首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
IntroductionThis study provides a systematic approach to investigate the different characteristics of weekday and weekend crashes.MethodWeekend crashes were defined as crashes occurring between Friday 9 p.m. and Sunday 9 p.m., while the other crashes were labeled as weekday crashes. In order to reveal the various features for weekday and weekend crashes, multi-level traffic safety analyses have been conducted. For the aggregate analysis, crash frequency models have been developed through Bayesian inference technique; correlation effects of weekday and weekend crash frequencies have been accounted. A multivariate Poisson model and correlated random effects Poisson model were estimated; model goodness-of-fits have been compared through DIC values. In addition to the safety performance functions, a disaggregate crash time propensity model was calibrated with Bayesian logistic regression model. Moreover, in order to account for the cross-section unobserved heterogeneity, random effects Bayesian logistic regression model was employed.ResultsIt was concluded that weekday crashes are more probable to happen during congested sections, while the weekend crashes mostly occur under free flow conditions. Finally, for the purpose of confirming the aforementioned conclusions, real-time crash prediction models have been developed. Random effects Bayesian logistic regression models incorporating the microscopic traffic data were developed. Results of the real-time crash prediction models are consistent with the crash time propensity analysis. Furthermore, results from these models would shed some lights on future geometric improvements and traffic management strategies to improve traffic safety.Impact on IndustryUtilizing safety performance to identify potential geometric improvements to reduce crash occurrence and monitoring real-time crash risks to pro-actively improve traffic safety.  相似文献   

2.
IntroductionThis study explored how drivers adapt to inclement weather in terms of driving speed, situational awareness, and visibility as road surface conditions change from dry to slippery and visibility decreases. The proposed work mined existing data from the SHRP 2 NDS for drivers who were involved in weather-related crash and near-crash events. Baseline events were also mined to create related metadata necessary for behavioral comparisons. Methods: Researchers attempted, to the greatest extent possible, to match non-adverse-weather driving scenarios that are similar to the crash and near-crash event for each driver. The ideal match scenario would be at a day prior to the crash during non-adverse weather conditions having the same driver, at the same time of day, with the same traffic level on the same road on which the crash or near-crash occurred. Once the matched scenarios have been identified, a detailed analysis will be performed to determine how a driver’s behavior changed from normal driving to inclement-weather driving. Results: Data collected indicated that, irrespective of site location (i.e., state), most crashes and near-crashes occurred in rain, with only about 12% occurring in snowy conditions. Also, the number of near-crashes was almost double the number of crashes showing that many drivers were able to avoid a crash by executing an evasive maneuver such as braking or steering. Conclusions: Most types of near crashes were rear-end and sideswipe avoidance epochs, as the drivers may have had a difficult time merging or trying to change lanes due to low visibility or traffic. Hard braking combined with swerving were the most commonly used evasive maneuvers, occurring when drivers did not adjust their speeds accordingly for specific situations. Practical applications: Results from this study are expected to be utilized to educate and guide drivers toward more confident and strategic driving behavior in adverse weather.  相似文献   

3.
IntroductionThe objective of this research is to investigate the effects of monthly weather conditions on traffic crash experience on freeways, considering the interactions between weather, traffic volumes, and roadway conditions. Methods: Data from the state of Connecticut from 2011to 2015 were used. Random parameters negative binomial models with first-order, autoregressive covariance were estimated for representative types of freeway crashes (front-to-rear, sideswipe-same-direction, and fixed-object), most severe crashes (i.e., fatal and injury crashes), and non-injury crashes (i.e., property-damage-only crashes). Results: Major findings are that variations in monthly traffic volumes, roadway geometry, and weather conditions explain much of the variations in monthly traffic crashes. Time effects exist in the panel monthly data for all types of crashes. Taking into account this effect improves model prediction results. When the raw weather measures are highly correlated, using dimension reduction techniques helps to extract more interpretable weather factors. By considering the interaction effects between roadway condition variables, additional findings were found. In general, lower temperature, more heavy fog days, decreased precipitation, lower wind speed, higher monthly traffic volumes, and narrower inside shoulder were found to be associated with higher monthly crashes. The effects of area type and outside shoulder width change dramatically as the number of through lanes changes. Practical applications: The findings of this research could help researchers and general readers gain a better understanding of the effects of monthly weather conditions and other roadway factors on freeway crashes and give engineers practical guidelines on improving freeway safety.  相似文献   

4.
Objective: Most of the extensive research dedicated to identifying the influential factors of hit-and-run (HR) crashes has utilized typical maximum likelihood estimation binary logit models, and none have employed real-time traffic data. To fill this gap, this study focused on investigating factors contributing to HR crashes, as well as the severity levels of HR.

