首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thompson CM  Gese EM 《Ecology》2007,88(2):334-346
Trophic level interactions between predators create complex relationships such as intraguild predation. Theoretical research has predicted two possible paths to stability in intraguild systems: intermediate predators either outcompete higher-order predators for shared resources or select habitat based on security. The effects of intraguild predation on intermediate mammalian predators such as swift foxes (Vulpes velox) are not well understood. We examined the relationships between swift foxes and both their predators and prey, as well the effect of vegetation structure on swift fox-coyote (Canis latrans) interactions, between August 2001 and August 2004. In a natural experiment created by the Pinon Canyon Maneuver Site in southeastern Colorado, USA, we documented swift fox survival and density in a variety of landscapes and compared these parameters in relation to prey availability, coyote abundance, and vegetation structure. Swift fox density varied significantly between study sites, while survival did not. Coyote abundance was positively related to the basal prey species and vegetation structure, while swift fox density was negatively related to coyote abundance, basal prey species, and vegetation structure. Our results support the prediction that, under intraguild predation in terrestrial systems, top predator distribution matches resource availability (resource match), while intermediate predator distribution inversely matches predation risk (safety match). While predation by coyotes may be the specific cause of swift fox mortality in this system, the more general mechanism appears to be exposure to predation moderated by shrub density.  相似文献   

2.
Berger KM  Gese EM  Berger J 《Ecology》2008,89(3):818-828
The traditional trophic cascades model is based on consumer resource interactions at each link in a food chain. However, trophic-level interactions, such as mesocarnivore release resulting from intraguild predation, may also be important mediators of cascades. From September 2001 to August 2004, we used spatial and seasonal heterogeneity in wolf distribution and abundance in the southern Greater Yellowstone Ecosystem to evaluate whether mesopredator release of coyotes (Canis latrans), resulting from the extirpation of wolves (Canis lupus), accounts for high rates of coyote predation on pronghorn (Antilocapra americana) fawns observed in some areas. Results of this ecological perturbation in wolf densities, coyote densities, and pronghorn neonatal survival at wolf-free and wolf-abundant sites support the existence of a species-level trophic cascade. That wolves precipitated a trophic cascade was evidenced by fawn survival rates that were four-fold higher at sites used by wolves. A negative correlation between coyote and wolf densities supports the hypothesis that interspecific interactions between the two species facilitated the difference in fawn survival. Whereas densities of resident coyotes were similar between wolf-free and wolf-abundant sites, the abundance of transient coyotes was significantly lower in areas used by wolves. Thus, differential effects of wolves on solitary coyotes may be an important mechanism by which wolves limit coyote densities. Our results support the hypothesis that mesopredator release of coyotes contributes to high rates of coyote predation on pronghorn fawns, and demonstrate the importance of alternative food web pathways in structuring the dynamics of terrestrial systems.  相似文献   

3.
We conducted four experiments to determine whether yellow-bellied marmots, Marmota flaviventris, discriminate among predator vocalizations, and if so, whether the recognition mechanism is learned or experience-independent. First, we broadcast to marmots the social sounds of coyotes, Canis latrans, wolves, Canis lupus, and golden eagles, Aquila chrysaetos, as well as conspecific alarm calls. Coyotes and eagles are extant predators at our study site, while wolves have been absent since the mid-1930s. In three follow-up experiments, we reversed the eagle call and presented marmots with forward and reverse calls to control for response to general properties of call structure rather than those specifically associated with eagles, we tested for novelty by comparing responses to familiar and unfamiliar birds, and we tested for the duration of predator sounds by comparing a wolf howl (that was much longer than the coyote in the first experiment) with a long coyote howl of equal duration to the original wolf. Marmots suppressed foraging and increased looking most after presentation of the conspecific alarm call and least after that of the coyote in the first experiment, with moderate responses to wolf and eagle calls. Marmots responded more to the forward eagle call than the reverse call, a finding consistent with a recognition template. Marmots did not differentiate vocalizations from the novel and familiar birds, suggesting that novelty itself did not explain our results. Furthermore, marmots did not differentiate between a wolf howl and a coyote howl of equal duration, suggesting that the duration of the vocalizations played a role in the marmots’ response. Our results show that marmots may respond to predators based solely on acoustic stimuli. The response to currently novel wolf calls suggests that they have an experience-independent ability to identify certain predators acoustically. Marmots’ response to predator vocalizations is not unexpected because 25 of 30 species in which acoustic predator discrimination has been studied have a demonstrated ability to respond selectively to cues from their predators.  相似文献   

