首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 730 毫秒
1.
植物修复是重金属污染农田的一种环保型治理技术,但植物修复技术产生了一个新的难题——大量含重金属的生物质。为快速处置含镉超富集植物生物质,采用不同提取剂对产后龙葵和伴矿景天生物质中的镉(cadmium,Cd)进行液相萃取,并对其萃取废液通过物理(4Å分子筛)和化学(KOH和K2CO3)方法进行了处理。分别考察了不同提取剂种类、浓度对修复植物生物质中重金属镉萃取效果的影响,探讨了重金属废水不同处理措施对萃取废液中镉的去除效果。结果表明,0.25 mol∙L−1盐酸(HCl)、0.25 mol∙L−1硝酸(HNO3)、0.25 mol∙L−1硫酸(H2SO4)和0.10 mol∙L−1乙二胺四乙酸二钠(disodium ethylenediaminetetraacetate,EDTA) 4种提取剂对龙葵茎和叶中Cd的萃取效果最佳,且茎和叶中Cd的萃取率最高分别达88.2%和89.8%;4种提取剂的Cd萃取率之间无显著性差异(P>0.05)。不同提取剂对伴矿景天生物质中Cd的萃取率均在50%以下,表现为0.25 mol∙L−1盐酸≈0.25 mol∙L−1硝酸≈0.25 mol∙L−1硫酸>0.10 mol∙L−1乙二胺四乙酸二钠。4Å分子筛对萃取废液中Cd的后续净化效果最佳,在处理高浓度Cd后,萃取液中最终Cd质量浓度达到0.10 mg∙L−1的污水排放标准(GB 8978-1996)。综合考虑提取剂萃取修复植物中Cd的效率、提取剂的成本与后续萃取废液中Cd的去除效果,0.25 mol∙L−1盐酸作为液相萃取的提取剂最合适,4Å分子筛作为萃取废液的净化剂最为高效。  相似文献   

2.
为探究外源信号分子的群体感应效应对反硝化菌FX-4及活性污泥系统脱氮的影响,将外源AHLs (酰基高丝氨酸内酯类) 的C6-HSL和C12-HSL信号分子投加至反硝化复筛培养基中,探究AHLs对反硝化菌FX-4去除NO3-N的影响。结果发现,外源投加C6-HSL和C12-HSL均可有效地提高反硝化菌FX-4的NO3-N去除性能,增加反硝化菌FX-4的生物量,且C12-HSL协同反硝化菌FX-4的NO3-N去除效果最佳;不同浓度的C12-HSL对反硝化菌FX-4的NO3-N去除效果均有提升,且50 nmol∙L−1的C12-HSL可较大提升菌株FX-4的NO3-N去除效果。将浓度为0、5 nmol∙L−1、50 nmol∙L−1、200 nmol∙L−1、500 nmol∙L−1和1 000 nmol∙L−1的C12-HSL和反硝化菌FX-4同时投加至SBR活性污泥系统中,考察两者协同下系统脱氮性能、信号分子浓度和微生物群落结构的变化。结果表明,两者协同作用可对NO3-N去除性能产生明显影响,投加信号分子的实验组R1~R6相对于空白对照组R0的NO3-N积累量减少20~50 mg∙L−1,且C12-HSL投加量为100 nmol∙L−1的反应器R3的NO3-N消耗量最多,NO3-N出水质量浓度较R0降低约45 mg∙L−1;此外C12-HSL信号分子对TN去除产生正影响显著,且C12-HSL投加量为100 nmol∙L−1的反应器能更有效地提升活性污泥系统TN去除效能。信号分子浓度变化检测结果显示,外源投加C12-HSL可以刺激系统其他AHLs分泌,特别是促进系统C4-HSL的分泌。微生物群落结构分析结果显示,外源投加反硝化菌FX-4和信号分子C12-HSL可显著影响活性污泥中微生物群落组成,加快活性污泥中微生物种群演替,使Thauera、Brevundimonas等脱氮相关菌属占比升高。以上结果可为信号分子作为应急手段强化活性污泥系统生物脱氮性能提供参考。  相似文献   

