the Pontellidae, in contrast with other, more widely distributed copepods, and probably is related to the peculiarities of their biotope, the ultrasuperficial layer.  相似文献   

5.
T. Ikeda  B. Bruce 《Marine Biology》1986,92(4):545-555
Oxygen uptake and ammonia excretion rates, and body carbon and nitrogen contents were measured in krill (Euphausia superba) and eight other zooplankton species collected during November–December 1982 in the Prydz Bay, Antarctica. From these data, metabolic O:N ratios (by atoms), body C:N ratios (by weight) and daily metabolic losses of body carbon and nitrogen were calculated as a basis from which to evaluate seasonal differences in metabolism and nutritional condition. Comparison of the present data with mid-summer (January) data revealed that early-summer E. superba were characterized by higher metabolic O:N ratios (58.7 to 103, compared with 15.9 to 17.5 for mid-summer individuals). Higher O:N ratios of early-summer E. superba resulted largely from reduced ammonia excretion rates and, to a lesser degree, from slightly increased oxygen uptake rates. Body C:N ratios of E. superba were low in early-summer (3.8 to 4.2) compared with mid-summer krill (4.1 to 4.7) due to lowered body-carbon contents in the former (42.6 to 43.6% compared with 43.2 to 47.5% dry weight of midsummer individuals); gravid females formed an exception, since no seasonal differences in body elemental composition were detected for these. No significant changes in water content (75.3 to 81.4% wet wt) and nitrogen content (9.9 to 11.1% dry wt) in E. superba were evident between the two seasons. Seasonal differences in metabolic rates and elemental composition were less pronounced in a salp (Salpa thompsoni), but a higher metabolic O:N ratio occurred in early-summer individuals. Interspecific comparison of the seven remaining zooplankton species studied with twelve species from mid-summer zooplankton investigated in an earlier study indicated that higher metabolic O:N ratios in early-summer are characteristic not only of herbivore/filter-feeders, but also of some carnivores/omnivores. No relationship between metabolic O:N ratios and body C:N ratios was apparent either intraspecifically or interspecifically, within or between early-summer and mid-summer seasons.  相似文献   

6.
The carbon, nitrogen and hydrogen contents of Sphaeroma hookeri Leach were studied during the growth of mature individuals in five populations around the Etang de Berrc (Bouches du Rhône, France). Analysis were performed with a Perkin Elmer elementary analyzer which is very successful with small samples. The carbon, nitrogen and hydrogen contents show an allometric relation with the dry weight of S. hookeri. A comparative study of the increase in C, N and H contents in males and females reveals a sexual biochemical dimorphism at the elementary level in all populations. This sexual biochemical dimorphism proceeds from organic and inorganic differences: ash content is greater in males and shows a greater growth coefficient, while C, N and H contents are greater and show a higher growth coefficient in females. This organic growth in females seems to be related to the vitellogenous function.  相似文献   

7.
Ranina ranina larvae were reared at 29°C from hatching to the megalopa stage to measure daily changes in body weight, water content and elemental composition. Energy, estimated from carbon content, was also examined. The water content was 85 to 92% of body weight immediately after ecdysis but decreased with days after ecdysis. Gains in body weight, carbon, nitrogen, hydrogen and energy during each instar ranged from 52 to 245% and increased with instar after instar II (body weight and carbon), instar III (hydrogen and energy), and instar IV (nitrogen). Cumulative gains of these elements from hatching to 2 d before metamorphosis into megalopa ranged from 11 567% (carbon) to 12 209% (energy). Most cumulative gains (57 to 59%) in elemental composition were contributed by instar VII. Carbon, nitrogen and hydrogen content in body weight decreased to a minimum on the day of ecdysis and increased on the subsequent days. C:N ratios after instar IV were lowest on the day after ecdysis and reached a plateau by the second day. Energy, estimated as J mg-1 dry weight (DW), decreased with instar and within a molt cycle, and was at a minimum on the day after ecdysis. Gains in elemental composition could be described by an exponential function of days after hatching and by a quadratic function in each instar.  相似文献   