4.
Since their range expansion into eastern North America in the mid-1900s, coyotes (Canis latrans) have become the region's top predator. Although widespread across the region, coyote adaptation to eastern forests and use of the broader landscape are not well understood. We studied the distribution and abundance of coyotes by collecting coyote feces from 54 sites across a diversity of landscapes in and around the Adirondacks of northern New York. We then genotyped feces with microsatellites and found a close correlation between the number of detected individuals and the total number of scats at a site. We created habitat models predicting coyote abundance using multi-scale vegetation and landscape data and ranked them with an information-theoretic model selection approach. These models allow us to reject the hypothesis that eastern forests are unsuitable habitat for coyotes as their abundance was positively correlated with forest cover and negatively correlated with measures of rural non-forest landscapes. However, measures of vegetation structure turned out to be better predictors of coyote abundance than generalized "forest vs. open" classification. The best supported models included those measures indicative of disturbed forest, especially more open canopies found in logged forests, and included natural edge habitats along water courses. These forest types are more productive than mature forests and presumably host more prey for coyotes. A second model with only variables that could be mapped across the region highlighted the lower density of coyotes in areas with high human settlement, as well as positive relationships with variables such as snowfall and lakes that may relate to increased numbers and vulnerability of deer. The resulting map predicts coyote density to be highest along the southwestern edge of the Adirondack State Park, including Tug Hill, and lowest in the mature forests and more rural areas of the central and eastern Adirondacks. Together, these results support the need for a nuanced view of how eastern coyotes use forested habitats.  相似文献   

5.
The gray wolf is a large, highly mobile predator whose original geographic range included most of the Northern Hemisphere. High rates of genetic exchange probably characterized even distantly-separated populations in the past, but recent population declines and habitat fragmentation have isolated previously contiguous populations, especially in the Old World. We examine mitochondrial DNA (mtDNA) variability among twenty-six populations of wolves from throughout their geographic range. We find eighteen mtDNA genotypes in gray wolves, seven of these are derived from hybridization with coyotes, four are confined to the New World, six are confined to the Old World and one is shared by both areas. Genetic differentiation among wolf populations is significant but small in magnitude. In the Old World, most localities have a single unique genotype, whereas in the New World several genotypes occur at most localities and three of the five genotypes are nearly ubiquitous. The pattern of genetic differentiation in the gray wolf contrasts with that of another large, highly vagile canid, the coyote, in which genetic differentiation among populations is not significant even among widely separated localities. We suggest that the difference between these two species reflects the rapid, recent increase in coyote numbers and expansion of their geographic range, and the coincident decline in gray wolf populations. Apparent genetic differences among extant wolf populations may be a recent phenomenon reflecting population declines and habitat fragmentation rather than a long history of genetic isolation.  相似文献   

6.
Food web theory predicts that the loss of large carnivores may contribute to elevated predation rates and, hence, declining prey populations, through the process of mesopredator release. However, opportunities to test predictions of the mesopredator release hypothesis are rare, and the extent to which changes in predation rates influence prey population dynamics may not be clear due to a lack of demographic information on the prey population of interest. We utilized spatial and seasonal heterogeneity in wolf distribution and abundance to evaluate whether mesopredator release of coyotes (Canis latrans), resulting from the extirpation of wolves (Canis lupus) throughout much of the United States, contributes to high rates of neonatal mortality in ungulates. To test this hypothesis, we contrasted causes of mortality and survival rates of pronghorn (Antilocapra americana) neonates captured at wolf-free and wolf-abundant sites in western Wyoming, USA, between 2002 and 2004. We then used these data to parameterize stochastic population models to heuristically assess the impact of wolves on pronghorn population dynamics due to changes in neonatal survival. Coyote predation was the primary cause of mortality at all sites, but mortality due to coyotes was 34% lower in areas utilized by wolves (P < 0.001). Based on simulation modeling, the realized population growth rate was 0.92 based on fawn survival in the absence of wolves, and 1.06 at sites utilized by wolves. Thus, wolf restoration is predicted to shift the trajectory of the pronghorn population from a declining to an increasing trend. Our results suggest that reintroductions of large carnivores may influence biodiversity through effects on prey populations mediated by mesopredator suppression. In addition, our approach, which combines empirical data on the population of interest with information from other data sources, demonstrates the utility of using simulation modeling to more fully evaluate ecological theories by moving beyond estimating changes in vital rates to analyses of population-level impacts.  相似文献   

