首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We evaluate a field method for determining species richness andcanopy cover of vascular plants for the Forest Health MonitoringProgram (FHM), an ecological survey of U.S. forests. Measurementsare taken within 12 1-m2 quadrats on 1/15 ha plots in FHM.Species richness and cover are determined for four height classes(strata) within each quadrat and aggregated by stratum over the entireplot. We estimated (1) the agreement between experienced trainers andinexperienced technicians who collected the data on this survey(accuracy) and (2) the agreement among the technicians (precision) forresults on species richness and cover from 3 test plots at 3 timeintervals. The methods appear to be highly precise, although somediscrepancies with the values obtained by the trainers were found.Trainers found significantly more species in the ground stratum (0–0.6 m) and measured significantly more cover in the uppermost stratum(>4.9 m). The proportion of variation due to measurement error andtemporal variability was less than 13% for species richness (all strata)and cover (all but one stratum). This indicates that the method issuitable for monitoring changes in species richness and canopy coverfor a large-scale synoptic monitoring project such as FHM.  相似文献   

2.
Remote sensing is an important tool for studying patterns in surface processes on different spatiotemporal scales. However, differences in the spatiospectral and temporal resolution of remote sensing data as well as sensor-specific surveying characteristics very often hinder comparative analyses and effective up- and downscaling analyses. This paper presents a new methodical framework for combining hyperspectral remote sensing data on different spatial and temporal scales. We demonstrate the potential of using the “One Sensor at Different Scales” (OSADIS) approach for the laboratory (plot), field (local), and landscape (regional) scales. By implementing the OSADIS approach, we are able (1) to develop suitable stress-controlled vegetation indices for selected variables such as the Leaf Area Index (LAI), chlorophyll, photosynthesis, water content, nutrient content, etc. over a whole vegetation period. Focused laboratory monitoring can help to document additive and counteractive factors and processes of the vegetation and to correctly interpret their spectral response; (2) to transfer the models obtained to the landscape level; (3) to record imaging hyperspectral information on different spatial scales, achieving a true comparison of the structure and process results; (4) to minimize existing errors from geometrical, spectral, and temporal effects due to sensor- and time-specific differences; and (5) to carry out a realistic top- and downscaling by determining scale-dependent correction factors and transfer functions. The first results of OSADIS experiments are provided by controlled whole vegetation experiments on barley under water stress on the plot scale to model LAI using the vegetation indices Normalized Difference Vegetation Index (NDVI) and green NDVI (GNDVI). The regression model ascertained from imaging hyperspectral AISA-EAGLE/HAWK (DUAL) data was used to model LAI. This was done by using the vegetation index GNDVI with an R 2 of 0.83, which was transferred to airborne hyperspectral data on the local and regional scales. For this purpose, hyperspectral imagery was collected at three altitudes over a land cover gradient of 25 km within a timeframe of a few minutes, yielding a spatial resolution from 1 to 3 m. For all recorded spatial scales, both the LAI and the NDVI were determined. The spatial properties of LAI and NDVI of all recorded hyperspectral images were compared using semivariance metrics derived from the variogram. The first results show spatial differences in the heterogeneity of LAI and NDVI from 1 to 3 m with the recorded hyperspectral data. That means that differently recorded data on different scales might not sufficiently maintain the spatial properties of high spatial resolution hyperspectral images.  相似文献   

3.
In the Spanish Mediterranean environment, scrub vegetation occupies a greater area than does forest. The impact of wildfire on the scrub vegetation and recovery afterward affects a number of other processes, including water erosion. While recovered vegetation considerably influences soil protection and erosion control, this function has scarcely been studied. This study discusses the behavior and architecture of recovering (or regenerating) typical Mediterranean shrub vegetation and the subsequent impact on soil protection. The study compared two protective forage species (Medicago arborea L. and Psoralea bituminosa L.). The research was performed in field conditions on a set of four experimental plots. A control plot was maintained with no vegetation cover. Runoff and soil loss by water erosion between 1989 and 1992 were studied on each of these plots. The natural vegetation was found to have a more significant protective effect (69.2% decrease in soil loss) than the other species tested. Soil loss on the Medicago plot decreased by 41.7%, and soil loss on the Psoralea plot decreased by 29.3%. That the Psoralea was only recently planted must be considered in evaluating its protective effects.  相似文献   