8.
Adult zebraperch, Hermosilla azurea, were found to be functional herbivores in that animal matter constituted <0.01% of the total dry weight of stomach contents of fish collected off Santa Catalina Island in southern California waters. The diet of these fish consisted mainly of red algae (88.2% by dry wt) and also small amounts of brown (7.8%) and green (4.0%) algae. The most important dietary item, the filamentous red algae Polysiphonia spp., was found in >78% of the stomachs and comprised >60% of the contents by dry weight. The digestive tract was long, on average 4.0 times the standard length of the fish, and was composed of the stomach, pyloric caeca, intestine, hindgut chamber with a blind caecum, and rectum. The mean pH of the cardiac stomach was acidic (3.9), whereas that of the intestine was nearly neutral (6.9) and that of the hindgut and blind caecum slightly acidic (6.3 and 6.6, respectively). Algal foods are apparently digested by acid lysis in the stomach and by microbial fermentation in the hindgut. Zebraperch assimilated nutritional constituents from six species of algae with varying degrees of efficiency: carbon (73.7 to 89.7%), nitrogen (72.4 to 84.5%), and protein (71.9 to 94.9%). The fish assimilated these constituents as efficiently or more efficiently from three species of nondietary brown algae as from three species of dietary red and green algae. These results show that zebraperch, like their tropical and subtropical relatives (members of the genus Kyphosus), can digest a wide variety of algae including brown algae containing defensive secondary compounds. Received: 3 November 1997 / Accepted: 19 June 1998  相似文献   

9.
T. Ikeda 《Marine Biology》1990,107(3):453-461
The abundance and vertical distribution pattern of a halocyprid ostracod,Conchoecia pseudodiscophora, were investigated in the Japan Sea in 1985, 1987 and 1989. Vertical sampling from 500 m depth to the surface in the water around Yamato Rise revealed that this ostracod was second in dominance by number and third to fourth by biomass of the total zooplankton collected with a 0.35 mm mesh Norpac net. Horizontal net tows in Toyama Bay indicated that the major population ofC. pseudodiscophora was distributed below 250 to 300 m depth. No diel migration pattern was evident. Its contribution to total zooplankton there was 5 to 10% or more in terms of biomass. A total of five subadult instars (II to VI) and adult males and females were identified from instar analysis based on sizes and morphological characteristics of specimens collected with 0.10 mm mesh Norpac nets. Data on body length, wet weight and dry weight of each instar are presented. Carbon content of 35 to 48% of dry weight, and nitrogen content of 5.3 to 7.3% of dry weight, were recorded on fresh, freeze-dried specimens of selected instars (subadult Instars IV to VI, adult females). Water and ash contents of mixed specimens of these four instars were 76% of wet weight and 25% of dry weight, respectively. Feasibility of laboratory maintenance ofC. pseudodiscophora was tested, and it produced characteristic J shaped faecal pellets. Oxygen consumption rates of subadult instars V and VI, and adult female ranged 0.011 to 0.021µl O2 ind.–1 h–1 at 1 °C, or 2.9 to 6.1µl O2 (mg body N)–0.85 h–1 in terms of Adjusted Metabolic Rate (AMRo 2). There was no appreciable metabolic reduction inC. pseudodiscophora compared to other ostracods, despite their mesopelagic life mode. Subdominance in total zooplankton and nonreduced metabolic activity ofC. pseudodiscophora suggest that this species may be an important link in mesopelagic energy-flow and matter cycling in the Japan Sea.  相似文献   

10.
Rates of oxygen consumption, ammonia excretion and phosphate excretion were measured on a hydromedusae (Aglantha digitale), pteropods (Limacia helicina, Clione limacina), copepods (Calanus finmarchicus, C. glacialis, C. hyperboreus, Metridia longa), an amphipod (Parathemisto libellula), a euphausiid (Thysanoessa inermis) and a chaetognath (Sagitta elegans), all of which were dominant species in the Barents Sea during early summer 1987. Water and ash contents and elemental composition (C and N) were also analysed on the specimens used in these metabolic experiments. Between species variations were 67.8% to 94.7% of wet weight in water content, 6.4% to 56.5% of dry weight in ash content, 16.7% to 61.0% of dry weight in carbon content, and 4.3% to 11.2% of dry weight in nitrogen content. Oxygen consumption rates ranged from 0.33 to 13.8 l O2 individual-1 h-1, ammonia excretion rates, from 0.0072 to 0.885 gN individual-1 h-1 and phosphate excretion rates, from 0.0036 to 0.33 g P individual-1 h-1. In general, higher rates were associated with larger species, but considerable differences were also seen between species. The ratios between the rates (O : N, N : P, O : P) exhibited a wide species-specific variation, indicating differences in dominant metabolic substrates. Typical protein oriented metabolism was identified only in S. elegans. From the results of metabolic rate measurements and elemental analyses, daily losses of body carbon and nitrogen were estimated to be 0.50 to 4.15% and 0.084 to 1.87%, respectively, showing faster turnover rates of carbon than that of nitrogen. Comparison of daily loss of body carbon of the Barents Sea zooplankton with that of the Antarctic zooplankton indicated reduced rates of the former (63% on average).  相似文献   

