首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
以甘油为SBR反硝化除磷的碳源,研究了甘油作为反硝化除磷碳源的可行性,以及不同初始pH与进水COD/P对反硝化除磷效果的影响。并采用高通量测序技术对反应器中驯化期与稳定期的菌群结构变化进行分析。结果表明,甘油作为反硝化除磷的碳源具有可行性,除磷效率达到79.2%,平均出水TP为0.98 mg/L。pH为7.6、COD/P=20左右时处理效果较好。以甘油为碳源驯化的除磷污泥中,在"目"级别上的主导菌群以红环菌目(Rhodocyclales)为主,从驯化到稳定,其比例由24.8%增加至42.4%。通过与已知除磷菌序列比对(BLAST),在序列相似度为97%条件下,种泥中除磷菌序列比例为0.71%,随着污泥驯化,除磷菌序列比例由驯化期的1.6%提高至稳定期的8.0%。  相似文献   

2.
分别以硝酸盐、亚硝酸盐、氧气为电子受体,采用3组SBR反应器培养除磷污泥,连续126d的稳定运行表明:以硝酸盐、亚硝酸盐、氧气为电子受体除磷污泥对TP平均去除率分别为84.8%, 78.7%, 87.4%,出水TP平均浓度分别为0.758, 0.931, 0.632mg/L.采用高通量测序技术对不同电子受体除磷污泥的相似性与菌群结构进行了研究,结果表明,以硝酸盐,亚硝酸盐为电子受体的反硝化除磷污泥具有近似的菌群结构,与好氧除磷污泥菌群结构差异较大.基于各样品主导OTUs序列的系统发育关系及其比例的分布,主导微生物主要可以分为5个簇.通过序列比对,在97%的序列相似度条件下,种泥中聚磷菌与聚糖菌序列比例为0.716%与0.368%,以硝酸盐、亚硝酸盐、氧气为电子受体除磷污泥中聚磷菌与聚糖菌序列比例分别为1.78%, 2.53%, 4.80%与1.44%, 1.32%, 30.9%,厌氧-缺氧条件有利于抑制聚糖菌.亚硝酸盐为反硝化除磷污泥电子受体时潜在公共卫生安全隐患.  相似文献   

3.
碳源浓度对同步硝化反硝化协同除磷影响研究   总被引:4,自引:1,他引:3  
在厌氧/好氧SBR反应装置中,以模拟城市污水为处理对象,研究不同碳源浓度对同步硝化反硝化协同除磷效果的影响,同时对该过程中ORP的变化规律及影响作了探讨。结果表明,碳源浓度的变化对该系统中有机物和总磷的去除影响不显著,COD和TP的去除率分别>95%和90%,出水TP在0.5mg/L以下,当C/N比为6.7时,总氮去除率高达98.4%。本试验条件下,当COD:TN:TP约为200:30:7时,系统同步脱氮除磷运行效果最佳。  相似文献   

4.
为了探明反硝化脱氮除磷工艺的碳源利用特性,通过SBR工艺对反硝化聚磷菌进行驯化在不同碳源浓度下,研究了反硝化脱氮除磷过程中的碳源利用特性。结果表明,反硝化脱氮除磷系统在厌氧段碳源转化过程中有一个饱和碳源,该研究中系统MLSS为3 000 mg/L时厌氧阶段饱和碳源浓度为250 mg/L COD。厌氧段进水碳源浓度低于该系统饱和碳源时,缺氧段总氮、磷去除随着厌氧段进水碳源浓度提高而增加,当进水碳源浓度超过饱和碳源时,总氮去除随着碳源浓度提高而进一步提高,但总磷去除率下降。说明缺氧段胞外碳源对系统脱氮有促进作用,但对除磷有抑制作用。厌氧进水碳源浓度达到饱和碳源时系统除磷效果最好,且脱氮所需的碳源利用效率最高此时系统COD(m)/NO_3~-N(m)值为3.3左右。  相似文献   

5.
分别采用NaAc(R1)、NaAc+胰蛋白胨(R2)和可溶性淀粉+胰蛋白胨(R3)为碳源模拟生活污水,研究大分子有机物对除磷颗粒污泥特性及菌群结构的影响.结果表明,在培养初期,大分子有机物有利于除磷污泥的凝聚,随着大分子有机物含量的增多,除磷污泥的颗粒化速度依次加快,经过120 d的培养R3反应器最先实现颗粒化.系统稳...  相似文献   