Methods: This study analyzed 4-year crash and real-time loop detector data by employing hierarchical Bayesian models with random effects within a sequential logit structure. In addition to evaluation of the impact of random effects on model fitness and complexity, the prediction capability of the models was examined. Stepwise incremental sensitivity and specificity were calculated and receiver operating characteristic (ROC) curves were utilized to graphically illustrate the predictive performance of the model.

Results: Among the real-time flow variables, the average occupancy and speed from the upstream detector were observed to be positively correlated with HR crash possibility. The average upstream speed and speed difference between upstream and downstream speeds were correlated with the occurrence of severe HR crashes. In addition to real-time factors, other variables found influential for HR and severe HR crashes were length of segment, adverse weather conditions, dark lighting conditions with malfunctioning street lights, driving under the influence of alcohol, width of inner shoulder, and nighttime.

Conclusions: This study suggests the potential traffic conditions of HR and severe HR occurrence, which refer to relatively congested upstream traffic conditions with high upstream speed and significant speed deviations on long segments. The above findings suggest that traffic enforcement should be directed toward mitigating risky driving under the aforementioned traffic conditions. Moreover, enforcement agencies may employ alcohol checkpoints to counter driving under the influence (DUI) at night. With regard to engineering improvements, wider inner shoulders may be constructed to potentially reduce HR cases and street lights should be installed and maintained in working condition to make roads less prone to such crashes.  相似文献   


5.
IntroductionPrior research has shown the probability of a crash occurring on horizontal curves to be significantly higher than on similar tangent segments, and a disproportionally higher number of curve-related crashes occurred in rural areas. Challenges arise when analyzing the safety of horizontal curves due to imprecision in integrating information as to the temporal and spatial characteristics of each crash with specific curves.MethodsThe second Strategic Highway Research Program(SHRP 2) conducted a large-scale naturalistic driving study (NDS),which provides a unique opportunity to better understand the contributing factors leading to crash or near-crash events. This study utilizes high-resolution behavioral data from the NDS to identify factors associated with 108 safety critical events (i.e., crashes or near-crashes) on rural two-lane curves. A case-control approach is utilized wherein these events are compared to 216 normal, baseline-driving events. The variables examined in this study include driver demographic characteristics, details of the traffic environment and roadway geometry, as well as driver behaviors such as in-vehicle distractions.ResultsLogistic regression models are estimated to discern those factors affecting the likelihood of a driver being crash-involved. These factors include high-risk behaviors, such as speeding and visual distractions, as well as curve design elements and other roadway characteristics such as pavement surface conditions.ConclusionsThis paper successfully integrated driver behavior, vehicle characteristics, and roadway environments into the same model. Logistic regression model was found to be an effective way to investigate crash risks using naturalistic driving data.Practical ApplicationsThis paper revealed a number of contributing factors to crashes on rural two-lane curves, which has important implications in traffic safety policy and curve geometry design. This paper also discussed limitations and lessons learned from working with the SHRP 2 NDS data. It will benefit future researchers who work with similar type of data.  相似文献   

6.
Introduction: Road safety studies in signalized intersections have been performed extensively using annually aggregated traffic variables and crash frequencies. However, this type of aggregation reduces the strength of the results if variables that oscillate over the course of the day are considered (speed, traffic flow, signal cycle length) because average indicators are not able to describe the traffic conditions preceding the crash occurrence. This study aims to explore the relationship between traffic conditions aggregated in 15-min intervals and road crashes in urban signalized intersections. Method: First, an investigation of the reported crash times in the database was conducted to obtain the association between crashes and their precursor conditions. Then, 4.1 M traffic condition intervals were consolidated and grouped using a hierarchical clustering technique. Finally, charts of the frequency of crashes per cluster were explored. Results: The main findings suggest that high vehicular demand conditions are related to an increase in property damage only (PDO) crashes, and an increase in the number of lanes is linked to more PDO and injury crashes. Injury crashes occurred in a wide range of traffic conditions, indicating that a portion of these crashes were due to speeding, while the other fraction was associated with the vulnerability of road users. Traffic conditions with: (a) low vehicular demand and a long cycle length and (b) high vehicular demand and a short cycle length were critical in terms of PDO and injury crashes. Practical Applications: The use of disaggregated data allowed for a stronger evaluation of the relationship between road crashes and variables that oscillate over the course of the day. This approach also permits the development of real-time risk management strategies to mitigate the frequency of critical traffic conditions and reduce the likelihood of crashes.  相似文献   

