首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
The application of plant essential oils (EOs) (hyssop and marjoram) was evaluated for inactivation of non-enveloped viruses using murine norovirus and human adenovirus as models. No significant reduction of virus titres (TCID50) was observed when EOs were used at different temperatures and times.  相似文献   

3.

This study was conducted to evaluate the microbiological quality of a mangrove estuary in the Vitória Bay region, Espírito Santo, Brazil. We analyzed the presence and concentration of enteric viruses and thermotolerant coliforms in water, mussels (Mytella charruana and Mytella guyanensis), and oysters (Crassostrea rhizophorae), collected over a 13-month period. Human adenovirus, rotavirus A (RVA), and norovirus genogroup II were analyzed by quantitative PCR. The highest viral load was found in RVA-positive samples with a concentration of 3.0 × 104 genome copies (GC) L−1 in water samples and 1.3 × 105 GC g−1 in bivalves. RVA was the most prevalent virus in all matrices. Thermotolerant coliforms were quantified as colony-forming units (CFU) by the membrane filtration method. The concentration of these bacteria in water was in accordance with the Brazilian standard for recreational waters (< 250 CFU 100 mL−1) during most of the monitoring period (12 out of 13 months). However, thermotolerant coliform concentrations of 3.0, 3.1, and 2.6 log CFU 100 g−1 were detected in M. charruana, M. guyanensis, and C. rhizophorae, respectively. The presence of human-specific viruses in water and bivalves reflects the strong anthropogenic impact on the mangrove and serves as an early warning of waterborne and foodborne disease outbreaks resulting from the consumption of shellfish and the practice of water recreational activities in the region.

  相似文献   

4.
Assessment of the Antiviral Properties of Zeolites Containing Metal Ions   总被引:1,自引:0,他引:1  
The antiviral properties of zeolite (sodium aluminosilicate) powders amended with metal ions were assessed using human coronavirus 229E, feline infectious peritonitis virus (FIPV), and feline calicivirus F-9. Zeolites containing silver and silver/copper caused significant reductions of coronavirus 229E after 1 h in suspension. The silver/copper combination yielded a >5.13-log10 reduction within 24 h. It was also the most effective (>3.18-log10) against FIPV after 4 h. Other formulations were ineffective against FIPV. On plastic coupons with incorporated silver/copper-zeolites, >1.7-log10 and >3.8-log10 reductions were achieved for coronavirus 229E and feline calicivirus within 24 h, respectively. Silver/copper zeolite reduced titers of all viruses tested, suggesting that it may be effective against related pathogens of interest [i.e., SARS coronavirus, other coronaviruses, human norovirus (calicivirus)]. Of note, it was effective against both enveloped and nonenveloped viruses. Metal-zeolites could therefore possibly be used in applications to reduce virus contamination of fomites and thus the spread of viral diseases.  相似文献   

5.
6.

Raw oysters are considered a culinary delicacy but are frequently the culprit in food-borne norovirus (NoV) infections. As commercial depuration procedures are currently unable to efficiently eliminate NoV from oysters, an optimisation of the process should be considered. This study addresses the ability of elevated water temperatures to enhance the elimination of NoV and Tulane virus (TuV) from Pacific oysters (Crassostrea gigas). Both viruses were experimentally bioaccumulated in oysters, which were thereafter depurated at 12 °C and 17 °C for 4 weeks. Infectious TuV and viral RNA were monitored weekly for 28 days by TCID50 and (PMAxx-) RT-qPCR, respectively. TuV RNA was more persistent than NoV and decreased by?<?0.5 log10 after 14 days, while NoV reductions were already?>?1.0 log10 at this time. For RT-qPCR there was no detectable benefit of elevated water temperatures or PMAxx for either virus (p?>?0.05). TuV TCID50 decreased steadily, and reductions were significantly different between the two temperatures (p?<?0.001). This was most evident on days 14 and 21 when reductions at 17 °C were 1.3–1.7 log10 higher than at 12 °C. After 3 weeks, reductions?>?3.0 log10 were observed at 17 °C, while at 12 °C reductions did not exceed 1.9 log10. The length of depuration also had an influence on virus numbers. TuV reductions increased from?<?1.0 log10 after seven days to?>?4.0 log10 after 4 weeks. This implies that an extension of the depuration period to more than seven days, possibly in combination with elevated water temperatures, may be beneficial for the inactivation and removal of viral pathogens.