6.
采用厌氧/缺氧/好氧和生物接触氧化反应器(A2/O-BCO)组成的反硝化除磷系统处理模拟生活污水,通过调节进水乙酸钠、丙酸钠的配比(乙酸钠:丙酸钠分别为1:0,2:1,1:1,1:2和0:1),考察了系统对有机物的去除以及同步脱氮除磷的影响,同时通过高通量测序对比了不同配比下微生物菌群结构的变化.结果表明:乙酸钠丙酸钠配比对有机物和NH4+-N的去除影响较小,对厌氧段有机物的消耗和TN的去除率以及磷的释放和吸收影响较为明显;TP去除率仅为50.3%~56.8%,需进一步优化系统的运行参数.当乙酸钠:丙酸钠=1:1时,厌氧段有机物消耗量最大,占有机物流入量的61.2%,厌氧释磷量最大(23.2mg/L)且缺氧吸磷率最高(71.4%),而TN的去除效果则随丙酸钠含量的增加而增加.高通量测序结果表明:A2/O反应器中微生物多样性降低,混合碳源污泥中微生物多样性比单一碳源更丰富;驯化后的污泥中绿弯菌(Chloroflexi)和螺旋菌(Saccharibacteria)减少,变形菌(Proteobacteria)和拟杆菌(Bacteroidetes)增加.BCO反应器中Nitrospira和Nitrosomonas总占比为2.1%~31.4%,且抑制亚硝酸盐氧化菌(NOB)的活性,有利于短程硝化的实现.  相似文献   

7.
亚硝酸型反硝化除磷污泥驯化方式的比较   总被引:2,自引:1,他引:2       下载免费PDF全文
以14d作为目标驯化时间,采用SBR反应器比较了厌氧-缺氧(亚硝酸盐一次投加)、厌氧-缺氧-好氧(亚硝酸盐一次投加)、厌氧-好氧+厌氧-缺氧-好氧(亚硝酸盐一次投加)、厌氧-好氧+厌氧-缺氧-好氧(亚硝酸盐连续投加)4种亚硝酸型反硝化除磷污泥驯化方式的优劣.结果表明,经厌氧-好氧+厌氧-缺氧-好氧(亚硝酸盐连续投加)方法驯化后的污泥,能承受的亚硝酸盐初始浓度最高为80mg/L,吸磷速率最高为14mgP/(gVSS·h),所需要的亚硝酸盐投加量较少,是一种较好的亚硝酸型反硝化除磷污泥快速驯化方法.  相似文献   

8.
姚创  刘建新  赵子玲  林国颖  刘晖 《环境工程》2022,40(1):21-26+223
为揭示碳源投加方式对低碳污水氮磷去除影响,采用A2/O系统处理模拟低C/N(C/N为2.0~4.0)污水,分别在污泥回流池、进水端投加碳源,对比研究2种方式条件下的系统氮磷污染物去除效果及微生物菌群结构特点。结果表明:与传统进水端投加碳源方式(阶段Ⅳ)相比,在污泥回流池投加等量碳源(阶段Ⅲ),有利于实现更佳的脱氮除磷效果。阶段Ⅲ的TN、TP去除率分别为54.5%、63.9%,高于阶段Ⅳ的氮、磷去除率(TN和TP去除率分别为44.9%、21.7%)。高通量测序结果表明:2种碳源投加方式均改变了微生物菌群丰富度和多样性,且在污泥回流池投加碳源更有利于优势菌群的富集,该阶段红游动菌属(Rhodoplanes,2.3%)、脱氯单胞菌属(Dechloromonas,1.6%)及生丝菌属(Hyphomicrobium,1.4%)为优势菌属,其比例均高于阶段Ⅳ。  相似文献   