3.
研究了NaCl质量浓度、电解时间对电解生成有效氯组分的影响,并以NaCl电解液作为氧化吸收液在自制的小型鼓泡喷淋吸收塔中进行模拟烟气脱硝实验,进一步研究了有效氯质量浓度、反应体系pH和温度对脱硝效果的影响,同时分析了脱硝机理。结果表明:有效氯质量浓度随着NaCl质量浓度和电解时间的增加逐渐增加,电解反应的主产物是ClO。NOx去除率随着有效氯质量浓度增加而升高;氧化体系酸度和温度增高有利于NO氧化,但不利于NOx吸收去除。当烟气流量为2 L·min−1,NO初始质量浓度为1 340 mg·m−3,吸收液有效氯初始质量浓度为2.5 g·L−1,反应体系pH为5,温度为30 ℃时,NO的转化率可达91.1%,NOx去除率可达78.9%,且能在该条件下长时间保持较高的烟气脱硝效果。本研究结果可为低温湿法氧化脱硝技术的工业化应用提供参考。  相似文献   

4.
为了对CANON工艺中遭破坏的短程硝化进行恢复,并对ANAMMOX菌的活性进行强化,在第1阶段(抑制期)采用连续流反应器,限制DO质量浓度为0.1~0.4 mg∙L−1,利用限氧条件对NOB活性进行抑制,投加NH4+-N和NO2-N,经过73 d运行,ANAMMOX菌活性由0.08 kg∙(kg∙d)−1(以VSS计)上升至0.34 kg∙(kg∙d)−1;NOB比耗氧速率(SOUR)由1.68 kg∙(kg∙d)−1(以VSS计)降低至0.79 kg∙(kg∙d)−1,活性显著降低,系统TN去除率由42.7%升高至88.6%,NH4+-N和NO2-N同步去除,ΔNO3-N/ΔTN值向理论值0.127趋近。第2阶段(过渡期)、第3阶段(好氧期)采用SBR进行,分别将DO维持在0.4~0.7 mg∙L−1和0.7~1.0 mg∙L−1,至第130天,NOB活性降低至0.57 kg∙(kg∙d)−1,TN去除负荷达到0.86 kg∙(m3∙d)−1,ΔNO3-N/ΔTN值由抑制前的0.318降低至0.136,短程硝化基本恢复。在短程硝化恢复过程中,ANAMMOX菌优势菌属Candidatus Kuenenia的相对丰度由7.91%增长至13.12%,但NOB的主要菌属Nitrospira的相对丰度由低于0.01%增至1.03%,表明在后续长期运行过程中,依然存在短程硝化遭到破坏的风险。  相似文献   

5.
燃煤电厂非常规污染物的排放尚未引起足够的重视。为全面表征燃煤电厂非常规污染物脱除性能,针对某1 000 MW燃煤超低排放机组,分别采用FPM和CPM一体化采样系统、安大略法(OHM)、控制冷凝法、HJ 646-2013规定的有机物测试方法,系统研究了CPM、Hg、SO3、PAHs等非常规污染物的梯级脱除特性。结果表明:100%、75%负荷时低-低温电除尘系统对CPM脱除率分别为87.15%、92.20%,湿法脱硫分别为49.65%、45.55%,不同负荷下FPM分别为3.6、4.4 mg·m−3,但CPM却分别达14.2、15.3 mg·m−3,CPM的浓度远超FPM;低-低温电除尘系统脱Hg效率为64.81%,整个系统的脱Hg效率为75.5%,Hgp全部被脱除,剩余的是难以脱除的Hg0、Hg2+,脱除率分别为为63.01%、64.29%,Hg0排放浓度为5.4 μg·m−3,Hg2+排放浓度为0.5 μg·m−3;SCR脱硝催化剂将SO2氧化成SO3的转化率约为0.7%,低-低温电除尘系统可脱除88.7%的SO3,湿法脱硫对SO3的脱除率为29.63%,最终SO3排放浓度为1.9 mg·m−3;全系统对16种PAHs脱除率达94.25%,其中,气相、固相脱除率分别为91.61%、99.27%,最终气相、固相PAHs排放浓度分别为2.39 μg·m−3和0.11 μg·m−3。现有超低排放设备对非常规污染物均有不同程度的协同脱除效果,满负荷条件下该机组CPM、Hg、SO3、PAHs排放浓度分别为14.2 mg·m−3、5.9 μg·m−3、1.9 mg·m−3、2.5 μg·m−3,Hg的排放浓度满足火电厂大气污染物排放标准(GB 13223-2011)中30 μg·m−3的要求,CPM、SO3、PAHs尚无国家强制排放标准。本研究结果可为燃煤电厂后续非常规污染物的控制提供参考。  相似文献   

