首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 397 毫秒
1.
餐厨废水是一类高油、高盐、高氮等较为复杂的废水,在传统厌氧处理中面临污泥漂浮流失、有机负荷低及COD去除效果差等问题。通过构建中试规模厌氧膜生物反应器(anaerobic membrane reactor, AnMBR)处理餐厨废水,考察了3个运行阶段(污泥驯化阶段、容积负荷(volume loading rate, VLR)提升阶段和污泥停留时间(sludge retention time, SRT)缩短阶段)的厌氧消化性能、稳定性能、污泥性质和膜性能变化。结果表明,在污泥驯化阶段,低负荷(1.5 kg·(m3·d)−1)污泥驯化方式能够实现AnMBR的快速启动,甲烷产率由227 mL·g−1 (以COD计)迅速提升至267 mL·g−1,COD去除率达到99%。在VLR提升阶段,当负荷由3.0 kg·(m3·d)−1逐渐增加至12.0 kg·(m3·d)−1时,甲烷产率由283 mL·g−1升高并稳定至335 mL·g−1左右,COD去除率达到98.5%。然而此阶段污泥浓度由13.39 g·L−1迅速升高至45.59 g·L−1,从而导致膜污染加剧,平均膜通量下降速率由0.53 L·(m2·h·d)−1增至0.78 L·(m2·h·d)−1。在SRT缩短阶段(由100 d缩短至40 d),尽管排泥量由0.4 L·d−1增加至1 L·d−1,甲烷产率并没有受到明显影响,仍稳定在335 mL·g−1左右,COD去除率达到98.9%。此外,缩短SRT增大了排泥量,反应器内污泥浓度由45.59 g·L−1逐渐降低至45.27 g·L−1,缓解了膜污染,膜通量下降速率减缓到0.42 L·(m2·h·d)−1。在整个运行阶段,AnMBR对毒性物质氨氮具有良好的耐受能力,尽管体系内氨氮质量浓度高达2 600 mg·L−1,VFA/ALK始终低于0.04,表明AnMBR不仅对外界环境变化有着较好的缓冲能力,而且对消化体系的内源性抑制因素也有着良好的耐受能力。综上,AnMBR在处理餐厨废水时表现了良好的处理性能和稳定性能。  相似文献   

2.
为研究典型超低排放除尘技术组合下的尘排放特性,梳理了目前超低排放除尘技术改造的主流技术路线,归纳出典型的7种改造技术路线。依据典型的改造技术路线,选择了27台在2015—2017年完成改造的燃煤发电机组,并对其烟尘排放进行长期的连续监测,根据机组长期运行的排放表现对典型超低排放除尘技术路线的实际减排效果进行量化对比分析。结果表明,7种除尘改造技术路线均可达到控制烟尘排放浓度在10 mg·m−3以下的超低排放标准,其中路线6改造后尘浓度控制在2 mg·m−3以下。对减排效率的研究表明,各技术路线改造后的减排效率均可达到99.97%以上,计算得到机组的平均排放因子为0.025 7 kg·t−1(95%置信区间0.025 4~0.026 1 kg·t−1),其中路线6的排放因子最低,为0.008 6 kg·t−1(95%置信区间0.008 4~0.008 8 kg·t−1)。  相似文献   

3.
村镇厨余垃圾渗滤液等高浓度有机废水的高效处理是提升村镇环境卫生水平的一个重要方面。为满足村镇厨余垃圾渗滤液低能耗有机物排放达标的处理需求,构建了内循环厌氧膜生物反应器 (internal circulation anaerobic membrane bioreactor,IC-AnMBR),并用来处理厨余渗滤率废水,重点分析了反应器的COD去除性能和调控机制;根据pH、VFAs/碱度、容积产气率、膜通量和出水有机污染物组分等指标,考察了COD在水解酸化、产甲烷和膜截留过程中的转移转化特征。结果表明:通过耦合膜擦洗曝气和沼气曝气循环,将VFAs/碱度和容积产气率分别从1.5和0.1优化到0.02和1.0;优化了COD稳定达标性能和去除负荷,将COD去除率和负荷从59%和0.3 kg·(m3·d)−1分别提高到了97.7%和1.8 kg·(m3·d)−1;采用沼气循环曝气擦洗陶瓷膜,控制了滤饼层积累,并将膜通量从0.6 L·(m2·h)-1提高到2.1 L·(m2·h)−1。IC-AnMBR短流程工艺能够实现村镇厨余垃圾渗滤液的稳定处理。  相似文献   