9.
采用厌氧/缺氧/好氧-生物接触氧化(A2/O - BCO)工艺处理低碳氮(C/N)比污水, 考察单因素碳源(阶段Ⅰ: 乙酸钠; 阶段Ⅱ: 乙酸钠+丙酸钠; 阶段Ⅲ: 丙酸钠)对有机物去除以及同步脱氮除磷的影响, 并重点探究乙酸钠、丙酸钠混合碳源条件下内碳源(PHA、Gly)的转化利用以及反硝化除磷(DPR)机理, 同时通过高通量测序对比了不同阶段微生物菌群结构的演变规律.结果表明: 混合碳源提高了有机物、氮、磷的同步去除效率, 厌氧段内碳源转化量为226mg/h, 释磷量高达30.58mg/L, DPR效率稳定在90%以上; 批次试验表明反硝化聚磷菌(DPAOs)占聚磷菌(PAOs)的比例为72.42%, 基本实现了DPAOs的富集; 高通量测序结果表明混合碳源更有利于形成独特的OTUs菌群, PAOs(包括AccumulibacterAcinetobacter)和DPAOs (包括DechloromonasPseudomonas)总量高达29.13%(> 16.18%(阶段Ⅲ) > 14.34%(阶段Ⅰ)), 有效促进了碳源的高效利用以及反硝化除磷效率; BCO反应器中氨氧化菌(AOB, 包括NitrosomonasNitrosomonadaceae)和亚硝酸盐氧化菌(NOB, 以Nitrospira为主)总量从3.89%(N1)增加到23.09%(N2)、37.23%(N3), 为反硝化除磷提供充足的电子受体; 此外, 建立了基于碳源高效利用的运行调控策略, 以期为A2/O - BCO工艺的推广应用提供理论参考.  相似文献   

10.
王春英 《环境科技》2009,22(6):24-27
为了进一步了解反硝化聚磷菌(DPB)污泥质量浓度(MLSS)对反硝化除磷过程的影响,进行一系列厌氧、缺氧模拟试验.研究考察DPB污泥的MLSS对厌氧释磷、缺氧反硝化吸磷的影响。结果表明:MLSS越高,释、吸磷速率及反硝化速率越高;MLSS对释、吸磷比速率和反硝化比速率的影响较小;厌氧总释磷量由污水中可利用COD的多少决定,DPB污泥的MLSS只影响到达释磷平衡的时间:污水中含氮量偏低引起反硝化吸磷段NO3^-不足时,DPB污泥厌氧释磷量高于反硝化吸磷量.MLSS越高经缺氧反硝化吸磷处理后水中含磷量越高。  相似文献   

11.
碳源浓度和污泥龄对反硝化聚磷脱氮影响研究   总被引:1,自引:2,他引:1  
利用间歇试验研究了反硝化除磷过程中有机碳源和污泥龄对脱氮除磷的影响。试验结果表明:(1)厌氧段碳源COD浓度越高(150~250mg/L),放磷越充分,则缺氧段反硝化和吸磷速率越大;但当碳源COD浓度超过200mg/L时,未反应完全的有机物残留于后续缺氧段对缺氧吸磷产生抑制作用。(2)在水温为15℃~25℃,污泥负荷为0.12kgCOD(/kgMLSS·d),SRT为15d,HRT为7h时,利用人工配水作为碳源,在保持较高的COD去除率的同时,总氮和总磷的去除率最高,分别在80%和88%以上。  相似文献   

12.
为探究碳源类型在反硝化过程中对氮素转化和微生物群落组成的影响,分别建立R1(以C6H12O6为碳源)和R2(以CH3COONa为碳源)反应器,通过分析R1和R2反应器中反硝化过程的氮素转化情况,评价C6H12O6和CH3COONa对脱氮效果的影响,并运用动力学模型对R1和R2反应器中反硝化能力进行评价;同时,采用高通量测序技术表征2种碳源对反应器中微生物群落结构和多样性的影响.结果表明:①运行后期的R1、R2反应器中单位生物量的反硝化速率(以NO3--N计,下同)分别为8.56、11.26 mg/(g·h),R1反应器中NO2--N累积平均值为11.34 mg/L,显著高于R2反应器(0.20 mg/L),且R1反应器中NH4+-N累积平均值为6.58 mg/L,是R2反应器(0.65 mg/L)的10.11倍.②反应器中NO3--N还原过程均符合Haldane模型,其中R1、R2反应器中单位生物量的rmax(最大降解速率)分别为35.61、47.79 mg/(g·h),表明R2反应器中的反硝化能力强于R1反应器.③微生物经过富集后,其细菌多样性和物种丰度下降,但发挥反硝化作用的微生物相对丰度逐渐增加.R1和R2反应器中共同的优势菌门有Proteobacterias、Bacteroidetes、Firmicutes和Gracilibacters,其在R1反应器中的相对丰度依次为96.14%、2.06%、0.66%和0.47%,在R2反应器中依次为79.75%、6.88%、9.47%和2.13%,优势菌门在不同运行时间的丰度表达上存在消长变化状态.研究显示,C6H12O6和CH3COONa在反硝化过程的氮素转化上存在明显差异,对各类优势菌群的相对丰度有明显影响.   相似文献   