7.
IntroductionVehicles in transport sometimes leave the travel lane and encroach onto natural or artificial objects on the roadsides. These types of crashes are called run-off the road crashes, which account for a large proportion of fatalities and severe crashes to vehicle occupants. In the United States, there are about one million such crashes, with roadside features leading to one third of all road fatalities. Traffic barriers could be installed to keep vehicles on the roadways and to prevent vehicles from colliding with obstacles such as trees, boulder, and walls. The installation of traffic barriers would be warranted if the severity of colliding with the barrier would be less severe than colliding with other fix objects on the sides of the roadway. However, injuries and fatalities do occur when vehicle collide with traffic barriers. A comprehensive analysis of traffic barrier features is lacking due to the absence of traffic barrier features data. Previous research has focused on simulation studies or only a general evaluation of traffic barriers, without accounting for different traffic barrier features.MethodThis study is conducted using an extensive traffic barrier features database for the purpose of investigating the impact of different environmental and traffic barrier geometry on this type of crash severity. This study only included data related to two-lane undivided roadway systems, which did not involve median barrier crashes. Crash severity is modeled using a mixed binary logistic regression model in which some parameters are fixed and some are random.ResultsThe results indicated that the effects of traffic barrier height, traffic barrier offset, and shoulder width should not be separated, but rather considered as interactions that impact crash severity. Rollover, side slope height, alcohol involvement, road surface conditions, and posted speed limit are some factors that also impact the severity of these crashes. The effects of gender, truck traffic count, and time of a day were found to be best modeled with random parameters in this study. The effects of these risk factors are discussed in this paper.Practical applicationsResults from this study could provide new guidelines for the design of traffic barriers based upon the identified roadway and traffic barrier characteristics.  相似文献   

8.
IntroductionThe effective treatment of road accidents and thus the enhancement of road safety is a major concern to societies due to the losses in human lives and the economic and social costs. The investigation of road accident likelihood and severity by utilizing real-time traffic and weather data has recently received significant attention by researchers. However, collected data mainly stem from freeways and expressways. Consequently, the aim of the present paper is to add to the current knowledge by investigating accident likelihood and severity by exploiting real-time traffic and weather data collected from urban arterials in Athens, Greece.MethodRandom Forests (RF) are firstly applied for preliminary analysis purposes. More specifically, it is aimed to rank candidate variables according to their relevant importance and provide a first insight on the potential significant variables. Then, Bayesian logistic regression as well finite mixture and mixed effects logit models are applied to further explore factors associated with accident likelihood and severity respectively.ResultsRegarding accident likelihood, the Bayesian logistic regression showed that variations in traffic significantly influence accident occurrence. On the other hand, accident severity analysis revealed a generally mixed influence of traffic variations on accident severity, although international literature states that traffic variations increase severity. Lastly, weather parameters did not find to have a direct influence on accident likelihood or severity.ConclusionsThe study added to the current knowledge by incorporating real-time traffic and weather data from urban arterials to investigate accident occurrence and accident severity mechanisms.Practical applicationThe identification of risk factors can lead to the development of effective traffic management strategies to reduce accident occurrence and severity of injuries in urban arterials.  相似文献   

9.
10.
Objective: Research on factors associated with motorcycle fatalities among active duty U.S. Army personnel is limited. This analysis describes motorcycle crash–related injuries from 1995 through 2014 and assesses the effect of alcohol use and helmet use on the risk of fatal injury among active duty U.S. Army motorcycle operators involved in a traffic crash, controlling for other factors shown to be potentially associated with fatality in this population.