11.
No differences in development time and mortality were detected between starved and fed laboratory raised megalopa of Pagurus bernhardus. The average time of development in 138 megalopa was determined as 7.3±0.1 (95% CI) days. During megalopa development P. bernhardus loses about 7% in dry weight (DW), 17% in carbon (C), 6% in nitrogen (N) and 17% in hydrogen (H). During development C/N ratio and individual energy content descend about 14 and 22% respectively. Weight specific energy content decreases by 17% in the first 3 d and remains constant at 12.3±0.3 (95% CI) J·(mg DW)-1 thereafter. About another 25% in individual energy content was lost by molting to crabs. The measured compounds do not follow a steady decrease. The possibility is discussed that a period of low energy cost (about the first half of development) alternates with times of higher energy expenditure mainly based on lipids. A fixed physiological program different from starvation capability is indicated for P. bernhardus megalopae. By comparing megalopae hatched in two different seasons and years reference is given to the variability in growth pattern.  相似文献   

12.
At the inter-specific level, per offspring investment (POI), degree of abbreviated development, and lecithotrophic potential all increase with increasing latitude and freshwater penetration among crustaceans. These traits are considered adaptations to conditions of decreasing growth potential. We hypothesise that this relationship between POI and abbreviated development also occurs at the intra-specific level. We studied the caridean shrimp, Palaemonetes varians, to investigate the hypothesis that under food-limited conditions, higher POI enables development through fewer larval instars. Under starvation stress, larvae from broods of greater POI (measured as hatchling brood average dry weight, DW) generally developed through fewer larval instars. With increasing starvation period, larval development time increased, whilst larval growth rate, juvenile DW, juvenile carbon mass, and juvenile carbon:nitrogen (C:N) ratio all decreased. Larval development time generally decreased with increasing brood average dry weight. In contrast, larval growth rate, juvenile DW, juvenile carbon mass, and juvenile C:N ratio all increased with increasing larval brood average DW. The relationship between POI and larval instar number (abbreviation of development) reported here is consistent with that at the inter-specific level and supports the concept that macro-ecological trends in development modes at the inter-specific level may be driven by selection occurring on POI at the intra-specific level.  相似文献   

13.
Spatial and seasonal distribution pattern, life history and production of three species of Neomysis (Mysidacea) which commonly occur in northwestern subarctic Pacific coastal waters, were investigated throughout the year in the Akkeshi-ko estuary, northern Japan. The most abundant species Neomysis awatschensis (annual mean density: 179.8 inds. m−2, biomass: 108.8 mg DW m−2) occurred at the inner part of the estuary including low salinity areas with no clear preference for the seagrass bed. The second most abundant Neomysis mirabilis (mean density: 95.8 inds. m−2, biomass: 90.1 mg DW m−2) occurred at relatively saline seagrass site throughout the year. Occurrence of Neomysis czerniawskii in the estuary was limited to the seagrass bed during summer when their population mainly consisted of juveniles, suggesting that this species is a seasonal migrant between the estuary and the marine environment. Both N. awatschensis and N. mirabilis populations were composed of two generation types, a larger sized overwintering and smaller sized spring/summer generations; however, each species had a different reproductive strategy. N. awatschensis was characterized by fast growth to maturity at a smaller size than N. mirabilis with a relatively high fecundity during warm season, suggesting that this species is an r-strategist which can utilize opportunistically a wide variety of habitats. In contrast, the seagrass bed resident N. mirabilis was a K-strategist which matures at a larger size producing fewer but larger offspring. The annual production of N. awatschensis (0.57–0.70 g DW m−2, mean of the whole estuary) and N. mirabilis (0.58–0.68 g DW m−2, mean of the seagrass bed) at their respective habitats was comparable. Consequently, species-specific life history and distribution pattern are concluded to allow Neomysis spp. to coexist in the estuary and the high carrying capacity of seagrass bed is suggested to contribute to maintain their high biomass level.  相似文献   