13.
反硝化除磷污泥的缺氧吸磷性能研究   总被引:2,自引:0,他引:2  
为探讨反硝化除磷过程中污泥的缺氧吸磷性能,利用厌氧/缺氧强化驯化得到的反硝化除磷污泥,通过间歇性试验考察不同电子受体类型、不同污泥浓度(MLSS)对吸磷过程的影响。试验结果表明,缺氧条件下反硝化除磷菌(DPB)利用硝酸盐作为电子受体能够彻底吸磷,其吸磷速率约为好氧吸磷的59%;若以亚硝酸盐为电子受体,浓度较低时(10.6 mg/L)的吸磷速率与硝酸盐为电子受体时相当,但较高的亚硝酸盐浓度(22.6 mg/L)会抑制反硝化除磷过程;适当提高污泥浓度能加快缺氧吸磷速度,而过高的污泥浓度会降低污泥对氮、磷的比去除速率,故应将MLSS控制在合理的范围内。  相似文献   

14.
MUCT-MBR工艺反硝化除磷脱氮研究   总被引:3,自引:2,他引:1  
自行设计的双反应器MUCT-MBR简化了MUCT工艺,将反应池由5个简化到2个,减小了工艺占地面积,并且采用膜过滤取代二沉池出水,操作简单,出水安全可靠.针对MUCT-MBR工艺脱氮除磷性能,尤其是反硝化除磷功能进行研究.结果表明,当进水C/N/P比在33.3/5/1~25/5.5/1范围内,整个实验过程中COD、 TN和TP平均去除率分别达到89.3%、 75.4%、 79.2%;且膜出水不受污泥沉降性的影响.缺氧段的反硝化吸磷是MUCT-MBR工艺除磷的关键,系统运行至第58 d,系统中反硝化除磷菌(DPAOs)所占比例达84.2%,反硝化除磷占系统总磷去除的67.07%.  相似文献   

15.
张耀斌  邢亚彬  荆彦文  全燮 《环境科学》2010,31(10):2360-2364
采用厌氧-缺氧条件运行的序批式移动床生物膜反应器,考察了NO3--N进水浓度及其投加方式对低碳废水(COD=200mg/L)反硝化除磷的影响.经驯化后,反硝化聚磷菌(DPB)在总聚磷菌的份额从15.7%增长到71.3%,富集了DPB.NO3--N的浓度对处理有较大影响.在NO3--N为30mg/L(即C/N=6.7:1)时,COD、PO43--P和NO3--N的去除率分别为97.8%、82.0%和81.2%,实现低碳污水的高效处理.NO3--N较低或较高浓度(20mg/L和40mg/L)时,缺氧段吸磷不充分,PHB由厌氧开始时的2.2mg/g左右分别积累至5.1mg/g和3.5mg/g,影响下一周期磷的释放.1次投加、2次投加和连续流加NO3--N,除对缺氧初期的反硝化吸磷速率有影响外,对反硝化除磷的效率影响不明显.  相似文献   

16.
反硝化聚磷污泥厌氧释磷影响因素研究   总被引:1,自引:0,他引:1  
采用静态试验的方法研究了温度、MLSS、VFA浓度、碳源种类等对反硝化聚磷污泥厌氧释磷的影响,研究结果表明:随着温度的升高厌氧释磷速率有所增加,但厌氧释磷速率与温度之间并不是简单的线性关系,温度对厌氧释磷的长期作用还有待考察;在一定范围内增加污泥浓度与碳源可以有效地强化厌氧释磷效果;反硝化除磷脱氮工艺处理实际生活污水时,建议厌氧池停留时间为4~6 h,在工艺首端设置水解酸化池将有利于厌氧释磷效果的强化.  相似文献   