Methods: Demographics, crash information, and injury data were obtained from safety reports maintained in the Army Safety Management Information System. Traffic crashes were defined as crashes occurring on a paved public or private roadway or parking area, including those on a U.S. Army installation. Analysis was limited to motorcycle operators. Odds ratios (ORs) and 95% confidence intervals (95% CIs) from a multivariable analysis estimated the effect of alcohol use and helmet use on the risk of a fatal injury given a crash occurred, controlling for operator and crash characteristics.

Results: Of the 2,852 motorcycle traffic crashes, most involved men (97%), operators aged 20–29 years of age (60%), and operators who wore helmets (95%) and did not use alcohol (92%). Two thirds of reported crashes resulted in injuries requiring a lost workday; 17% resulted in fatality. Controlling for operator and crash characteristics, motorcycle traffic crashes involving operators who had used alcohol had a 3.1 times higher odds of fatality than those who did not use alcohol (OR =3.14; 95% CI, 2.17–4.53). Operators who did not wear a helmet had 1.9 times higher odds of fatality than those who did wear a helmet (OR =1.89; 95% CI, 1.24–2.89).

Conclusions: Among U.S. Army motorcycle operators, alcohol use and not wearing a helmet increased the odds of fatality, given that a crash occurred, and additional modifiable risk factors were identified. Results will help inform U.S. Army motorcycle policies and training.  相似文献   

11.
Objective: The objective of this study was to identify the prevalence and potential risk factors of farm vehicle–related road traffic crashes among farm vehicle drivers in southern China.

Methods: A cross-sectional study was used to interview 1,422 farm vehicle drivers in southern China. Farm vehicle–related road traffic crashes that occurred from December 2013 to November 2014 were investigated. Data on farm vehicle–related road traffic crashes and related factors were collected by face-to-face interviews.

Results: The prevalence of farm vehicle–related road traffic crashes among the investigated drivers was 7.2%. Farm vehicle–related road traffic crashes were significantly associated with self-reported vision problem (adjusted odds ratio [AOR] = 6.48, 95% confidence interval [CI], 3.86–10.87), self-reported sleep disorders (AOR = 10.03, 95% CI, 6.28–15.99), self-reported stress (AOR = 20.47, 95% CI, 9.96–42.08), reported history of crashes (AOR = 5.40, 95% CI, 3.47–8.42), reported history of drunk driving (AOR = 5.07, 95% CI, 2.97–8.65), and reported history of fatigued driving (AOR = 5.72, 95% CI, 3.73–8.78). The number of road traffic crashes was highest in the daytime and during harvest season. In over 96% of farm vehicle–related road traffic crashes, drivers were believed to be responsible for the crash. Major crash-causing factors included improper driving, careless driving, violating of traffic signals or signs, and being in the wrong lane.

Conclusion: Findings of this study suggest that farm vehicle–related road traffic crashes have become a burgeoning public health problem in China. Programs need to be developed to prevent farm vehicle–related road traffic crashes in this emerging country.  相似文献   


12.
IntroductionThe occurrence of “secondary crashes” is one of the critical yet understudied highway safety issues. Induced by the primary crashes, the occurrence of secondary crashes does not only increase traffic delays but also the risk of inducing additional incidents. Many highway agencies are highly interested in the implementation of safety countermeasures to reduce this type of crashes. However, due to the limited understanding of the key contributing factors, they face a great challenge for determining the most appropriate countermeasures.MethodTo bridge this gap, this study makes important contributions to the existing literature of secondary incidents by developing a novel methodology to assess the risk of having secondary crashes on highways. The proposed methodology consists of two major components, namely: (a) accurate identification of secondary crashes and (b) statistically robust assessment of causal effects of contributing factors. The first component is concerned with the development of an improved identification approach for secondary accidents that relies on the rich traffic information obtained from traffic sensors. The second component of the proposed methodology is aimed at understanding the key mechanisms that are hypothesized to cause secondary crashes through the use of a modified logistic regression model that can efficiently deal with relatively rare events such as secondary incidents. The feasibility and improved performance of using the proposed methodology are tested using real-world crash and traffic flow data.ResultsThe risk of inducing secondary crashes after the occurrence of individual primary crashes under different circumstances is studied by employing the estimated regression model. Marginal effect of each factor on the risk of secondary crashes is also quantified and important contributing factors are highlighted and discussed.Practical applicationsMassive sensor data can be used to support the identification of secondary crashes. The occurrence mechanism of these secondary crashes can be investigate by the proposed model. Understanding the mechanism helps deploy appropriate countermeasures to mitigate or prevent the secondary crashes.  相似文献   