6.
为系统研究选择性催化还原(SCR)反应器入口参数与反应温度对脱硝性能的交互作用,基于E-R机理,通过建立SCR脱硝反应一维模型,结合燃煤电厂调峰实际运行数据设定入口参数界限,利用MATLAB数值仿真,分别对反应温度同氨氮摩尔比(NSR)、入口NO质量浓度和入口速度对脱硝效率及氨逃逸率的耦合效应进行了重点分析。结果表明:入口参数对最佳反应温度影响较大;偏离最佳反应温度越多,NSR对氨逃逸率影响程度越低,NSR>1时,脱硝性能对NSR敏感性降低;增大入口NO质量浓度可改善整体脱硝性能,当入口质量NO浓度为1 050 mg·Nm−3时 ,脱硝效率可达82.42%,氨逃逸率低至0.33%;入口速度与反应温度的交互作用最大,降低入口速度可拓宽催化剂高活性温度窗口,显著提升脱硝性能,将入口速度由7 m·s−1降至1 m·s−1,最佳脱硝效率由69.32%升至89.17%,最低氨逃逸率由8.11%趋近于0;燃煤电厂调峰运行负荷上升会导致脱硝效率下降和氨逃逸加剧。该研究结果可为燃煤电厂SCR脱硝性能的整体优化提供参考。  相似文献   

7.
以花生壳为原料、LaCl3∙7H2O为镧前驱体,通过一步热解法制备了载镧生物炭(La-BC),确定了最佳制备条件,考察了溶液pH、吸附时间、La-BC投加量、F初始质量浓度、共存离子等因素对La-BC吸附性能的影响,评估了La-BC在真实地下水中的应用潜能。结果表明:在pH为5~8时,La-BC表现出稳定的除氟性能。吸附过程符合准二级动力学和Langmuir等温线模型;在25 ℃和35 ℃下,La-BC的最大理论吸附容量分别为29.50 mg∙g−1与33.17 mg∙g−1。SO42-、HCO3与CO32− 对吸附过程存在不同程度的影响,Cl、NO3和NH4+影响较小。加标地下水经酸化预处理后,La-BC对工业园区地下水和农村饮用井水均表现出优异的除氟性能。La-BC上的含镧物种包括La(OH)3、LaOCl、La(OH)2Cl以及少量La2(CO3)3和LaPO4,其中La(OH)2Cl为主要的除氟活性物种,F主要通过静电作用和化学沉淀转化为LaF3沉淀去除。  相似文献   

8.
为有效处理制药行业生产过程中产生大量间歇性VOCs,构建由蓄热、换热、回热、补热组成的多效热回收直接催化燃烧工艺,结合模糊PID温度控制策略,以500 g·m−3铂钯合金镀在蜂窝陶瓷载体上为催化剂,处理某制药行业排放的间歇性有机废气,验证该工艺在处理制药行业排放的间歇性有机废气的可行性。结果表明:在制药行业排放的VOCs质量浓度为22mg·m−3到6293 m g·m−3较大波动条件下,多效热回收催化燃烧工艺能稳定有效地净化制药行业排放的有机废气,且净化后排放的VOCs浓度均小于20 mg·m−3,综合处理效率大于97%;随着排放的VOCs质量浓度的增高,处理效率也越接近100%;采用该工艺后,年平均运行成本为35.72×104元,与传统工艺相比,运行成本降低了27%以上。由此可知,多效热回收催化燃烧工艺能够有效处理制药行业间歇性VOCs。本研究成果可为制药行业或其他行业的间歇性VOCs治理提供参考。  相似文献   