4.
The diversity of forest trees as an indicator of ecosystem health can be assessed using the spectral characteristics of plant communities through remote sensing data. The objectives of this study were to investigate alpha and beta tree diversity using Landsat data for six dates in the Gönen dam watershed of Turkey. We used richness and the Shannon and Simpson diversity indices to calculate tree alpha diversity. We also represented the relationship between beta diversity and remotely sensed data using species composition similarity and spectral distance similarity of sampling plots via quantile regression. A total of 99 sampling units, each 20 m × 20 m, were selected using geographically stratified random sampling method. Within each plot, the tree species were identified, and all of the trees with a diameter at breast height (dbh) larger than 7 cm were measured. Presence/absence and abundance data (tree species number and tree species basal area) of tree species were used to determine the relationship between richness and the Shannon and Simpson diversity indices, which were computed with ground field data, and spectral variables derived (2 × 2 pixels and 3 × 3 pixels) from Landsat 8 OLI data. The Shannon-Weiner index had the highest correlation. For all six dates, NDVI (normalized difference vegetation index) was the spectral variable most strongly correlated with the Shannon index and the tree diversity variables. The Ratio of green to red (VI) was the spectral variable least correlated with the tree diversity variables and the Shannon basal area. In both beta diversity curves, the slope of the OLS regression was low, while in the upper quantile, it was approximately twice the lower quantiles. The Jaccard index is closed to one with little difference in both two beta diversity approaches. This result is due to increasing the similarity between the sampling plots when they are located close to each other. The intercept differences between two investigated beta diversity were strongly related to the development stage of a number of sampling plots in the tree species basal area method. To obtain beta diversity, the tree basal area method indicates better result than the tree species number method at representing similarity of regions which are located close together. In conclusion, NDVI is helpful for estimating the alpha diversity of trees over large areas when the vegetation is at the maximum growing season. Beta diversity could be obtained with the spectral heterogeneity of Landsat data. Future tree diversity studies using remote sensing data should select data sets when vegetation is at the maximum growing season. Also, forest tree diversity investigations can be identified by using higher-resolution remote sensing data such as ESA Sentinel 2 data which is freely available since June 2015.  相似文献   

5.
以广东省中山市为例,基于SNAP软件和2景Sentinel-2卫星数据,反演并分析中山市全域及特定区域内植被叶面积指数。结果表明,反演结果与中山市生态空间格局和植被保护状况相一致,且与其他研究报道中对水库库区林地采用现场实测方法获得的数据高度一致,表明该方法反演城镇植被叶面积指数具有良好的适用性和准确性。  相似文献   

6.
The improvement of land management practices on lands susceptible to desertification requires information on the status and condition of the existing resources as well as any change occurring in the resource condition over time. The Environmental Monitoring and Assessment Program (EMAP) of the U.S. Environmental Protection Agency has developed a statistical survey design for monitoring the condition of ecological resources on large spatial scales. EMAP-Rangelands used a uniformity sampling study in 1993 to evaluate response plot designs for three categories of indicators (soils, vegetation, and spectral reflectance) to be used for monitoring ecological condition of a site. The response plot design study was developed to integrate on-site measurements for the three indicator categories. The study was conducted on the Colorado Plateau in southern Utah in three rangeland resource classes (grassland, desertscrub, and conifer woodland) of differing productivity levels in an attempt to develop a common plot design for all three resource classes. Basic measurement units were developed to facilitate integration of data collection. Preliminary spatial analysis of the sampling study found considerable differences in variation patterns among the study sites and measurement categories for the indicator classes used by EMAP-Rangelands. Evidence of substantial trends in the indicator measurements on monitoring sites relative to regional trends leads to the conclusion that nonstationary spatial models for biological processes on a monitoring site may be needed to fulfill the requirements for developing plot designs and indicator criteria.The U.S. Environmental Protection Agency, through the Office of Research and Development, funded the research described here. This paper has been subjected to the Agency's peer and administrative review and has been approved as an EPA publication. The U.S. Government has the right to retain a nonexclusive, royalty-free license in and to any copyright covering this article.  相似文献   