  相似文献   

7.
Human enteric viruses are a major cause of waterborne diseases, and can be transmitted by contaminated water of all kinds, including drinking and recreational water. The objectives of the present study were to assess the occurrence of enteric viruses (enterovirus, norovirus, adenovirus, hepatitis A and E virus) in raw and treated wastewaters, in rivers receiving wastewater discharges, and in drinking waters. Wastewater treatment plants’ (WWTP) pathogen removal efficiencies by adenovirus quantitative real-time PCR and the presence of infectious enterovirus, by cell culture assays, in treated wastewaters and in surface waters were also evaluated. A total of 90 water samples were collected: raw and treated wastewaters (treated effluents and ultrafiltered water reused for industrial purposes), water from two rivers receiving treated discharges, and drinking water. Nested PCR assays were used for the identification of viral DNA/RNA, followed by direct amplicon sequencing. All raw sewage samples (21/21), 61.9 % of treated wastewater samples (13/21), and 25 % of ultrafiltered water samples (3/12) were contaminated with at least one viral family. Multiple virus families and genera were frequently detected. Mean positive PCRs per sample decreased significantly from raw to treated sewage and to ultrafiltered waters. Moreover, quantitative adenovirus data showed a reduction in excess of 99 % in viral genome copies following wastewater treatment. In surface waters, 78.6 % (22/28) of samples tested positive for one or more viruses by molecular methods, but enterovirus-specific infectivity assays did not reveal infectious particles in these samples. All drinking water samples tested negative for all viruses, demonstrating the effectiveness of treatment in removing viral pathogens from drinking water. Integrated strategies to manage water from all sources are crucial to ensure water quality.  相似文献   

8.
Human noroviral infections are generally more common during winters in temperate regions. This study used a murine norovirus (MNV) as a human norovirus surrogate to test the effect of water temperature (4 and 25°C) on virus survival and its susceptibility to the levels of monochloramine (~1.89 ppm) to terminally disinfect municipally treated potable waters. The titre of MNV remained essentially unchanged for at least 24 h in raw river water at both temperatures. The virus became undetectable in <2 h in monochloramine-containing samples held at 25°C, but its titre remained virtually unaltered at 4°C (P < 0.05) under the same conditions. These findings strongly suggest that water temperature can influence the norovirucidal activity of monochloramine and its possible impact on the seasonality of outbreaks of noroviral infections.  相似文献   

9.
Root uptake of enteric pathogens and subsequent internalization has been a produce safety concern and is being investigated as a potential route of pre-harvest contamination. The objective of this study was to determine the ability of hepatitis A virus (HAV) and the human norovirus surrogate, murine norovirus (MNV), to internalize in spinach and green onions through root uptake in both soil and hydroponic systems. HAV or MNV was inoculated into soil matrices or into two hydroponic systems, floating and nutrient film technique systems. Viruses present within spinach and green onions were detected by RT-qPCR or infectivity assays after inactivating externally present viruses with Virkon®. HAV and MNV were not detected in green onion plants grown up to 20 days and HAV was detected in only 1 of 64 spinach plants grown in contaminated soil substrate systems up to 20 days. Compared to soil systems, a drastic difference in virus internalization was observed in hydroponic systems; HAV or pressure-treated HAV and MNV were internalized up to 4 log RT-qPCR units and internalized MNV was shown to remain infectious. Understanding the interactions of human enteric viruses on produce can aid in the elucidation of the mechanisms of attachment and internalization, and aid in understanding risks associated with contamination events.  相似文献   