9.
建立不同锅炉工况下基于欧式距离聚类的总给煤量长短期记忆神经网络预测模型,对入口处的NOx质量浓度数据进行修正,其验证集上的均方根误差为3.53 mg·m-3。该结果优于常见的回归方法深度神经网络与随机森林回归的预测结果。以此为基础,研究了基于入口NOx质量浓度修正的多模型预测控制(MMPC),设计并进行了脱硝系统仿真。仿真结果表明,与原有控制条件相比,基于入口NOx质量浓度修正的MMPC策略使脱硝系统出口NOx质量浓度波动幅度减小了63.7%,并能满足出口质量浓度指标为40 mg·m-3时的控制要求,实现卡边控制。现场工程应用结果表明:在高、中、低负荷正常运行的工况条件下,入口修正-MMPC策略可将出口NOx质量浓度波动分别控制在±10.6 mg·m−3、±5.5 mg·m−3、±4.9 mg·m−3,以标准差来衡量波动幅度即分别减小了53.4%、74.7%、64.6%,此控制水平优于原有控制效果;在出口NOx质量浓度易超标并出现高浓度氨逃逸的快速变负荷工况下,升、降负荷出口NOx质量浓度波动分别控制在±6 mg·m−3、±5 mg·m−3,此控制水平仍优于原有控制效果。本研究的入口修正-MMPC控制策略可实现不同负荷、工况下的喷氨控制,减小出口NOx波动幅度,降低后续设备低温腐蚀的风险,从而提高SNCR/SCR联合脱硝系统运行的经济性和安全性。  相似文献   

10.
为探究高效同步脱硫脱硝的生物工艺,以生物转鼓反应器为实验对象,研究了好氧条件下SO2质量浓度、NOx质量浓度、营养液体积和气体停留时间(EBRT)的变化对生物转鼓同步脱硫脱硝效果的影响,并用动力学模型拟合值与实验数据进行了对比。实验结果表明:生物转鼓同步脱硫脱硝最适条件为SO2质量浓度1 200 mg·m−3,NOx质量浓度800 mg·m−3,营养液体积20.6 L,气体停留时间(EBRT) 75.36 s;SO2过程净化主要受液相传质控制,NOx传质过程由生物相和液相协同完成;修正求得了能较好描述好氧条件下生物转鼓脱硫脱硝效果的动力学模型,因存在生物相、液膜、污染物流动等变量与假设的差异,SO2和NOx模拟数据与实验数据分别有2.68%和3.18%的平均绝对误差;在最佳条件下,SO2和NOx的平均去除率分别为96.81%和92.98%,平均去除负荷分别为55.50 mg·(L·h)−1和35.53 mg·(L·h)−1,且出气质量浓度均低于100 mg·m−3。可见,生物转鼓是一种可行的高效同步脱硫脱硝生物工艺。  相似文献   

11.
针对目前生物工艺难以解决垃圾渗滤液深度脱氮的问题,探究了短程硝化反硝化-厌氧氨氧化-硫自养反硝化(两级自养)工艺处理高氨氮、低C/N比垃圾渗滤液的脱氮效果。结果表明, 当进水垃圾渗滤液中氨氮平均浓度为2 560 mg·L−1,COD值为4 000~5 000 mg·L−1时,经过短程硝化反硝化-厌氧氨氧化处理后,总氮去除负荷可达1.19 kg·(m3·d)−1、总氮去除率可达93.1%(出水TN=176.3 mg·L−1)、COD去除率可达52.2%。但是,厌氧氨氧化反应器出水中${\rm{NO}}_x^{-} $-N浓度为154.5 mg·L−1,仍未达到我国生活垃圾填埋场垃圾渗滤液处理排放标准(TN≤40 mg·L−1)。在厌氧氨氧化反应器之后串联硫自养反硝化,整体工艺最终出水${\rm{NH}}_4^{+} $-N、${\rm{NO}}_2^{-} $-N、${\rm{NO}}_3^{-} $-N平均浓度分别为1.9、0.6、9.7 mg·L−1,TN≤15 mg·L−1,进水总氮去除率为99.5%。在短程硝化反硝化-厌氧氨氧化-硫自养反硝化两级自养深度脱氮反应系统中实现了垃圾渗滤液深度脱氮。  相似文献   