4.
岳佳妮  肖峰  李一鸣 《环境工程学报》2023,17(10):3333-3341
为了解不同有机物对含藻水体混凝过程的影响,以含铜绿微囊藻水体作为实验对象,考察牛血清蛋白(BSA)和腐殖酸(HA)2种有机物及其质量浓度对含藻水体浊度、藻类有机物的去除效果以及絮体形成、破碎、再絮凝的影响。结果表明,少量的BSA对混凝反应起促进作用,当BSA的投加量超过1 mg·L−1转为抑制作用,因为投加量升高时,BSA抢占混凝剂活性位点,抑制混凝反应。HA不利于混凝反应的进行,因为HA中的官能团优先与混凝剂结合,从而导致混凝效果变差。提高混凝药剂投加量可缓解有机物质量浓度增加对混凝效果的影响。当BSA投加量为5 mg·L−1,PACl投加量为0.06 mmol·L−1时,能达到出水浊度小于1 NTU,藻细胞去除率大于90 %的混凝效果,HA添加量为5 mg·L−1,PACl投加量为0.12 mmol·L−1时,也能达到相同的混凝效果。混凝更容易去除分子质量较大的BSA和HA,而对小分子亲水性有机物的去处效果较差,如藻类有机物或HA中小分子有机物。少量的BSA和HA增加了混凝絮体的生成速率和初始粒径。本研究结果可为天然水体混凝除藻工艺优化运行提供参考。  相似文献   

5.
针对富含木质纤维素底物利用效率低的问题,通过在中试厌氧消化系统中共接种瘤胃微生物和厌氧污泥来改善水稻秸秆中木质纤维素的水解,采用逐步提升底物有机负荷(OLR)的方式,评估了接种后水稻秸秆的厌氧消化效率。结果表明,在反应体系底物有机负荷达到4.26 g·(L·d)−1(以VS计)时,系统表现出最佳的厌氧消化性能,此时沼气产率为528 mL·g−1 (以VS计),甲烷产率为287 mL·g−1,容积沼气生产强度达到2.20 L·(L·d)−1。在反应器有机负荷从1.05 g·(L·d)−1提升到4.26 g·(L·d)−1的运行过程中,系统的纤维素降解率稳定在(71 ± 2)%,半纤维素降解率稳定在(92 ± 4)%,木质素降解率稳定在(15 ± 3)%。这种稳定性表明反应器的连续运行成功地形成了高效的木质纤维素降解体系,结果可为实际规模化应用提供参考。  相似文献   

6.
裴佳瑶  冯民权 《环境工程学报》2020,14(12):3447-3459
为探明环境因子对雁鸣湖沉积物-上覆水界面间氮磷释放的影响,通过单因子实验和响应面实验分析探究了温度、溶解氧及pH对氮磷释放通量的影响。单因子实验结果表明:雁鸣湖沉积物-上覆水界面间氮磷通量随着温度的升高而增加;随溶解氧浓度的升高而减小;当pH为中性时,氮磷通量最小,氮通量在pH=5时达到最大值,磷通量在pH=9时达到最大值。BBD模型拟合结果显示,各环境因子与氮磷通量间拟合关系均为二次多项式。响应面实验结果表明:温度和pH交互作用对TN通量影响显著;温度和溶解氧交互作用对TP通量影响显著;温度和溶解氧交互作用、温度和pH交互作用对${{\rm{NH}}_4^{+}}$-N通量影响均为显著;温度和溶解氧交互作用对${{\rm{PO}}_4^{3 - }}$-P通量影响极显著;雁鸣湖底泥释放的最不利条件为T=10 ℃、DO=7.87 mg·L−1、pH=7.13,此时的TN交换通量为3.956 mg·(m2·h)−1,TP交换通量为0.471 mg·(m2·h)−1,${{\rm{NH}}_4^{+}}$-N交换通量为1.469 mg·(m2·h)−1,${{\rm{PO}}_4^{3 - }}$-P交换通量为0.146 mg·(m2·h)−1。以上研究结果可为雁鸣湖富营养化防治提供参考。  相似文献   