7.
Forests were shown to play an important role in influencing atmospheric concentrations and transport of persistent organic pollutants (POPs) in the environment. World forests cover more than 4 billion hectares and contain up to 80% of the above ground organic carbon. Given the lipophilic nature of POPs, this suggests that forests can influence the environmental fate of POPs at a global scale. POP accumulation in forest canopies still presents points of concern given the complexity of these ecosystems. In particular, the role of ecological parameters such as LAI (leaf area index) and SLA (specific leaf area) and their dynamics during the growing season was not sufficiently investigated yet. This paper reviews, compares and interprets a unique case study in which air and leaf concentrations and deposition fluxes for selected polychlorinated biphenyls (PCBs) were measured in three different forest types exposed to the same air masses. In order to trace the air-leaf-soil path of these compounds, a dynamic model of POP accumulation into forest canopy was applied. The dynamics of the canopy biomass strongly affected the trend of leaf concentration with time. Growth dilution effect can prevent the more chlorinated compounds from reaching the partitioning equilibrium before litter fall, while the more volatile compounds can approach equilibrium in the range of few weeks. An amount of up to 60 ng of PCBs per square metre of ground surface was predicted to be stored in each of the selected forests at fully developed canopy. Dry gaseous deposition fluxes to forest canopy were estimated to reach a maximum value of about 0.5-1.5 ng m(-2) d(-1) during the spring period.  相似文献   

8.
Noise level monitoring and its reduction with different width and height of vegetation belt were studied in the Varanasi city. Noise level monitoring of the Varanasi city revealed the fact that area category A (without vegetation) was highly polluted as compare to area category B (with vegetation) having less fluctuation of traffic load. Four plant species Putranjeva roxburghi, Cestrum nocturnum, Hibiscus rosasinensis and Murraya peniculata were tested for noise reduction study at different frequencies. Experiment revealed the fact that H. rosasinensis reduced noise highest at both low and high frequencies (100-500 Hz, 22 dB and 2.5-6.3 KHz 26 dB), followed by M. peniculata (100-500 Hz, 18 dB and 2.5-6.3 KHz 20 dB), P. roxburghi (100-500 Hz 15 dB and 2.5-6.3 KHz 17 dB) and C. nocturnum (100-500 Hz 9 dB and 2.5-6.3 KHz 14 dB). Significance of vegetation belt in noise reduction was established with multiple regression models.  相似文献   

9.
Is identification of seed bank (SB) species useful for sustainable management of vegetation restoration on Cu-contaminated soils? How does Cu contamination of the soil affect the SB and can incorporating compost into Cu-contaminated soils counter the effects of Cu? The topsoil SB was investigated at seven contaminated sub-sites of a wood preservation site. The germination parameters of the seeds were recorded using three substrates: a washed river sand (Sand), the same sand spiked with CuSO4 to reach the same Cu concentrations as in the soil pore water (0.3 to 3.2 mg Cu/L) (Cu), and the same Cu-spiked sand amended with compost (CPM). The total number of germinated seeds (NGS) was 1,081. The whole seedling dataset enabled 12 plant species and eight families to be identified in the SB. Species richness and Shannon indexes were low. The addition of Cu in the germination substrate enhanced total NGS at one sub-site and the addition of CPM increased plant diversity at three sub-sites. SB composition varied with the sub-site but did not correlate with total soil Cu or with the Cu concentration in the soil pore water. Three species belonging to the Poaceae family dominated. In terms of total NGS, the dominant species were Portulaca oleracea and Agrostis capillaris. Similarities between SB and established vegetation were low but increased when the soil bulk density was reduced. The Cu-tolerant species P. oleracea and A. capillaris dominated in both the SB and the established vegetation. However, the pattern of SB and established vegetation differed and consequently SB was not a sufficient indicator to predict the future vegetation.  相似文献   

10.
To assesses the effect of geomorphology, topography, and vegetation changes on spatial pattern of soil organic carbon (C) and total nitrogen (N) in sand dunes, we used the quantitative methods to examine the spatial heterogeneity of vegetation cover, soil organic C, and total N in an 11-year naturally restored mobile dune (RMD11) and a 20-year naturally restored mobile dune (RMD20) that had been fenced to exclude grazing in Horqin Sandy Land, northern China. Our results showed that the vegetation cover, plant density, species number and diversity, soil organic C, and total N increased from RMD11 to RMD20 and increased from the 50 × 50-m plot (crest) to the 100 × 100-m plot (slope) in each dune. Geostatistical analysis showed that the spatial structural variance accounted for the largest proportion of the total sample variance in vegetation cover, soil organic C, and total N in each dune plot. Calculated spatial autocorrelation ranges of vegetation cover, soil organic C, and total N increased from RMD11 to RMD20, indicating that longer time since vegetation restoration results in a more homogeneous distribution of vegetation cover, soil organic C, and total N in sand dunes. In addition, the spatial continuity of vegetation cover, soil organic C, and total N decreased from the 50 × 50-m plot (crest) to the 100 × 100-m plot (slope) in each dune. These results suggest that the spatial distribution of soil organic C and total N in sand dunes is associated closely with geomorphic position related to the dune crest and slope, relative elevation of sampling site, and vegetation cover. Understanding the principles of this relationship between them may guide strategies for the conservation and management of semiarid dune ecosystems.  相似文献   