12.
为探究不同采样方法对积尘负荷结果的影响,使用样方采样法和以克论净车采样法采集2018年夏季样品的数据,对北京市3个行政区的11条道路扬尘样品进行现场监测,计算不同道路类型及不同车道的积尘负荷,并对积尘负荷的变化规律进行分析。结果表明:基于样方采样法和以克论净车采样法的北京市夏季不同道路类型积尘负荷从大到小顺序依次为次干道(0.46 g·m−2、0.99 g·m−2) >支路(0.31 g·m−2、0.88 g·m−2)>主干道(0.24 g·m−2、0.78 g·m−2);2种采样方法所得积尘负荷差异的检验结果具有显著性(P=0.00<0.05)且存在线性关系;北京市夏季道路积尘负荷(0.34 g·m−2)稍高于天津市(0.24 g·m−2),低于石家庄市(1.06 g·m−2)、乌鲁木齐市(0.96 g·m−2)和西安市(0.70 g·m−2);基于样方采样法和以克论净车采样法采集的不同城区道路积尘负荷水平排序为大兴区(0.39 g·m−2、1.83 g·m−2)>朝阳区(0.38 g·m−2、1.00 g·m−2)>东城区(0.26 g·m−2、0.92 g·m−2),朝阳区、东城区和大兴区积尘负荷差异的检验结果均不具有显著性(P>0.05);基于样方采样法的机动车慢车道与机动车快车道积尘负荷分别为0.04~1.30 g·m−2和0.02~1.08 g·m−2;慢车道积尘负荷略高于快车道,但二者差异的检验结果不具有显著性(P=0.51>0. 05)。本研究成果可为遴选道路扬尘采样方法、构建北京市道路扬尘排放清单和制定管控措施提供参考。  相似文献   

13.
以采用当量比燃烧+EGR+铂/铑/钯基TWC技术路线、且满足国六排放标准的重型燃气机为研究对象,基于全球统一瞬态实验循环 (WHTC) 工况对燃气机瞬态条件下不同燃气组分、排气温度、尾气组分的N2O排放特性进行定量研究。结果表明:N2O排放主要集中在冷态WHTC城市工况前140 s,热态WHTC总排放量约是冷态的1%;燃料组分对N2O生成有一定影响,含N2高的低热值G25燃气冷、热态N2O排放浓度均高于LNG、CNG,加权比排放量分别为15.3 mg·kWh−1、9.6 mg·kWh−1、7.5 mg·kWh−1;N2O生成与温度密切相关,主要生成区间为160~350 ℃,高温会抑制N2O生成;N2O与NH3的生成存在竞争关系,高于400 ℃时NH3生成量增加。本研究可为重型燃气机污染物N2O的源头控制提供参考。  相似文献   

14.
为进一步去除污水厂二级处理出水中的氮、磷和悬浮污染物,对比研究了一种新型生物膜-微絮凝滤池与高密度沉淀-纤维转盘过滤联用工艺(以下简称组合工艺)的深度处理性能。结果表明:新型生物膜-微絮凝过滤的出水TP质量浓度≤0.1 mg·L−1$ {{\rm{PO}}_4^{3 - }}$-P质量浓度≤0.05 mg·L−1、SS质量浓度≤10 mg·L−1、TN质量浓度≤2 mg·L−1$ { {\rm{NO}}_3^ - }$-N质量浓度≤0.5 mg·L−1;出水水质对受纳水体的环境影响小,综合污染指数仅为0.731,远小于组合工艺的2.734。此外,新型生物膜-微絮凝滤池避免了频繁的反冲洗,降低了反冲洗能耗,水处理成本仅为0.207元·m−3,比组合工艺低0.039元·m−3。  相似文献   