7.
Abstract:  Despite the importance of carnivores in terrestrial ecosystems, many nations have implemented well-coordinated, state-funded initiatives to remove predators, largely because of conflicts with humans over livestock. Although these control efforts have been successful in terms of the number of carnivores removed, their effects on the viability of the industries they seek to protect are less understood. I assessed the efficacy of long-term efforts by the U.S. government to improve the viability of the sheep industry by reducing predation losses. I used regression analysis and hierarchical partitioning of a 60-year data set to explore associations among changes in sheep numbers and factors such as predator control effort, market prices, and production costs. In addition, I compared trends in the sheep industry in the western United States, where predator control is subsidized and coyotes ( Canis latrans ) are abundant, with trends in eastern states that lack federally subsidized predator control and that were (1) colonized by coyotes before 1950 or (2) colonized by coyotes between 1950 and 1990. Although control efforts were positively correlated with fluctuations in sheep numbers, production costs and market prices explained most of the model variation, with a combined independent contribution of 77%. Trends in sheep numbers in eastern and western states were highly correlated ( r ≥ 0.942) independent of the period during which they were colonized by coyotes, indicating either that control has been ineffective at reducing predation losses or that factors other than predation account for the declines in both regions. These results suggest that government-subsidized predator control has failed to prevent the decline in the sheep industry and alternative support mechanisms need to be developed if the goal is to increase sheep production and not simply to kill carnivores.  相似文献   

8.
Conservation of species at risk of extinction is complex and multifaceted. However, mitigation strategies are typically narrow in scope, an artifact of conservation research that is often limited to a single species or stressor. Knowledge of an entire community of strongly interacting species would greatly enhance the comprehensiveness and effectiveness of conservation decisions. We investigated how camera trapping and spatial count models, an extension of spatial-recapture models for unmarked populations, can accomplish this through a case study of threatened boreal woodland caribou (Rangifer tarandus caribou). Population declines in caribou are precipitous and well documented, but recovery strategies focus heavily on control of wolves (Canis lupus) and pay less attention to other known predators and apparent competitors. Obtaining necessary data on multispecies densities has been difficult. We used spatial count models to concurrently estimate densities of caribou, their predators (wolf, black bear [Ursus americanus], and coyote [Canis latrans]), and alternative prey (moose [Alces alces] and white-tailed deer [Odocoileus virginianus]) from a camera-trap array in a highly disturbed landscape within northern Alberta's Oil Sands Region. Median densities were 0.22 caribous (95% Bayesian credible interval [BCI] = 0.08–0.65), 0.77 wolves (95% BCI = 0.26–2.67), 2.39 moose (95% BCI = 0.56–7.00), 2.64 coyotes (95% BCI = 0.45–6.68), and 3.63 black bears (95% BCI = 1.25–8.52) per 100 km2. (The white-tailed deer model did not converge.) Although wolf densities were higher than densities recommended for caribou conservation, we suggest the markedly higher black bear and coyote densities may be of greater concern, especially if government wolf control further releases these species. Caribou conservation with a singular focus on wolf control may leave caribou vulnerable to other predators. We recommend a broader focus on the interacting species within a community when conserving species.  相似文献   