11.
This study investigates the effects of forest transformation into recreation site. A fragment of a Pinus pinaster plantation forest was transferred to a recreation site in the city of Bart?n located close to the Black Sea coast of northwestern Turkey. During the transformation, some of the trees were selectively removed from the forest to generate more open spaces for the recreationists. As a result, Leaf Area Index (LAI) decreased by 0.20 (about 11 %). Additionally, roads and pathways were introduced into the site together with some recreational equipment sealing parts of the soil surface. Consequently, forest environment was altered with a semi-natural landscape within the recreation site. The purpose of this study is to assess the effects of forest transformation into recreation site particularly in terms of the LAI parameter, forest floor, and soil properties. Preliminary monitoring results indicate that forest floor biomass is reduced by 26 % in the recreation site compared to the control site. Soil temperature is increased by 15 % in the recreation site where selective removal of trees expanded the gaps allowing more light transmission. On the other hand, the soil bulk density which is an indicator of soil compaction is unexpectedly slightly lower in the recreation site. Organic carbon (Corg) and total nitrogen (Ntotal) together with the other physical and chemical parameter values indicate that forest floor and soil have not been exposed to much disturbance. However, subsequent removal of trees that would threaten the vegetation, forest floor, and soil should not be allowed. The activities of the recreationists are to be concentrated on the paved spaces rather than soil surfaces. Furthermore, long-term monitoring and management is necessary for both the observation and conservation of the site.  相似文献   

12.
This study examines the efficacy of management strategies implemented in 2000 to reduce visitor-induced vegetation impact and enhance vegetation recovery at the summit loop trail on Cadillac Mountain at Acadia National Park, Maine. Using single-spectral high-resolution remote sensing datasets captured in 1979, 2001, and 2007, pre-classification change detection analysis techniques were applied to measure fractional vegetation cover changes between the time periods. This popular sub-alpine summit with low-lying vegetation and attractive granite outcroppings experiences dispersed visitor use away from the designated trail, so three pre-defined spatial scales (small, 0-30 m; medium, 0-60 m; and large, 0-90 m) were examined in the vicinity of the summit loop trail with visitor use (experimental site) and a site chosen nearby in a relatively pristine undisturbed area (control site) with similar spatial scales. Results reveal significant changes in terms of rates of vegetation impact between 1979 and 2001 extending out to 90 m from the summit loop trail with no management at the site. No significant differences were detected among three spatial zones (inner, 0-30 m; middle, 30-60 m; and outer, 60-90 m) at the experimental site, but all were significantly higher rates of impact compared to similar spatial scales at the control site (all p?< 0.001). In contrast, significant changes in rates of recovery between 2001 and 2007 were observed in the medium and large spatial scales at the experimental site under management as compared to the control site (all p?< 0.05). Also during this later period a higher rate of recovery was observed in the outer zone as compared to the inner zone at the experimental site (p?< 0.05). The overall study results suggest a trend in the desired direction for the site and visitor management strategies designed to reduce vegetation impact and enhance vegetation recovery at the summit loop trail of Cadillac Mountain since 2000. However, the vegetation recovery has been rather minimal and did not reach the level of cover observed during the 1979 time period. In addition, the advantages and some limitations of using remote sensing technologies are discussed in detecting vegetation change in this setting and potential application to other recreation settings.  相似文献   

13.
Based on data collected over 2 years of monitoring the lower reaches of the Tarim River, the groundwater table depth was divided into six classes; 0 to 2 m, 2 to 4 m, 4 to 6 m, 6 to 8 m, 8 to 10 m, >10 m. We investigated the vegetation in this area to measure the influence of groundwater table depth on plant diversity and species ecological niche. The results indicated that plant diversity was highest at the 2 to 4 m groundwater table depth, followed by that at 4 to 6 m, and then that at 0 to 2 m. When the groundwater depth dropped to below 6 m, species diversity decreased dramatically, and the slope of Hill's index tended to level off. The ecological niche of the major species in this area initially expanded as the groundwater level dropped. The widest niche appeared at the 4 to 6 m groundwater table depth and gradually narrowed with deepening groundwater. Ecological niche analysis also revealed that the 4 to 6 m groundwater table depth was associated with the lowest degree of niche overlap and the richest variety of species. Our findings indicate that in the lower reaches of the Tarim River, the groundwater table depth must be a minimum of 6 m for vegetation restoration; it should be maintained at 2 to 4 m in the vicinity of the water path, and at 4 to 6 m for the rest of this arid area.  相似文献   