10.
Foodborne illnesses associated with contaminated fresh produce are a common public health problem and there is an upward trend of outbreaks caused by enteric viruses, especially human noroviruses (HNoVs) and hepatitis A virus (HAV). This study aimed to assess the use of DNase and RNase coupled to qPCR and RT-qPCR, respectively, to detect intact particles of human adenoviruses (HAdVs), HNoV GI and GII and HAV in fresh produce. Different concentrations of DNase and RNase were tested to optimize the degradation of free DNA and RNA from inactivated HAdV and murine norovirus (MNV), respectively. Results indicated that 10 µg/ml of RNase was able to degrade more than 4 log10 (99.99%) of free RNA, and 1 U of DNase degraded the range of 0.84–2.5 log10 of free DNA depending on the fresh produce analysed. The treatment with nucleases coupled to (RT)-qPCR was applied to detect potential infectious virus in organic lettuce, green onions and strawberries collected in different seasons. As a result, no intact particles of HNoV GI and GII were detected in the 36 samples analysed, HAdV was found in one sample and HAV was present in 33.3% of the samples, without any reasonable distribution pattern among seasons. In conclusion, RT-qPCR preceded by RNase treatment of eluted samples from fresh produce is a good alternative to detect undamaged RNA viruses and therefore, potential infectious viruses. Moreover, this study provides data about the prevalence of enteric viruses in organic fresh produce from Brazil.  相似文献   

11.
A filtration system, based on tangential flow filtration (TFF) followed by ultracentrifugation was developed in order to concentrate simultaneously viruses and parasites from large volumes of water. For TFF, no pre-treatment of the membrane is performed but a post-rinsing step using high pH-beef extract-based eluant. Applying our protocol to 20 l of surface waters spiked with vaccinal poliovirus-1, ϕX174 and MS2 bacteriophages resulted in an averaged viral recovery of 75% by TFF and 91% by ultracentrifugation (total viral recovery of 70%). Our protocol was further applied to 31 environmental samples including surface, ground and drinking waters from the Grand Duchy of Luxembourg in order to assess the occurrence of protozoan parasites (Cryptosporidium parvum and Giardia lamblia (oo)cysts), pathogenic viruses (enterovirus, norovirus and adenovirus) and infectious bacteriophages (somatic coliphages and F-specific phages) in these samples. High viral recovery rates of > 70% were confirmed concentrating environmental strains of somatic and F-specific coliphages from non-spiked surface waters. Parasites and enteric viruses were detected in 86 and 40% of the surface waters used for drinking water production, respectively. Infectious bacteriophages were isolated from all surface waters and in two out of seven (29%) groundwaters revealing a susceptibility of the corresponding wells to viral pollution. TFF-based method proved to be efficient for surveying the occurrence of non-bacterial pathogens such as enteric viruses and protozoan parasites in large volumes of environmental waters.  相似文献   

12.
The discharge of treated civil wastewater into natural waters or their reuse in industry and agriculture involves virological risks for the exposed population. Although European and Italian regulations do not require routine viral analysis of treated wastewater, a better understanding of viral contamination and resistance to treatments is needed to assess and control such risks. To this end, a wastewater treatment plant was monitored by analysing the sewage at the plant entry and exit points in order to quantify the initial presence and eventual reduction of adenovirus, Torque Teno virus, Hepatitis A virus, rotavirus, enterovirus, norovirus genogroups I and II, somatic coliphages, Escherichia coli and enterococci. The results reveal that treated water may still contain infectious human viruses and thereby represent a potential health hazard. No significant correlations were found between bacterial indicators and the viruses considered, confirming their inadequacy for virological risk assessment, while the best indicators for virus inactivation in recycled waters seem to be adenovirus, followed by somatic coliphages.  相似文献   

13.
Different sources were consulted to obtain information on the occurrence of viruses in bivalve molluscs on the European market. Twenty-six peer-reviewed articles were identified reporting on the molecular detection of viral RNA in 4,260 samples in total. The data obtained will be presented geographically on virus types detected, the origin and treatment of the shellfish, and the detection technique applied. The data demonstrate that viral RNA can be detected in shellfish from polluted areas, in depurated shellfish as well as those for human consumption. The European Rapid Alert System for Food and Feed (RASFF) database was consulted as another source. Twenty-eight notifications were identified on the presence of hepatitis A virus or norovirus in shellfish on the European market. The most recent report of the European laboratory network was referred to, to gain insight into the laboratory capability at present for the analyses of shellfish on the presence of viruses. Approximately 67% of 27 participating laboratories obtained intended results for all samples, consisting of lenticules loaded with 103 copies norovirus (genogroup I (GGI) and/or genogroup II (GGII)) and/or 1 × 105–8 × 104 copies of hepatitis A virus. From 1993, there has been a continuous development of molecular detection techniques and tools have been described to ensure quality assurance. End product testing will, however, not be achievable. As depuration has been shown not to be effective for the complete elimination of viruses, shellfish should not be in contact with faecal contaminated water in order to minimise the risk of shellfish-transmittable viral diseases.  相似文献   