15.
全过程除臭是一种以微生物法为核心的低碳除臭方式。为评估其应用效果,分析了北京市某再生水厂的产排污关键环节中的气液两相污染物削减情况。结果表明:初始污水中[NH4+-N]高于H2S的质量浓度,分别为55 mg·L−1和6 mg·L−1,二者随污水反应进程呈逐渐降低的趋势,分别在生化段和粗格栅处去除效果最好;气相污染物主要为NH3和H2S,其中NH3在粗格栅处排放通量较高,质量浓度为0.4 mg·m−3,化学浓度贡献率为71%~91%,H2S在污泥储池处质量浓度较高,为0.16 mg·m−3;对粗格栅处进行模拟换气实验,H2S、NH3和臭气的浓度分别为 0.027~0.036 mg·m−3、0.023~0.031 mg·m−3和10~15;厂界的NH3和H2S质量浓度在上风向的检测值均低于下风向,最高值为0.100和 0.007 mg·m−3,臭气 (无量纲) ,甲烷体积分数为1.7×10−6,粗格栅模拟换气和厂界排放浓度均达到北京市《大气污染物综合排放标准》 (DB11/501-2017) 和《城镇污水处理厂污染物排放标准》 (GB18918-2002) 。该研究结果对北京某再生水厂进行气液两相污染物削减分析,证明了全过程除臭工艺应用的有效性,可为同类水厂的除臭问题提供参考。  相似文献   

16.
为揭示添加生物油对垃圾焚烧选择性非催化还原(SNCR)脱硝特性的影响规律及作用机理,利用高温管式炉开展了实验,以研究生物油添加比例(β)、氨氮比(NSR)及氧浓度对SNCR脱硝特性与CO排放的影响;结合SNCR基元反应与生物油热分解产物的成分,分析了添加生物油对烟气选择性非催化还原脱销的强化作用机理。结果表明,添加生物油能拓宽SNCR的温度窗口,在700~900 ℃时可明显提升脱硝效率,当β=10%时,脱硝效率平均提升约21%。在SNCR过程中,CO排放随生物油添加比例的增加而增加,但温度在800 ℃、氧浓度在4%以上时,基本无CO排放。生物油在高温下的分解产物主要为H2、CO及CH4等。添加生物油主要通过热分解生成小分子气体,同时产生大量H·、O·、HO2·及·OH等自由基来强化低温下SNCR脱硝反应。本研究结果表明,在垃圾焚烧电站中,可通过在900 ℃下适当添加生物油来提升SNCR效率。  相似文献   

17.
厌氧氨氧化(anammox)为新型生物脱氮工艺,面临N2O温室气体排放问题。羟胺(NH2OH)与亚硝酸盐 (NO2) 是影响anammox体系N2O排放的重要环境因子。基于批次实验,考察了不同质量浓度NH2OH和NO2对anammox体系中N2O释放的影响。结果表明,在[NO2]为100~300mg·L−1条件下,N2O排放量随NH2OH质量浓度递增;而当[NO2]增至300~500 mg·L−1,投加高质量浓度NH2OH(30、50 mg·L−1)能抑制N2O的产生。微生物群落多样性分析表明,低[NO2]的环境中,NH2OH会增加体系中异养菌的相对丰度,并抑制anammox菌的生长;而在高[NO2]的环境中,高质量浓度的NH2OH可促进anammox菌与共存异养细菌的生长。功能基因分析表明,N2O的排放量受到硝化、反硝化及硝酸盐异化还原产铵(DNRA)代谢途径调控,并与norB、nrfA基因丰度呈显著正相关(P<0.05 ) 。因此,anammox体系N2O产量受到NO2与NH2OH综合作用的影响,当进水[NO2]较高时可通过投加适量NH2OH降低N2O排放量,而当进水NO2不足时可通过抑制NH2OH的累积量以减少N2O的生成。该研究结果可为anammox工艺的低碳运行提供参考。  相似文献   