14.
A comparative study of the elementary chemical composition (C, H, N) of Pontella mediterranea (males, females and copepodites) was carried out in two series: in Series 1, live copepods were briefly rinsed with distilled water, dried for one night (12 h) at 60°C, and then stored in a desiccator; in Series 2, the copepods were preserved in a 5% formalin-freshwater solution neutralized with borax; they were then rinsed with distilled water, and subsequently dried and stored in a desiccator as in Series 1. The results reveal that the dry weight of preserved copepods (Series 2) is 20 to 25% less than that of fresh, dried individuals. Carbon loss was estimated as about 10% in males and 17% in females, hydrogen loss as 14% in males and 23% in females, and nitrogen loss as 20% in males and 21% in females. The organic compounds lost seem to be mainly proteinaceous. Nevertheless, relative carbon content expressed as percent dry weight, and C:N and C:H ratios were all significantly higher in the preserved specimens. These results are compared with literature data on two other crustancean species.  相似文献   

15.
Wet and dry weight, total carbon, nitrogen, hydrogen, and ash contents were determined on 33 species of zooplankton distributed predominantly in the open sea region of the North Pacific. Sampling covered the waters from 44°N to the equator. Average percentage of dry weight to wet weight was about 19% of all samples from the whole area. Percentage dry weight of carbon in copepods was on an average 51.5%. The highest value, 66.6%, was obtained in eggs of the copepod Pareuchaeta sarsi. Mixed zooplankton was assumed to contain carbon comprising about 35 to 45% of the dry weight. Carbon contained in the zooplankton biomass existing in the upper 200 m in the western parts of the northern North Pacific and Bering Sea during spring and summer was estimated to range from 20 to 85 mg C/m3. Nitrogen content varied considerably with localities. Average ratio of carbon to nitrogen was 8.5 in subarctic copepods, and 4.1 in subtropic-tropic copepods. This ratio also varied with season. In the copepod Calanus cristatus the ratio was highest (10.0) in May, immediately after the spring bloom of phytoplankton, when the animals contained much fat. The ratio fell to 5.1 in December. There seemed to be a large seasonal variation in boreal zooplankton due to great fluctuations of environmental conditions, especially the amount of food available; in tropical species the range was small because of environmental uniformity. Average hydrogen content was about 6 to 10%. The percentage of ash to dry weight amounted to 39.3% in pteropods and 3.4% in copepods.  相似文献   

16.
The potentials of tropical weeds namely, Nephrolepis biserrata, Panicum maximum, Eleusine indica, and Chromolaena odorata to accumulate lead (Pb) and cadmium (Cd) from soil within the premises of an automobile battery manufacturing company in Ota, south-western Nigeria, were explored. The weed samples were collected in both wet and dry seasons. Standard analytical methods were employed to collect, digest, and analyze the weeds. Lead levels in the weeds for both seasons ranged from 1990–4870, 1090–1730, 4800–7890, and 400–1210 µg g?1 dry weight (DW) for Nephrolepis biserata, Panicum maximum, Eleusine indica, and Chromolaena odorata, respectively, while the cadmium level in the weeds for both seasons ranged from 3.92–6.78 µg g?1 DW for N. biserata, 1.99–6.85 µg g?1 DW for P. maximum, 2.90–7.40 µg g?1 DW for E. indica, and 2.90–5.09 µg g?1 DW for C. odorata. There was no significant difference in the accumulation of both Pb and Cd for the two seasons. All the weeds showed Pb levels higher than the phytotoxic range. On the contrary, 99% of the weeds showed Cd concentration within the phytotoxic range. The weeds demonstrate good phytoremediation potentials of contaminated soil.  相似文献   