14.
Surface disinfection, as part of environmental hygiene practices, is an efficient barrier to gastroenteritis transmission. However, surface disinfectants may be difficult to obtain in remote, resource-limited, or disaster relief settings. Electrochemical oxidants (ECO) are chlorine-based disinfectants that can be generated using battery power to electrolyze brine (NaCl) solutions. Electrolysis generates a mixed-oxidant solution that contains both chlorine (HOCl, OCl?) and reactive oxygen species (e.g., ·OH, O3, H2O2, and ·O2?) capable of inactivating pathogens. One onsite generator of ECO is the Smart Electrochlorinator 200 (SE-200, Cascade Designs, Inc.). In a laboratory study, we assessed ECO surface disinfection efficacy for two gastrointestinal virus surrogates: bacteriophage MS2 and murine norovirus MNV-1. We quantified both infectivity and nucleic acid inactivation using culture-dependent and independent assays. At free available chlorine concentrations of 2,500 ppm and a contact time of 30 s, ECO inactivation of infective MS2 bacteriophage exceeded 7 log10 compared to MNV-1 disinfection of approximately 2 log10. Genomic RNA inactivation was less than infective virus inactivation: MS2 RNA inactivation was approximately 5 log10 compared to MNV-1 RNA inactivation of approximately 1.5 log10. The results are similar to inactivation efficacy of household bleach when used at similar free available chlorine concentrations. Our work demonstrates the potential of ECO solutions, generated onsite, to be used for surface disinfection.  相似文献   

15.

Human noroviruses are a major cause for gastroenteritis outbreaks. Filter-feeding bivalve molluscs, which accumulate noroviruses in their digestive tissues, are a typical vector for human infection. RT-qPCR, the established method for human norovirus detection in food, does not allow discrimination between infectious and non-infectious viruses and can overestimate potentially infectious viral loads. To develop a more accurate method of infectious norovirus load estimation, we combined intercalating agent propidium monoazide (PMAxx™)-pre-treatment with RT-qPCR assay using in vitro-cultivable murine norovirus. Three primer sets targeting different genome regions and diverse amplicon sizes were used to compare one-step amplification of a short genome fragment to three two-step long-range RT-qPCRs (7 kbp, 3.6 kbp and 2.3 kbp amplicons). Following initial assays performed on untreated infectious, heat-, or ultraviolet-inactivated murine noroviruses in PBS suspension, PMAxx™ RT-qPCRs were implemented to detect murine noroviruses subsequent to their extraction from mussel digestive tissues; virus extraction via anionic polymer-coated magnetic beads was compared with the proteinase K-dependent ISO norm. The long-range RT-qPCR process detecting fragments of more than 2.3 kbp allowed accurate estimation of the infectivity of UV-damaged murine noroviruses. While proteinase K extraction limited later estimation of PMAxx™ pre-treatment effects and was found to be unsuited to the assay, magnetic bead-captured murine noroviruses retained their infectivity. Genome copies of heat-inactivated murine noroviruses differed by 2.3 log10 between RT-qPCR and PMAxx™-RT-qPCR analysis in bivalve molluscs, the PMAxx™ pre-treatment allowing a closer approximation of infectious titres. The combination of bead-based virus extraction and PMAxx™ RT-qPCR thus provides a more accurate model for the estimation of noroviral bivalve mollusc contamination than the conjunction of proteinase K extraction and RT-qPCR and has the potential (once validated utilising infectious human norovirus) to provide an added measure of security to food safety authorities in the hazard assessment of potential bivalve mollusc contamination.

  相似文献   

16.
The study was carried out in 2007, and its main aim was 1 year monitoring of surface water of the River Wieprz in Poland for the presence of human adenoviruses group F and noroviruses (NoVs). In total, 60 water samples were collected from four sampling sites situated along the river. The viruses were concentrated from water samples using glass wool, followed by elution with a glycine buffer containing skimmed milk powder. Subsequently, the viral nucleic acids were extracted and purified from water concentrates using a NucliSENS® kit and a QIAamp Viral RNA Mini Kit®. The presence of viral nucleic acids was confirmed by applying traditional PCR-based methods with incorporated internal amplification controls. Human pathogenic viruses were detected in 35% of analysed water samples. Adenoviruses were detected in 28.3% of analysed samples, and were present at all seasons of the year. 11.6% of the samples were positive for NoVs; they were present only during summer, in contrast to conventional findings. Molecular identification of norovirus strains revealed that they belong to genogroup I and II.  相似文献   