9.
Fragmentation of the boreal forest by linear features, including seismic lines, has destabilized predator–prey dynamics, resulting in the decline of woodland caribou (Rangifer tarandus caribou) populations. Restoration of human-altered habitat has therefore been identified as a critical management tool for achieving self-sustaining woodland caribou populations. However, only recently has testing of the response of caribou and other wildlife to restoration activities been conducted. Early work has centered around assessing changes in wildlife use of restored seismic lines. We evaluated whether restoration reduces the movement rates of predators and their associated prey, which is expected to decrease predator hunting efficiency and ultimately reduce caribou mortality. We developed a new method for using cameras to measure fine-scale movement by measuring speed as animals traveled between cameras in an array. We used our method to quantify speed of caribou, moose (Alces alces), bears (Ursus americanus), and wolves (Canis lupus) on treated (restored) and untreated seismic lines. Restoration treatments reduced travel speeds along seismic lines of wolves by 1.38 km/h, bears by 0.55 km/h, and caribou by 1.57 km/h, but did not reduce moose travel speeds. Reduced predator and caribou speeds on treated seismic lines are predicted to decrease encounter rates between predators and caribou and thus lower caribou kill rates. However, further work is needed to determine whether reduced movement rates result in reduced encounter rates with prey, and ultimately reduced caribou mortality.  相似文献   

10.
Apparent competition is an indirect interaction between 2 or more prey species through a shared predator, and it is increasingly recognized as a mechanism of the decline and extinction of many species. Through case studies, we evaluated the effectiveness of 4 management strategies for species affected by apparent competition: predator control, reduction in the abundances of alternate prey, simultaneous control of predators and alternate prey, and no active management of predators or alternate prey. Solely reducing predator abundances rapidly increased abundances of alternate and rare prey, but observed increases are likely short‐lived due to fast increases in predator abundance following the cessation of control efforts. Substantial reductions of an abundant alternate prey resulted in increased predation on endangered huemul (Hippocamelus bisulcus) deer in Chilean Patagonia, which highlights potential risks associated with solely reducing alternate prey species. Simultaneous removal of predators and alternate prey increased survival of island foxes (Urocyon littoralis) in California (U.S.A.) above a threshold required for population recovery. In the absence of active management, populations of rare woodland caribou (Rangifer tarandus caribou) continued to decline in British Columbia, Canada. On the basis of the cases we examined, we suggest the simultaneous control of predators and alternate prey is the management strategy most likely to increase abundances and probabilities of persistence of rare prey over the long term. Knowing the mechanisms driving changes in species’ abundances before implementing any management intervention is critical. We suggest scientists can best contribute to the conservation of species affected by apparent competition by clearly communicating the biological and demographic forces at play to policy makers responsible for the implementation of proposed management actions. Estrategias de Conservación para Especies Afectadas por Competencia Aparente  相似文献   

11.
Abstract: Non-native vertebrate predators pose a severe threat to many native species, and a variety of management programs are aimed at reducing predator effects. We sought to assess the effects of predator-control programs by analyzing changes in prey and predator populations based on data commonly collected in these programs. We examined data from a predator-control program that primarily targets the introduced red fox (  Vulpes vulpes regalis ) in central California. Red foxes negatively affect populations of native waterbirds, particularly the endangered California Clapper Rail (  Rallus longirostris obsoletus ). Using a combination of matrix population modeling, simple difference equations, and statistical analysis, we analyzed data on removed predators and monitored prey populations. Past control efforts succeeded in depressing fox numbers in local areas over 3-month intervals, and there was a significant, positive relationship between the growth rate of local Clapper Rail populations and the successful trapping of red foxes in the preceding year. By modeling the effect of different fox-removal rates, we found that a stable or declining population could be achieved by removing a minimum of 50% of the adults and 25% of the juveniles. Under trapping rates of 50–70%, the proportion of the fox population composed of immigrants averaged 20–52%. In contrast to the current management approach, elasticity analyses suggested that changes in adult survival rates had relatively little effect on long-term population growth. Overall, our approach indicated that predator control was effective in the short term, but for longer-term success it may be necessary to redirect efforts to control juvenile and immigrant foxes. Our analytical approach is potentially useful for evaluating current control programs aimed at reducing the effects of predators on native species.  相似文献   