18.
为达到缓解猪粪厌氧干发酵时有机酸的积累并能够同时提高产气性能的目的,采用小试批式实验,在中温(37 ℃)、总固体(TS)为20%的条件下研究了猪粪接种物全混合发酵、猪粪非混合接种发酵、猪粪玉米秸秆与接种物全混合发酵及猪粪玉米秸秆混合原料非混合接种发酵这4种方式对发酵体系的有机酸积累及产甲烷特性的影响。结果表明,猪粪接种物全混合发酵和猪粪玉米秸秆与接种物全混合发酵的总有机酸(TVFAs)质量浓度在发酵结束时分别为15.2和3.6 mg·g−1,较对应底物的非混合接种发酵分别提高了6.3倍和5.0倍。在2种非混合接种发酵体系中,TVFAs质量浓度在21 d后迅速降低。其中,猪粪玉米秸秆混合原料非混合接种的TVFAs下降幅度更大,其第30天的TVFAs质量浓度低于1.5 mg·g−1。猪粪玉米秸秆混合原料非混合接种厌氧发酵产气效果最佳,累积VS产甲烷量达到148.2 mL·g−1。猪粪非混合接种发酵沼气中甲烷含量最高,达到75.1%。修正的Gompertz模型拟合结果显示,猪粪玉米秸秆混合原料非混合接种发酵和猪粪非混合接种发酵的迟滞期分别为10.6和12.4 d,较对应底物的混合接种发酵分别缩短了5.9和6.1 d;最大VS产甲烷速率分别提高了1.7倍和4.9倍,达到6.2和4.8 mL·(g·d)−1。非混合接种能够缓解猪粪厌氧干发酵的酸抑制并同时提高其甲烷产率。  相似文献   

19.
为解决直接热脱附设备二燃室燃烧器氮氧化物排放高的问题,利用热平衡计算方法建立其输入和输出能量平衡关系式,得到二燃室温度维持1 100 ℃时所需燃气量和助燃风量;同时,结合空气分级技术、燃料分级技术和部分预混燃烧技术对燃烧器进行优化设计,并对其燃烧情况进行了数值模拟计算。热平衡计算结果表明,维持二燃室燃烧温度1 100 ℃所需的燃气量和助燃风量分别为1 003和22 066 m3·h−1。数值模拟结果表明,增加燃气预混喷口可显著强化燃气/空气混合,使燃烧更为迅速,可防止滞后的火焰冲刷壁面,也有助于分散火焰,避免局部高温。增加二级空气通道可降低空气的出口流速,防止出现脱火现象,且利于燃气径向扩散,避免火焰集中。以上2种方法均能有效降低氮氧化物排放量,且采用燃气部分预混后二燃室出口处一氧化碳浓度大幅降低。在同时采用燃气预混喷口和二级空气通道后,NOx浓度稳定在45 mg·m−3左右,相比于现有燃烧器减少了85%。该研究结果可为直接热脱附设备二燃室燃烧器的低氮设计提供参考。  相似文献   

20.
研究了玉米秸秆生物炭作为微生物燃料电池电极的性能。阳极以S2-为单一电子供体,阴极以NO3-为电子受体,以碳毡为对照电极,考察玉米秸秆生物炭电极用于生物燃料电池同步脱硫反硝化的电化学性能、产电性能以及污染物去除能力,分析了不同硫氮质量浓度比对生物炭电极微生物燃料电池脱氮除硫效率以及输出电能的影响。结果表明,玉米秸秆生物炭电极微生物燃料电池实现了更高的交换电流密度(22.42×10-3 A·cm-2)和更低的电荷转移电阻(4.24Ω)。与碳毡电极相比,玉米秸秆生物炭电极微生物燃料电池最大输出电压和最大功率密度分别提升了18.91%和16.67%。当硫氮比为5:4时,反应器脱硫反硝化和产电能力最佳。阳极室S2-出水质量浓度由120 mg·L-1降至1.08 mg·L-1,去除率为99.1%,其中76.52%转化为SO42--S,阴极室NO3--N去除率...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号