7.
陶瓷膜凭借其机械强度高、化学稳定性好等优点,近年来在油田采出水处理领域得到了广泛的应用。针对陶瓷膜处理油田采出水膜污染控制这一核心问题,采用小试实验与模型分析相结合的方法,深入开展了陶瓷膜处理系统运行控制优化的研究,结合微观表征,阐明了陶瓷膜处理油田采出水膜污染机理。结果表明,陶瓷膜处理油田采出水最佳运行控制工况为:初始膜通量80 L·(m2·h)−1,过滤时间10 min,反冲洗时间30 s,曝气强度3 L·min−1;此条件下陶瓷膜可保持平均膜通量27.82 L·(m2·h)−1。原水和污染层的表征结果表明,胺类或酰胺类、烃类、羧酸类、芳香族、醇类等有机物化合物是造成陶瓷膜污染的主要有机物,Si、Fe、Ca、Mg、Ba等无机盐离子也是膜污染的重要组成部分;过滤过程中膜孔内阻力和凝胶层阻力对陶瓷膜膜污染形成起主导作用。  相似文献   

8.
为了解决高盐榨菜废水的处理问题,对厌氧膜生物反应器(anaerobic membrane reactor, AnMBR)处理高盐榨菜废水的3个运行阶段(盐度提升阶段、负荷提升阶段和排泥运行阶段)的消化性能和膜污染特性进行了研究。结果表明,当盐度由初始的12.9 g·L−1逐渐升高到33.5 g·L−1左右、且负荷维持在0.5~1.0 kg·(m3·d)−1(以COD计)时,COD去除率及沼气产率随盐度的提升先下降后升高,最后分别稳定在75%和300 mL·g−1(以COD计)以上,低负荷耐盐性驯化方式能够实现AnMBR的快速启动;当负荷逐渐增加约至7.6 kg·(m3·d)−1时,COD去除率达到80%左右,沼气产率稳定在330~380 mL·g−1,VFA/ALK始终低于0.15,这表明AnMBR对高盐榨菜废水具有良好的处理效果和较强的运行稳定性;在排泥运行阶段,AnMBR的COD去除率和沼气产率均有明显上升,分别达到83%和400 mL·g−1左右,这表明排泥可以提高消化性能。此外,排泥有利于减缓膜污染。SEM-EDX表征结果表明,膜面污染物中存在大量的有机物和无机盐类晶体物质,工程应用中建议采用NaClO清洗+酸清洗的组合清洗方式。以上研究结果可以为高盐榨菜废水处理工业化应用提供参考。  相似文献   

9.
聚乙醇酸(poly glycolic acid,PGA)因其良好的降解性能会加快其老化过程,可能比传统塑料具有更大的环境风险,因此,评估PGA在环境迁移中对污染物的载体效应尤为重要。选用PGA颗粒微塑料(microplastics,MPs)为研究对象,盐酸四环素(tetracycline hydrochloride,TCH)为代表性污染物,探究老化过程对PGA吸附TCH行为的影响。结果表明:PGA在经过15 d H2O2和H2SO4老化后,表面均变得粗糙,比表面积由0.017 m2·g−1分别增至0.327 m2·g−1和0.467 m2·g−1,官能团含量分别增加了1.89%和3.49%,接触角由83.19°分别降至81.58°和50.07°。吸附动力学均符合伪二级动力学模型,吸附等温线均符合Langmuir等温吸附模型。老化后PGA对TCH的吸附量均高于老化前,PGA-H2O2和PGA-H2SO4最大表观吸附量分别为0.617 mg·g−1和0.686 mg·g−1,是PGA老化前的1.05倍和1.17倍。  相似文献   

10.
为探究适于未来星球基地长期载人航天任务应用的微小型密闭好氧堆肥装置的运行条件,以小麦秸秆和模拟粪便的混合物为实验材料,开展了4种通风速率对堆肥过程的影响研究。结果表明,0.025、0.050、0.075和0.100 m3·(m3·min)−1处理组高温期分别维持了125、125、43和24 h,0.050 m3·(m3·min)−1的O2消耗速率和CO2产率为4个处理组最大。CH4和N2O主要产生于堆肥初期,累积排放量以0.100 m3·(m3·min)−1处理组的最高,分别为296.50和169.16 mg·kg−1。从堆体氨氮指标测试结果来看,0.050 m3·(m3·min)−1处理组含量最高,其保氮效果最好。4个处理组的GI分别为64.09%、97.26%、72.95%和66.07%。综合各种指标分析认为,适于未来星球基地任务应用的微小型密闭好氧堆肥装置通风速率可以设置为0.050 m3·(m3·min)−1,该通风速率既能确保堆肥过程中微生物对氧气的需求,又能减少热量的损失,产生的污染气体量相对较少,所得的堆肥产品质量最佳。  相似文献   