17.
In New Zealand shellfish are a significant food resource and shellfish are harvested for both recreational and commercial use. Commercially harvested Greenshell mussels (Perna canaliculus) and Pacific oysters (Crassostrea gigas) from aquaculture farms dominate consumption in New Zealand. Other commercial species include cockles (Austrovenus stuchburyii) and surf clam species which are wild harvested. The consumption of shellfish has been associated with gastroenteritis outbreaks caused by noroviruses following faecal contamination of growing waters with human waste. In New Zealand, since 1994 over 50 norovirus outbreaks linked to consumption of either New Zealand commercially grown oysters or imported oysters have been reported. An IEC/ISO 17025 accredited method for detection of noroviruses in bivalve shellfish was established in 2007. This method has been used in outbreak investigations to analyse implicated shellfish, in virus prevalence surveys and monitoring programmes, and commercially for product clearances. Surveys have shown that enteric viruses occur frequently in non-commercial shellfish, especially near sewage outfalls and following sewage discharge events. Viral source tracking methods have assisted in identifying pollution sources. The commercial shellfish industry operates under the Bivalve Molluscan Shellfish Regulated Control Scheme (BMSRCS), administered by the New Zealand Food Safety Authority. Recently regulatory measures were introduced into the BMSRCS to manage viruses. These include the closure of harvest areas for at least 28 days after human sewage contamination events and norovirus outbreaks. These management strategies, coupled with new information on norovirus prevalence in shellfish, have helped to improve the quality and safety of New Zealand shellfish.  相似文献   

18.
19.
Enteric viruses transmitted via the faecal-oral route occur in high concentrations in wastewater and may contaminate drinking water sources and cause disease. In order to quantify enteric adenovirus and norovirus genotypes I and II (GI and GII) impacting a drinking source in Norway, samples of surface water (52), wastewater inlet (64) and outlet (59) were collected between January 2011 and April 2012. Samples were concentrated in two steps, using an electropositive disc filter and polyethylene glycol precipitation, followed by nucleic acid extraction and analysis by quantitative polymerase chain reaction. Virus was detected in 47/52 (90.4 %) of surface water, 59/64 (92 %) of wastewater inlet and 55/59 (93 %) of wastewater outlet samples. Norovirus GI occurred in the highest concentrations in surface water (2.51e + 04) and adenovirus in wastewater (2.15e + 07). While adenovirus was the most frequently detected in all matrices, norovirus GI was more frequently detected in surface water and norovirus GII in wastewater. This study is the first in Norway to monitor both sewage and a drinking water source in parallel, and confirms the year-round presence of norovirus and adenovirus in a Norwegian drinking water source.  相似文献   

20.
本研究选用大肠杆菌(Escherichia coli)和脊髓灰质炎病毒(poliovirus)分别作为典型的细菌和病毒,利用培养和定量PCR的检测技术,对比研究紫外线消毒和次氯酸钠消毒对细菌和病毒的作用特点.结果表明:脊髓灰质炎病毒比大肠杆菌更难被灭活,达到1-log所需的氯剂量分别为19.2 mg·L~(-1)·min和10.14 mg·L~(-1)·min;所需的紫外线剂量分别为6.37 m J·cm~(-2)和1.81 m J·cm~(-2).定量PCR方法检测大肠杆菌和脊髓灰质炎病毒达到1-log的核酸损伤所需的紫外线剂量和氯剂量要比培养法高出1~2数量级,紫外线消毒对脊髓灰质炎病毒的RNA损伤量明显大于对大肠杆菌的DNA损伤,病毒的单链RNA对紫外线的敏感性更强,该结果与培养法正好相反.达到1-log核酸损伤脊髓灰质炎病毒所需的紫外线剂量为135 m J·cm~(-2),大肠杆菌所需的剂量为270.3 m J·cm~(-2),核酸损伤需要更多的消毒剂量,可能由于消毒过程微生物进入活性但处于非可培养状态(VBNC),以及灭活对微生物其他分子的损伤和微生物死后核酸的持续性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号