12.
Dynamics of Hybridization and Introgression in Red Wolves and Coyotes   总被引:6,自引:0,他引:6  
Abstract:  Hybridization and introgression are significant causes of endangerment in many taxa and are considered the greatest biological threats to the reintroduced population of red wolves ( Canis rufus ) in North Carolina (U.S.A.). Little is known, however, about these processes in red wolves and coyotes ( C. latrans ). We used individual-based simulations to examine the process of hybridization and introgression between these species. Under the range of circumstances we considered, red wolves in colonizing and established populations were quickly extirpated, persisted near the carrying capacity, or had intermediate outcomes. Sensitivity analyses suggested that the probabilities of quasi extinction and persistence of red wolves near the carrying capacity were most affected by the strength of two reproductive barriers: red wolf challenges and assortative mating between red wolves and coyotes. Because model parameters for these barriers may be difficult to estimate, we also sought to identify other predictors of red wolf population fate. The proportion of pure red wolves in the population was a strong predictor of the future probabilities of red wolf quasi extinction and persistence. Finally, we examined whether sterilization can be effective in minimizing introgression while allowing the reintroduced red wolf population to grow. Our results suggest sterilization can be an effective short-term strategy to reduce the likelihood of extirpation in colonizing populations of red wolves. Whether red wolf numbers are increased by sterilization depends on the level of sterilization effort and the acting reproductive barriers. Our results provide an outline of the conditions likely required for successful reestablishment and long-term maintenance of populations of wild red wolves in the presence of coyotes. Our modeling approach may prove generally useful in providing insight into situations involving complex species interactions when data are few.  相似文献   

13.
Apex predators are declining at alarming rates due to exploitation by humans, but we have yet to fully discern the impacts of apex predator loss on ecosystem function. In a management context, it is critically important to clarify the role apex predators play in structuring populations of lower trophic levels. Thus, we examined the top‐down influence of reef sharks (an apex predator on coral reefs) and mesopredators on large‐bodied herbivores. We measured the abundance, size structure, and biomass of apex predators, mesopredators, and herbivores across fished, no‐take, and no‐entry management zones in the Great Barrier Reef Marine Park, Australia. Shark abundance and mesopredator size and biomass were higher in no‐entry zones than in fished and no‐take zones, which indicates the viability of strictly enforced human exclusion areas as tools for the conservation of predator communities. Changes in predator populations due to protection in no‐entry zones did not have a discernible influence on the density, size, or biomass of different functional groups of herbivorous fishes. The lack of a relationship between predators and herbivores suggests that top‐down forces may not play a strong role in regulating large‐bodied herbivorous coral reef fish populations. Given this inconsistency with traditional ecological theories of trophic cascades, trophic structures on coral reefs may need to be reassessed to enable the establishment of appropriate and effective management regimes. El Impacto de las Áreas de Conservación sobre las Interacciones Tróficas entre los Depredadores Dominantes y los Herbívoros en los Arrecifes de Coral  相似文献   

14.
Maron JL  Pearson DE  Fletcher RJ 《Ecology》2010,91(12):3719-3728
Historically, small mammals have been focal organisms for studying predator-prey dynamics, principally because of interest in explaining the drivers of the cyclical dynamics exhibited by northern vole, lemming, and hare populations. However, many small-mammal species occur at relatively low and fairly stable densities at temperate latitudes, and our understanding of how complex predator assemblages influence the abundance and dynamics of these species is surprisingly limited. In an intact grassland ecosystem in western Montana, USA, we examined the abundance and dynamics of Columbian ground squirrels (Spermophilus columbianus), deer mice (Peromyscus maniculatus), and montane voles (Microtus montanus) on 1-ha plots where we excluded mammalian and avian predators and ungulates, excluded ungulates alone, or allowed predators and ungulates full access. Our goal was to determine whether the relatively low population abundance and moderate population fluctuations of these rodents were due to population suppression by predators. Our predator-exclusion treatment was divided into two phases: a phase where we excluded all predators except weasels (Mustela spp.; 2002-2005), and a phase where all predators including weasels were excluded (2006-2009). Across the entire duration of the experiment, predator and/or ungulate exclusion had no effect on the abundance or overall dynamics of ground squirrels and deer mice. Ground squirrel survival (the only species abundant enough to accurately estimate survival) was also unaffected by our experimental treatments. Prior to weasel exclusion, predators also had no impacts on montane vole abundance or dynamics. However, after weasel exclusion, vole populations reached greater population peaks, and there was greater recruitment of young animals on predator-exclusion plots compared to plots open to predators during peak years. These results suggest that the impacts of predators cannot be generalized across all rodents in an assemblage. Furthermore, they suggest that specialist predators can play an important role in suppressing vole abundance even in lower-latitude vole populations that occur at relatively low densities.  相似文献   