11.
以6 mol·L−1硝酸和450 ℃高温共同改性后的颗粒活性炭(granular activated carbon,GAC)为载体,采用硼氢化钠还原法制备了改性Pd/GAC粒子电极,研究了电极对2,4,6-三氯苯酚(2,4,6-trichlorophenol,2,4,6-TCP)的去除能力、动力学特征及脱氯机理。结果表明,通过改性,GAC的比表面积(560.791 m2·g−1)提高了1.5倍,孔容提高了36.02%,对2,4,6-TCP的最大吸附容量为199.2 mg·g−1。在优化条件下,改性粒子电极4 h内对30 mg·L−1的2,4,6-TCP去除率达到94.7%,反应速率常数为0.014 min−1,钯的催化活性为0.3 (min·mmol)−1。通过对反应过程中有机氯和无机氯变化的分析,阐明了改性Pd/GAC粒子电极强化去除2,4,6-TCP的过程。从还原途径、直接和间接还原贡献等方面探究了改性粒子电极电催化脱氯机理。  相似文献   

12.
吕恺  姚雪薇  彭党聪 《环境工程学报》2021,15(10):3368-3377
为探讨以城市污水处理厂好氧池生物膜作为接种污泥启动厌氧氨氧化工艺的可行性,启动了两段式亚MBBR亚硝化-厌氧氨氧化工艺并成功运行。结果表明,经过90 d的启动,在进水NH4+-N质量浓度为750 mg·L−1的条件下,亚硝化反应器负荷(以NH4+-N计)可达到9 000 mg·(m2·d)−1,平均出水NO2-N和NH4+-N质量浓度比值为1.28,满足厌氧氨氧化的反应要求。经过180 d的启动,在进水NH4+-N和NO2-N质量浓度分别为360 mg·L−1和380 mg·L−1的条件下,厌氧氨氧化反应器负荷(以TN计)可达到13 875 mg·(m2·d)−1,TN去除率可达(84.14±0.66)%。活性测定结果显示,AOB和ANAMMOX活性(以NH4+-N计)分别可达6 423.84 mg·(m2·d)−1和6 448.32 mg·(m2·d)−1且均可维持恒定。高通量测序结果表明,亚硝化反应器中的Nitrosomonas占比由0.02%增至20.09%,为AOB的主导菌属;厌氧氨氧化反应器中,Ca. BrocadiaCa. Jettenia为主要的ANAMMOX菌,占比分别达到11.00%和2.07%。采用好氧池生物膜作为接种污泥可快速启动两段式亚硝化厌氧氨氧化工艺。  相似文献   

13.
猪场养殖废水是一类有机污染物浓度高、悬浮物多、性质复杂的废水,在传统厌氧处理中存在消化污泥流失及处理效率低等问题。本研究采用中试规模外部浸没式厌氧膜生物反应器处理猪场实际废水,设计处理水量为1 m3·d−1,在HRT分别为8、5、3 d的3个阶段连续运行4个多月,考察了厌氧膜生物反应器的沼气产量、运行稳定性、污染物去除效果及膜组件运行性能和清洗效果。结果表明,系统运行期间ORP在−486~−545 mV;随着HRT缩短,有机负荷由0.5~1.88 kg·(m3·d)−1升高到5 kg·(m3·d)−1,沼气产量逐渐增大,产率为0.38~0.45 m3·kg−1。在整个运行过程中,VFA/ALK始终小于0.1,系统运行稳定。对TCOD、溶解性COD、氨氮、TN、TP去除率分别达到74%~86%、48%~68%、7%~12.8%、4.6%~16.7%、5%,其中溶解性COD去除率占总COD去除率的55%左右。系统运行期间初始膜通量设定为5 L·(m2·h)−1,在HRT=8 d时,清洗周期为20 d,随后不断缩短,当HRT为3 d时,清洗周期仅为10 d。通过水冲洗与化学清洗相结合的方式可有效缓解膜污染,进而恢复膜通量。以上研究结果可以为厌氧膜生物反应器处理猪场养殖废水工程应用提供参考。  相似文献   