17.
同时硝化/反硝化除磷工艺的脱氮除磷效能   总被引:1,自引:0,他引:1  
为实现同时硝化/反硝化除磷(SNDPR),在序批式活性污泥反应器(SBR)中,采用厌氧/好氧和厌氧/缺氧/好氧2种运行模式驯化污泥,并考察了厌氧/低氧模式下SNDPR过程中COD、PHB、TP、TN、DO和电化学参数的变化规律。结果表明,经2阶段驯化,反硝化聚磷菌比例提升至85.9%,硝化速率达5.97 mg(/L.h),实现了反硝化除磷菌和硝化菌的良好共存;在厌氧/低氧模式下,SNDPR对低碳城市污水具有良好脱氮除磷效果,TP、TN和COD去除率达到93.7%、79%和87.7%;PHB与COD降解、TN降解和TP吸收有良好的相关性,也是SNDPR过程的碳源驱动力;pH和ORP曲线上"谷点"预示厌氧释磷结束,pH曲线"折点"指示SNDPR结束。  相似文献   

18.
马娟  王谨  俞小军  张伟  魏雪芬  陈永志  田文清 《环境科学》2017,38(11):4664-4672
实验采用改良型CAST工艺,考察了不同诱导模式下系统的除磷脱氮性能.结果表明,在缺氧条件下投加亚硝酸盐对系统反硝化除磷性能的抑制作用较大,投加量为5 mg·L~(-1)时系统除磷性能变差.相比较,好氧投加亚硝酸盐的CAST系统更稳定,当亚硝酸盐投加浓度为5、10、15 mg·L~(-1)时各工况初期除磷性能均有小幅波动,但分别经过10、6、34 d驯化后,除磷率迅速回升并稳定在95%以上,出水磷浓度均小于0.5 mg·L~(-1);投加量为20 mg·L~(-1)时工艺除磷性能急速恶化,但污泥的亚硝酸盐型缺氧吸磷能力是驯化前的10.4倍,说明投加一定浓度亚硝酸盐导致的除磷性能恶化可以解除,且长期投加有利于富集以NO_2~-为电子受体的反硝化聚磷菌.实验还发现,好氧投加一定浓度亚硝酸盐系统污泥沉降性能良好且污泥浓度不断降低,这对污泥减量具有一定指导意义.  相似文献   

19.
污泥龄及pH值对反硝化除磷工艺效能的影响   总被引:1,自引:1,他引:1  
以SBR成功富集后的反硝化聚磷菌(DPBs)为研究对象,分别考察了污泥龄(SRT,35、25、15 d)及pH值(7.5、8.0、8.5)对反硝化除磷过程的影响.结果表明,SRT从35d缩短至25d,使活性污泥浓度(MLVSS)从2821 mg·L-1降低为2301 mg·L-1,而污泥负荷(F/M,以COD/MLVSS计)从0.256kg·(kg·d)-1增加至0.312 kg·(kg·d)-1,虽然净释磷量及净吸磷量有所下降,但是由于污泥活性的增加,此阶段厌氧释磷、缺氧吸磷及比反硝化速率均达到最高,分别为25.07、15.92及9.45 mg·(g·h)-1,污泥含磷率从4.78%升为5.33%,出水PO43--P浓度保持在0.5 mg·L-1以下,即PO43--P去除率稳定在95%以上;当SRT进一步缩短为15d时,MLVSS低至1448 mg·L-1,污泥中DPBs占聚磷菌(PAOs)的比例从82.4%骤降为65.7%,表明过短的SRT使得DPBs逐渐从系统中流失,此阶段污泥含磷率降至3.43%,释磷、吸磷及比反硝化速率亦出现不同程度的降低.随着pH值的升高(7.5~8.0),厌氧释磷及缺氧吸磷速率也升高,pH值为8.0时分别达到25.86mg·(g·h)-1和16.62 mg·(g·h)-1;当pH超过8.0后,除磷效率快速下降,推测为磷化学沉淀导致.  相似文献   

20.
废水反硝化除磷技术应用研究进展   总被引:1,自引:0,他引:1  
废水的反硝化除磷技术作为生物除磷的一个新思路,因其能够解决废水处理工艺运行中碳源不足、污泥产量大和好氧阶段曝气能耗大等问题,受到环境保护领域的关注。文章对反硝化除磷的机理、影响因素、现有工艺及研究现状作了综述,并对反硝化除磷技术未来发展作了展望。认为今后研究重点应集中在以下几个方面:①对DPBs有更全面的认识,富集和筛选更多高效的DPBs菌株;②在理论研究的基础上开发更多的反硝化除磷工艺,并将其应用于工程实践。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号