15.
Forage fish—small, low trophic level, pelagic fish such as herrings, sardines, and anchovies—are important prey species in marine ecosystems and also support large commercial fisheries. In many parts of the world, forage fish fisheries are managed using precautionary principles that target catch limits below the maximum sustainable yield. However, there are increasing calls to further limit forage fish catch to safeguard their fish, seabird, and marine mammal predators. The effectiveness of these extra-precautionary regulations, which assume that increasing prey abundance increases predator productivity, are under debate. In this study, we used prey-linked population models to measure the influence of forage fish abundance on the population growth rates of 45 marine predator populations representing 32 fish, seabird, and mammal species from 5 regions around the world. We used simulated data to confirm the ability of the statistical model to accurately detect prey influences under varying levels of influence strength and process variability. Our results indicate that predator productivity was rarely influenced by the abundance of their forage fish prey. Only 6 predator populations (13% of the total) were positively influenced by increasing prey abundance and the model exhibited high power to detect prey influences when they existed. These results suggest that additional limitation of forage fish harvest to levels well below sustainable yields would rarely result in detectable increases in marine predator populations.  相似文献   

16.
Molecular Genetics of Pre-1940 Red Wolves   总被引:5,自引:0,他引:5  
Conservation of the endangered red wolf (Canis rufus) has become a controversial issue because its genetic and morphological composition has been altered by hybridization with coyotes (C. latrans) and possibly gray wolves (C. lupus) making its evolutionary origins difficult to ascertain. The evolutionary hypothesis based on morphological data is that the red wolf had an Early Pleistocene origin and was the predecessor of both modern coyotes and gray wolves. After 1940 red wolves hybridized with coyotes as the species vanished from the wild. In contrast to this ancient origin-recent introgression hypothesis, molecular data are more consistent with an origin through hybridization between gray wolves and coyotes. Interspecific hybridization may have occurred repeatedly over time prior to European settlement in the southcentral United States or may have been induced recently by anthropogenic changes. We review recent molecular evidence and present new results from the analysis of mitochondrial and nuclear DNA markers in pre-1940 populations of red wolves. Our results are inconsistent with an ancient origin of the red wolf and support the hybridization model. We discuss possible hybridization scenarios and reasons for the red wolf reintroduction program to be concerned with the effects of genetic introgression from coyotes.  相似文献   

17.
Rudolf VH 《Ecology》2006,87(2):362-371
Nonlethal indirect interactions between predators often lead to nonadditive effects of predator number on prey survival and growth. Previous studies have focused on systems with at least two different predator species and one prey species. However, most predators undergo extreme ontological changes in phenotype such that interactions between different-sized cohorts of a predator and its prey could lead to nonadditive effects in systems with only two species. This may be important since different-sized individuals of the same species can differ more in their ecology than similar-sized individuals of different species. This study examined trait-mediated indirect effects in a two-species system including a cannibalistic predator with different-sized cohorts and its prey. I tested for these effects using larvae of two stream salamanders, Gyrinophilus porphyriticus (predator) and Eurycea cirrigera (prey), by altering the densities and combinations of predator size classes in experimental streams. Results showed that the presence of large individuals can significantly reduce the impact of density changes of smaller conspecifics on prey survival through nonlethal means. In the absence of large conspecifics, an increase in the relative frequency of small predators significantly increased predation rates, thereby reducing prey survival. However, with large conspecifics present, increasing the density of small predators did not decrease prey survival, resulting in a 14.3% lower prey mortality than predicted from the independent effects of both predator size classes. Small predators changed their microhabitat use in the presence of larger conspecifics. Prey individuals reduced activity in response to large predators but did not respond to small predators. Both predators reduced prey growth. These results demonstrate that the impact of a predator can be significantly altered by two different types of trait-mediated indirect effects in two-species systems: between different-sized cohorts and between different cohorts and prey. This study demonstrates that predictions based on simple numerical changes that assume independent effects of different size classes or ignore size structure can be strongly misleading. We need to account for the size structure within predator populations in order to predict how changes in predator abundance will affect predator-prey dynamics.  相似文献   