14.
为高效、稳定处理船舶生活污水,研究了船用景观一体化反硝化除磷装置面对短期水质波动的效能变化,采用富集反硝化聚磷菌(DPAOs)的ABR-CSTR连续流组合工艺耦合生态单元处理船舶生活污水,对比了ABR进水容积负荷(VLR)为1.2 kg·(m3·d)−1、COD为350 mg·L−1的基准条件,通过短期内提高进水中有机底物的浓度,来模拟1.5倍和2.0倍进水有机负荷的有机冲击,此外通过控制硝化液回流比及溶解氧获得应对冲击的调控策略。结果表明:在2种短期冲击下,COD去除率分别为94.1%和92.6%,出水BOD和TN可达标,生物单元出水磷平均为0.76 mg·L−1和1.14 mg·L−1,缺氧吸磷量为7.13 mg·L−1和5.82 mg·L−1,生态单元可深度降解氮磷及缓冲波动;在1.5倍VLR下,调整硝化液回流比由200%至300%,反硝化吸磷量由7.10 mg·L−1升至7.41 mg·L−1,在2.0倍冲击下,提高硝化液回流比对系统除磷帮助甚微,将DO从1.5 mg·L−1升至2.0 mg·L−1,吸磷量由5.17 mg·L−1升至6.01 mg·L−1,系统反硝化除磷效果得以提升;污泥特性方面,ABR内MLVSS/MLSS比值和EPS量随有机底物浓度的提高而上升,厌氧段EPS增幅最大,可由154.5 mg·g−1升至164.2 mg·g−1和183.4 mg·g −1。ABR-CSTR-生态单元一体化装置面对短期有机冲击具有稳定处理效果,研究结果可为船舶生活污水的治理提供参考。  相似文献   

15.
李茹  李青  梁煜  李茜  张宇  牛惠翔 《环境工程学报》2020,14(7):1752-1761
采用远程氨等离子体对聚偏氟乙烯(PVDF)超滤膜进行了表面改性实验,通过水接触角表征了改性前后PVDF超滤膜表面的亲水性能,利用扫描电镜(SEM)和X-射线光电子能谱(XPS)表征了改性前后PVDF超滤膜表面的形貌、化学成分变化,通过牛血清白蛋白(BSA)过滤实验评价了改性前后PVDF超滤膜的过滤性能及抗污染性能。结果表明,远程氨等离子体改性的最佳条件为射频功率为40 W,处理时间为45 s,气体流量为 20 cm3·min−1;远程氨等离子体通过将含氧、含氮官能团引入PVDF超滤膜表面,使其表面亲水性官能团增多,表面的亲水性能得到提高,水接触角从95.63°降至52.79°,同时降低了对材料表面的刻蚀作用;通过BSA溶液过滤实验,改性后PVDF超滤膜具有良好的过滤性能和抗污染性能,其水通量、BSA通量分别从87.42、48.00 L·(m2·h)−1增至129.36、79.98 L·(m2·h)−1,截留率从81.43%增至87.70%,总污染率从70.25%降至45.96%。综合上述结果,经过远程氨等离子体改性后,PVDF超滤膜的亲水性能、过滤性能及抗污染性能均得到改善。  相似文献   

16.
部分硝化的稳定运行在一体式部分硝化-厌氧氨氧化工艺(PN/A)中至关重要。探索了在内循环接触氧化型膜生物反应器(ICCOMBR)中改变进水氨氮负荷(ALR)后,反应器中部分硝化过程受到的影响及恢复过程。结果表明:在HRT为24 h,DO为2.0~2.5 mg·L−1时,系统进水ALR降为0.10 kg·(m3·d)−1(氨氮为100 mg·L−1),部分硝化过程迅速破坏;当系统进水ALR升至0.40 kg∙(m3·d)−1(氨氮为400 mg·L−1),部分硝化过程在3 d内迅速恢复;部分硝化恢复稳定后,再提高ALR至0.60 kg·(m3·d)−1(氨氮为400 mg·L−1),并通过调整HRT和DO,最终在HRT为16 h、DO为0.5~1.0 mg·L−1时成功实现部分硝化;通过改变曝气量(AR),在AR为0.9 L·min−1时,控制DO为(0.76±0.11) mg·L−1,系统pH为9.7~8.2,可成功启动部分亚硝化。  相似文献   