14.
Given the alarming global rates of mangrove forest loss it is important that resource managers have access to updated information regarding both the extent and condition of their mangrove forests. Mexican mangroves in particular have been identified as experiencing an exceptional high annual rate of loss. However, conflicting studies, using remote sensing techniques, of the current state of many of these forests may be hindering all efforts to conserve and manage what remains. Focusing on one such system, the Teacapán–Agua Brava–Las Haciendas estuarine–mangrove complex of the Mexican Pacific, an attempt was made to develop a rapid method of mapping the current condition of the mangroves based on estimated LAI. Specifically, using an AccuPAR LP-80 Ceptometer, 300 indirect in situ LAI measurements were taken at various sites within the black mangrove (Avicennia germinans) dominated forests of the northern section of this system. From this sample, 225 measurements were then used to develop linear regression models based on their relationship with corresponding values derived from QuickBird very high resolution optical satellite data. Specifically, regression analyses of the in situ LAI with both the normalized difference vegetation index (NDVI) and the simple ration (SR) vegetation index revealed significant positive relationships [LAI versus NDVI (R 2 = 0.63); LAI versus SR (R 2 = 0.68)]. Moreover, using the remaining sample, further examination of standard errors and of an F test of the residual variances indicated little difference between the two models. Based on the NDVI model, a map of estimated mangrove LAI was then created. Excluding the dead mangrove areas (i.e. LAI = 0), which represented 40% of the total 30.4 km2 of mangrove area identified in the scene, a mean estimated LAI value of 2.71 was recorded. By grouping the healthy fringe mangrove with the healthy riverine mangrove and by grouping the dwarf mangrove together with the poor condition mangrove, mean estimated LAI values of 4.66 and 2.39 were calculated, respectively. Given that the former healthy group only represents 8% of the total mangrove area examined, it is concluded that this mangrove system, considered one of the most important of the Pacific coast of the Americas, is currently experiencing a considerable state of degradation. Furthermore, based on the results of this investigation it is suggested that this approach could provide resource managers and scientists alike with a very rapid and effective method for monitoring the state of remaining mangrove forests of the Mexican Pacific and, possibly, other areas of the tropics.  相似文献   

15.
The purpose of this study was to establish a subsampling procedure for benthic macroinvertebrates to aid in the development of a multimetric index to assess the biological condition of streams. Data from six streams that are considered minimally impaired were used. Subsampling was done using a device divided into 24 quadrats. The sediment from each quadrat was sorted, and all organisms were removed and identified. Richness metrics were the most affected by subsample size. Relative-abundance metrics were the most stable, proving that the sample was well distributed throughout the tray and abundance proportions were maintained. The results showed that the macroinvertebrate assemblage present in the six quadrats was similar to that present in the full sample. These analyses indicated that six quadrats, randomly designated, with a minimum of 200 collected specimens could be used in place of the full sample. In routine water management, managing time and costs are a major challenge; therefore, this type of simplification is absolutely necessary to ensure that a biomonitoring tool is useful for practical applications.  相似文献   

16.
17.
Two boat-based and one in-water sampling method have been used to collect submerged aquatic vegetation (SAV) as part of a long-term monitoring program in Lake Okeechobee, Florida, USA. The boat-based methods consisted of collecting SAV with a ponar dredge, used only to collect Chara, and an oyster tongs-like rake apparatus, used to collect all SAV. The in-water method involved use of a 0.5 m2 PVC quadrat frame deployed by a diver. During summer 2002, SAV biomass samples were collected using all three methods at various sites in the lake to compare between-methods sampling precision. Sites used for these comparisons were selected based on plant type, plant density and sediment type. Statistical comparisons indicated that there were significant (p ≤ 0.05) biomass differences in 8 of 15 possible pairwise comparisons between sampling method biomass means. In four of the eight comparisons, significantly higher biomass mean values were obtained using the quadrat frame. In three of the remaining four comparisons, significantly higher biomass mean values were obtained with the rake apparatus. For the fourth comparison, a significantly higher biomass mean value was obtained with the ponar dredge. Three of the four relationships between SAV biomass collected by the rake and the quadrat and the rake and the quadrat/ponar dredge were statistically significant, linear and explained between 67 and 78% of the biomass variability. There were no significant differences between regression coefficients or elevations for these relationships, therefore these regressions estimated the same population regression. The population regression coefficient was 0.95, suggesting that the quadrat and ponar over-sampled relative to the rake, but the amount of this over-sampling was very small. Since there was no consistent pattern in the sampling method which yielded the significantly different biomass values and there were no significant differences in sampling precision across a range of plant species, plant densities and two sediment types, the boat-based rake method appears to be a suitable replacement for the previously used ponar dredge and quadrat methods, when in-lake measurements are not practical.  相似文献   