18.
Understanding individual attitudes and how these predict overt opposition to predator conservation or direct, covert action against predators will help to recover and maintain them. Studies of attitudes toward wild animals rely primarily on samples of individuals at a single time point. We examined longitudinal change in individuals’ attitudes toward gray wolves (Canis lupus). In the contiguous United States, amidst persistent controversy and opposition, abundances of gray wolves are at their highest in 60 years. We used mailed surveys to sample 1892 residents of Wisconsin in 2001 or 2004 and then resampled 656 of these individuals who resided in wolf range in 2009. Our study spanned a period of policy shifts and increasing wolf abundance. Over time, the 656 respondents increased agreement with statements reflecting fear of wolves, the belief that wolves compete with hunters for deer (Odocoileus virginianus), and inclination to poach a wolf. Endorsement of lethal control of wolves by the state and public hunting of wolves also increased. Neither the time span over which respondents reported exposure to wolves locally nor self‐reported losses of domestic animals to wolves correlated with changes in attitude. We predict future increases in legal and illegal killing of wolves that may reduce their abundance in Wisconsin unless interventions are implemented to improve attitudes and behavior toward wolves. To assess whether interventions change attitudes, longitudinal studies like ours are needed. Análisis Longitudinal de las Actitudes Hacia Lobos  相似文献   

19.
Predators can strongly influence the microhabitat use and foraging behaviour of prey. In a large-scale replicated field experiment in East Gippsland, Australia, we tested the effects of reduced alien red fox (Vulpes vulpes) and alien wild dog (Canis lupus familiaris) abundance (treatment) on native bush rat (Rattus fuscipes) behaviour. Bush rats are exposed to two main guilds of predators, namely mammalian carnivores and birds of prey. Tracking rat movements using the spool-and-line technique revealed that, in treatment sites, rats used ground cover, which provides shelter from predators, less often than at unmanipulated fox and wild dog abundance (non-treatment sites). In treatment sites, rats more frequently moved on logs where they would have been exposed to hunting foxes and dogs than in non-treatment sites. Furthermore, in treatments, rats showed a preference for understorey but not in non-treatments. Hence, bush rats adapted their behaviour to removal of alien terrestrial predators. Giving-up densities (GUDs) indicated no treatment effects on the marginal feeding rate of bush rats. Interestingly, GUDs were higher in open patches than in sheltered patches, suggesting higher perceived predation risk of bush rats during foraging at low versus high cover. The lack of treatment effects on GUDs but the clear response of bush rats to cover may be explained by the impact of predators other than foxes and wild dogs.  相似文献   

20.
Abstract: Limitation of predator populations by prey availability and the effects of predators on prey populations are widely recognized as important ecological processes that affect carnivore conservation. Interspecific competition can also be a strong limiting factor for carnivore populations, and the effects of competition help explain why some carnivore species are prone to extinction. Competition among carnivores is unusual in some ways, so some predictions from traditional models of competition do not hold. For example, an increase in the density of prey can increase the effect of competition among carnivores, rather than weakening it. I used published data from African wild dogs (    Lycaon pictus ) to highlight four complexities that can modify the effects of competition on the population dynamics of carnivores: habitat fragmentation, counterintuitive effects of prey density, predator-prey size ratios, and habitat type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号