17.
针对2种脱氮除磷工艺的剩余污泥,在微氧条件下,以花生渣厌氧发酵产生的VFAs为碳源,控制反应时间为5 h,DO≤0.2 mg·L−1,COD为650~750 mg·L−1,对比2种不同工艺的剩余污泥合成聚羟基脂肪酸酯(PHAs)的量,并探究了增设前置曝气对微氧条件下剩余污泥合成PHAs的影响。结果表明,在微氧条件下,连续流中同步亚硝化反硝化脱氮除磷系统二沉池的剩余污泥(R1)和采用A2O工艺的实际水厂的剩余污泥(R2)合成PHAs最高量分别为108.6 mg·g−1和58.58 mg·g−1,R1比R2更具有合成PHAs的能力;在增设前置曝气实验中,曝气时间的延长和曝气量的增大均可促进PHAs的合成;当曝气气量为50 L·h−1时,曝气20 min后,R1合成的PHAs最高为172.5 mg·g−1。氧化还原电位(Eh)是微氧条件下PHAs合成过程中的重要指示参数,当Eh值为最低时,PHAs合成量最多。以上结果可为脱氮除磷工艺剩余污泥利用廉价碳源合成PHAs提供参考。  相似文献   

18.
以慈竹(sinocalamus affinis, SA)为原料,用磷酸对其进行活化,后经热解得到活化生物炭(activated sinocalamus affinis biochar, ASAB),用来吸附水溶液中的Cr(VI)。当溶液的初始pH为3时,Cr(VI)的初始质量浓度为20 mg·L−1,吸附剂投加量为1g·L−1时,Cr(VI)去除率高达99.8%,剩余溶液中Cr(VI)的质量浓度低于废水排放标准(0.5 mg·L−1)。保持其他条件不变,改变Cr(VI)初始浓度,吸附剂的最大吸附容量可达236.2 mg·g−1。以上结果均说明ASAB对废水中的Cr(VI)具有良好的吸附效果。采用SEM、BET、FTIR、XPS等表征方法对活化前、后的慈竹生物炭的化学结构和物理组成进行了表征。ASAB的比表面积是844.45 m2·g−1,约为SAB(sinocalamus affinis biochar)的2.6倍,较高的比表面积可以提供更多的活性位点。本研究中,ASAB的除铬的机制包括静电作用和氧化还原作用。经过5个吸附-脱附循环后,ASAB对Cr(VI)的吸附效率依然可以达到80.9%。以上结果表明,作为1种高效的Cr(VI)吸附剂,ASAB可以用于处理废水中的Cr(VI)。  相似文献   

19.
实现膜污染有效控制是充分发挥陶瓷膜在废水处理及回用领域适用性的关键。为此,构建了平板陶瓷膜反应器,针对性地开展了平板陶瓷膜处理市政污水二级出水运行优化控制与膜污染机制分析研究。结果表明,通过四因素三水平正交实验,得出本实验条件下最佳运行控制工况为:蠕动泵转速200 r·min−1(对应初始膜通量200 L·(m2·h)−1)、过滤时间10 min、水力反冲时间30 s、间歇运行时间2 min;在此运行工况下,平板陶瓷膜可保持平均膜通量43.08 L·(m2·h)−1以上稳定运行16 d(384 h),期间系统出水浊度、色度、COD等水质指标稳定满足《城市污水再生利用 城市杂用水水质》(GB/T 18920-2002)标准要求;原水和膜污染层元素及官能团对比表征结果表明,脂肪族类、酰胺类、无机硅化物类以及无机金属离子是造成膜污染的主要污染物,而凝胶层阻力则对平板陶瓷膜膜污染形成起主导作用。  相似文献   

20.
为了解决高有机质含量的蓝藻泥深度脱水难、资源化出路不畅的问题,建立了蓝藻泥热压滤深度脱水耦合制备磁性生物炭的中试工艺。通过对含水率和体积减容率的测定,考察了热压滤脱水的效果;通过对碘吸附值、比表面积和饱和磁化强度的测定以及SEM观察,对磁性生物炭进行了表征。结果表明:经过热压滤脱水后可得含水率为65.3%的蓝藻饼,体积减容率为71.3%,约有70%的铁元素保留于蓝藻饼中;磁性生物炭表面可观察到致密排列的微孔(φ=1.5 μm)和铁磁性物质,碘吸附值为391 mg·g−1、比表面积为165 m2·g−1、饱和磁化强度为32 emu·g−1。铁盐作为该工艺桥联物质,在热压滤深度脱水中起到热絮凝作用,在磁性生物炭制备中起到催化和赋磁作用。蓝藻泥热压滤深度脱水处理耦合制备磁性生物炭,有助于实现蓝藻泥的深度脱水和资源化利用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号