17.
The critical nitrogen concentration of Codium fragile ssp. tomentosoides (van Goor) Silva was 1.90% on a dry weight basis. Internal nitrogen levels of thalli collected from three Rhode Island populations ranged from 0.75±0.08 to 3.72±0.08%. Internal nitrogen content was minimal in summer and maximal in winter, indicating nitrogen limitation during the summer and nitrogen storage during the winter. Part of this nitrogen storage appeared to support new growth of C. fragile in the spring. Carbon:nitrogen (C:N) ratios were inversely related to the internal nitrogen concentration. Low internal nitrogen content indicated nitrogen limitation better than C:N ratios because the C:N ratio could be influenced by both carbon and nitrogen metabolism.  相似文献   

18.
Metabolism [respiratory oxygen consumption, electron-transfer-system (ETS) activity] and body composition [water, ash, carbon (C), nitrogen (N), carbon/nitrogen (C/N) ratio] of stage C5/C6 Neocalanus cristatus from 1000 to 2000 m depth of the Oyashio region, western subarctic Pacific, were determined during the period of July 2000 through June 2003. Compared with the C5 specimens from shallow depths (<250 m), those from 1000 to 2000 m were characterized by quiescent behavior, reduced respiration rates (30% of the rates at active feeding), very low water content (61–70% of wet weight), but high C content (56–64% of dry weight) and C/N ratios (7.2–10.6, by weight). Artifacts due to the recovery of live specimens from the bathypelagic zone appeared to be unlikely in this study, as judged by the consistent results between re-compression (100 atm) and non-compression (1 atm) respiration experiments, and between ETS activities and respiration rates directly measured. In addition, the respiration rates of C6 males and females of N. cristatus from the same 1000–2000 m depth were two to three times higher than the rates of C5 individuals, but were similar to the rates of a bathypelagic copepod, Paraeuchaeta rubra. Combining these results with literature data, C budgets of: (1) diapausing C5 specimens, weighing 6–10 mg dry weight; (2) molt to C6 females; and (3) the complete the life span were established, taking into account assorted losses in respiration during diapause at stages C5 and C6, molt production and egg production. Respiratory C losses by C5 and C6 specimens were estimated on the basis of body N as adjusted metabolic rates [AMR; µl O2 (mg body N)–0.843 h–1], then N budgets were also computed subtracting N lost in the form of cast molts and eggs from the initial stock. Calculations revealed that allocation of the C stock was greatest to egg production (34–57%), followed by respiration (27%) and cast molts (3%), leaving residual C of 13–36% in spent C6 females. The present results for N. cristatus from the North Pacific are compared with those of Calanus spp. in the North Atlantic.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

19.
The number, size, and carbon and nitrogen contents of eggs in the pouches of a euphausiid crustacean, Nematoscelis difficilis Hansen, were examined. A clear linear relationship exists between the number of eggs in the pouch and the body weight of the maternal euphausiid. The eggs are not spherical in shape, and the size of eggs is greater in larger egg masses. The carbon content of the egg masses (50.2%) is higher than that of the bodies (40.7%). The carbon: nitrogen ratio (C/N) is also higher in the egg masses than in the bodies of euphausiids. The carbon content of the eggs is equivalent to 28.4% of the body carbon, the nitrogen content to 19.2% of the body nitrogen.  相似文献   

20.
Eggs and larvae of the Senegal sole, Solea senegalensis Kaup, were reared from fertilization until the end of metamorphosis, which occurs by Day 17 after hatching at 19.5 °C. Changes in energy content and biomass quality were studied in terms of dry weight and of carbon, nitrogen and energy content. S. senegalensis spawned eggs of about 1 mm diameter which hatched 38 h after fertilization. Average dry weight of individual eggs was 46 μg, the chorion accounting for about 18% of total dry weight. Gross energy of recently fertilized sole eggs was approximately 1 J egg−1. From fertilization to hatching, eggs lost 8% of their total energy (chorion not included). After hatching, larvae lost 14% of their initial energy until the start of feeding which occurred about 48 h afterwards. The principal components catabolized during embryogenesis were carbon-rich compounds that decreased by 26%, while nitrogen-rich compounds decreased by only 10% and were practically unaltered from hatching to the start of feeding. Feeding larvae displayed constant growth during the period studied (specific growth rate on a dry weight basis was 0.26 d−1). The relative proportion of carbon and nitrogen content revealed an accumulation of high energy compounds in the days before metamorphosis. By Day 14, the energy content reached values similar to those of recently hatched embryos, but decreased again during metamorphosis. Received: 10 June 1998 / Accepted: 28 January 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号