13.
Introduction: Daylight saving time (DST), implemented as an energy saving policy, impacts many other aspects of life; one is road safety. Based on vehicle crash data in Minnesota from 2001 to 2007, this paper evaluates long- and short-term effects of DST on daily vehicle crashes. Method: To provide evidence to explain the causes of more/fewer crashes in DST, we examine the impact of DST on crashes in four periods of a day: 3 a.m.-9 a.m., 9 a.m.-3 p.m., 3 p.m.-9 p.m., 9 p.m.-midnight. The effects of risk and exposure to traffic are also separated. Our statistical models not only include weather conditions and dummy variables for days in DST as independent variables, but also consider traffic volumes on major roads in different periods of a day. Our major finding is that the short-term effect of DST on crashes on the morning of the first DST is not statistically significant. Moreover, it is interesting to notice that while DST per se is associated with fewer crashes during dusk, this is in part offset because it is also associated with more traffic on roads (and hence more crashes). Our path analysis shows that overall DST reduces crashes. Impact on industry: Daylight saving time can lead to fewer crashes on roads by providing better visibility for drivers.  相似文献   

14.
IntroductionRoadway departure (RwD) crashes, comprising run-off-road (ROR) and cross-median/centerline head-on collisions, are one of the most lethal crash types. According to the FHWA, between 2015 and 2017, an average of 52 percent of motor vehicle traffic fatalities occurred each year due to roadway departure crashes. An avoidance maneuver, inattention or fatigue, or traveling too fast with respect to weather or geometric road conditions are among the most common reasons a driver leaves the travel lane. Roadway and roadside geometric design features such as clear zones play a significant role in whether human error results in a crash. Method: In this paper, we used mixed-logit models to investigate the contributing factors on injury severity of single-vehicle ROR crashes. To that end, we obtained five years' (2010–2014) of crash data related to roadway departures (i.e., overturn and fixed-object crashes) from the Federal Highway Administration's Highway Safety Information System Database. Results: The results indicate that factors such as driver conditions (e.g., age), environmental conditions (e.g., weather conditions), roadway geometric design features (e.g., shoulder width), and vehicle conditions significantly contributed to the severity of ROR crashes. Conclusions: Our results provide valuable information for traffic design and management agencies to improve roadside design policies and implementing appropriately forgiving roadsides for errant vehicles. Practical applications: Our results show that increasing shoulder width and keeping fences at the road can reduce ROR crash severity significantly. Also, increasing road friction by innovative materials and raising awareness campaigns for careful driving at daylight can decrease the ROR crash severity.  相似文献   

15.
16.
Objective: The objectives of the present article were to (a) describe the main characteristics of bicycle crashes with regard to the road environment, crash opponent, cyclist, and crash dynamics; (b) compare individuals who describe their health after the crash as declined with those who describe their health as not affected; and (c) compare the number of injured cyclists who describe their health as declined after the crash with the predicted number of permanent medical impairments within the same population.

Methods: A sample of individuals with specific injury diagnoses was drawn from the Swedish Traffic Accident Data Acquisition (STRADA) database (n?=?2,678). A survey form was used to collect additional information about the crash and the health-related outcomes. The predicted number of impaired individuals was calculated by accumulating the risk for all individuals to sustain at least a 1% permanent medical impairment, based on the injured body region and injury severity.

Results: Nine hundred forty-seven individuals (36%) responded, of whom 44% reported declined health after the crash. The majority (68%) were injured in single bicycle crashes, 17% in collisions with motor vehicles, and 11% in collisions with another cyclist or pedestrian. Most single bicycle crashes related to loss of control (46%), mainly due to skidding on winter surface conditions (14%), followed by loss of control during braking (6%). There was no significant difference in crash distribution comparing all crashes with crashes among people with declined health. The predicted number of impaired individuals (n?=?427) corresponded well with the number of individuals self-reporting declined health (n?=?421).