18.
The Vegetation of Wet Meadows in Relation to Their Land-use   总被引:5,自引:0,他引:5  
Wetland biomonitoring approaches are needed to determine when changes in response to stressors are occurring and to predict the consequences of proposed land-use changes. These approaches require an understanding of shifts in biota that occur in response to land-use, data that are lacking for most kinds of wetlands. Changes in floristic composition corresponding to land-use differences at multiple scales (site to 2500 m radius) were characterized for 40 wet meadows associated with prairie glacial marshes in Minnesota (U.S.A.). In general, guild was more useful than species composition for indicating land-use impacts. Site impacts (stormwater, cultivation) and landscape disturbance (agriculture and urbanization, combined), coincide with a reduction in native graminoid and herbaceous perennial abundance (e.g., Carex lasiocarpa, Calamagrostis canadensis, Spartina pectinata). This vegetation is replaced with annuals (e.g, Bidens cernua, Polygonum pensylvanicum) in recently cultivated sites or introduced perennials (e.g., Phalaris arundinacea, Typha angustifolia) and floating aquatics (lemnids) in stormwater impacted wetlands. Ditches also reduce native perennial importance and increase perennials, but only when they are in highly impacted landscapes.  相似文献   

19.
Resource exploitation in lowland tropical forests is increasingand causing loss of biodiversity. Effective evaluation and management of the impacts of development on tropical forests requires appropriate assessment and monitoring tools. We proposethe use of 0.1-ha multi-scale, modified Whittaker plots (MWPs) to assess and monitor vegetation in lowland tropical rainforests.We established MWPs at 4 sites to: (1) describe and comparecomposition and structure of the sites using MWPs, (2) compare these results to those of 1-ha permanent vegetation plots (BDPs),and (3) evaluate the ability of MWPs to detect changes in populations (statistical power). We recorded more than 400 species at each site. Species composition among the sites was distinctive, while mean abundance and basal area was similar. Comparisons between MWPs and BDPs show that they record similarspecies composition and abundance and that both perform equallywell at detecting rare species. However, MWPs tend to record morespecies, and power analysis studies show that MWPs were more effective at detecting changes in the mean number of species of trees 10 cm in diameter at breast height (dbh) and in herbaceous plants. Ten MWPs were sufficient to detect a change of 11% in the mean number of herb species, and they were able to detect a 14% change in the mean number of species of trees 10 cm dbh. The value of MWPs for assessment and monitoringis discussed, along with recommendations for improving the sampling design to increase power.  相似文献   

20.
Subsampling has been widely applied in the laboratory to process freshwater macroinvertebrate samples. Currently, many governmental agencies and research groups apply the fixed-count approach, targeting a number of individuals per sample, and at the same time keeping track of the number of quadrats (fraction of the sample) processed. However, fixed-area methods are still in use. The objective of this paper was to evaluate the reliability of macroinvertebrate taxonomic richness estimates developed from processing a standard number of subsampling quadrats (i.e., fixed-area approaches). We used a dataset from 18 tropical stream sites experiencing three different levels of human disturbance (most-, intermediate-, and least-disturbed). With 12 quadrats processed (half the sample), the collection curves started to stabilize, and for more than half of the sites studied, it was possible to sample at least 80 % of the total taxonomic richness of the sample. However, we observed that the minimum number of quadrats to achieve 80 % of taxonomic richness was strongly negatively correlated with the number of individuals collected in each site: the fewer the individuals in a sample, the greater the processed proportion of that sample needed to represent it properly. Thus our results indicate that for any given areal subsampling effort (any fixed fraction of the sample), samples with different numbers of individuals will be represented differently in terms of the proportion of the total number of taxa of the whole samples, those with greater numbers being overestimated and those with fewer numbers being underestimated. Therefore, we do not recommend the use of fixed-area subsampling methods alone if the main purpose is to measure and analyze taxonomic richness; instead, we encourage researchers to use fixed-count approaches for this purpose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号