Conclusions: The types of crashes leading to health loss do not substantially differ from those that do not result in health loss. Two thirds of injuries leading to health loss occur in single bicycle crashes. In addition to separating cyclists from motorized traffic, other preventive strategies are needed.  相似文献   

17.
IntroductionDespite the numerous safety studies done on traffic barriers’ performance assessment, the effect of variables such as traffic barrier’s height has not been identified considering a comprehensive actual crash data analysis. This study seeks to identify the impact of geometric variables (i.e., height, post-spacing, sideslope ratio, and lateral offset) on median traffic barriers’ performance in crashes on interstate roads.MethodGeometric dimensions of over 110 miles median traffic barriers on interstate Wyoming roads were inventoried in a field survey between 2016 and 2018. Then, the traffic barrier data collected was combined with historical crash records, traffic volume data, road geometric characteristics, and weather condition data to provide a comprehensive dataset for the analysis. Finally, an ordered logit model with random-parameters was developed for the severity of traffic barrier crashes. Based on the results, traffic barrier’s height was found to impact crash severity.ResultsCrashes involving cable barriers with a height between 30″ and 42″ were less severe than other traffic barrier types, while concrete barriers with a height shorter than 32″ were more likely involved with severe injury crashes. As another important finding, the post-spacing of 6.1–6.3 ft. was identified as the least severe range in W-beam barriers.Practical applicationsThe results show that using flare barriers should reduce the number of crashes compared to parallel barriers.  相似文献   

18.
Introduction: With the rapid development of transportation infrastructures in precipitous areas, the mileage of freeway tunnels in China has been mounting during the past decade. Provided the semi-constrained space and the monotonous driving environment of freeway tunnels, safety concerns still remain. This study aims to investigate the uniqueness of the relationships between crash severity in freeway tunnels and various contributory factors. Method: The information of 10,081 crashes in the entire freeway network of Guizhou Province, China in 2018 is adopted, from which a subset of 591 crashes in tunnels is extracted. To address spatial variations across various road segments, a two-level binary logistic approach is applied to model crash severity in freeway tunnels. A similar model is also established for crash severity on general freeways as a benchmark. Results: The uniqueness of crash severity in tunnels mainly includes three aspects: (a) the road-segment-level effects are quantifiable with the environmental factors for crash severity in tunnels, but only exist in the random effects for general freeways; (b) tunnel has a significantly higher propensity to cause severe injury in a crash than other locations of a freeway; and (c) different influential factors and levels of contributions are found to crash severity in tunnels compared with on general freeways. Factors including speed limit, tunnel length, truck involvement, rear-end crash, rainy and foggy weather and sequential crash have positive contributions to crash severity in freeway tunnels. Practical applications: Policy implications for traffic control and management are advised to improve traffic safety level in freeway tunnels.  相似文献   

19.
20.
IntroductionMany U.S. cities have adopted the Vision Zero strategy with the specific goal of eliminating traffic-related deaths and injuries. To achieve this ambitious goal, safety professionals have increasingly called for the development of a safe systems approach to traffic safety. This approach calls for examining the macrolevel risk factors that may lead road users to engage in errors that result in crashes. This study explores the relationship between built environment variables and crash frequency, paying specific attention to the environmental mediating factors, such as traffic exposure, traffic conflicts, and network-level speed characteristics. Methods: Three years (2011–2013) of crash data from Mecklenburg County, North Carolina, were used to model crash frequency on surface streets as a function of built environment variables at the census block group level. Separate models were developed for total and KAB crashes (i.e., crashes resulting in fatalities (K), incapacitating injuries (A), or non-incapacitating injuries (B)) using the conditional autoregressive modeling approach to account for unobserved heterogeneity and spatial autocorrelation present in data. Results: Built environment variables that are found to have positive associations with both total and KAB crash frequencies include population, vehicle miles traveled, big box stores, intersections, and bus stops. On the other hand, the number of total and KAB crashes tend to be lower in census block groups with a higher proportion of two-lane roads and a higher proportion of roads with posted speed limits of 35 mph or less. Conclusions: This study demonstrates the plausible mechanism of how the built environment influences traffic safety. The variables found to be significant are all policy-relevant variables that can be manipulated to improve traffic safety. Practical Applications: The study findings will shape transportation planning and policy level decisions in designing the built environment for safer travels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号