首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
《环境科学与技术》2021,44(1):207-215
该文通过污染源现场调查和部门资料收集,结合全国第二次污染源普查和湖北省污染源自动监控综合管理系统,以2017年为基准年,对恩施州大气污染物排放量进行了估算,并建立了恩施州1 km×1 km大气污染源排放清单,研究分析了清单结果和普查结果的差异。结果显示,2017年恩施州人为源SO_2、NO_x、CO、VOCs、PM_(10)、PM_(2.5)、BC、OC和NH_3排放总量分别为12 702.26、19 610.04、168 721.49、16 709.92、17 382.89、10 789.67、3 593.30、5 848.86和43 778.37 t;天然源挥发性有机物(BVOCs)排放总量为159 239.47 t。其中,固定燃烧源是SO_2、CO、PM_(10)、PM_(2.5)、BC和OC主要来源,移动源是NO_x和VOCs的主要来源,NH_3的主要来源是农业源,PM_(10)、PM_(2.5)排放主要来自扬尘源。阔叶林和针叶阔叶混交林对天然源排放贡献较大。空间分布上,污染物排放主要集中在恩施市、利川市和巴东县。对比清单结果和普查结果,SO_2和VOCs排放量估算较普查结果高,NO_x排放量估算与普查结果相差不大。  相似文献   

2.
通过收集整理南京市工业源活动水平,采用"自下而上"的方法建立了2014年南京市工业源大气污染物排放清单。清单结果显示,2014年南京市工业源SO_2、NO_x、PM_(2.5)、PM_(10)、CO、VOCs和NH_3的一次排放总量分别为6.70、14.45、4.97、7.06、83.03、14.47和0.07万t。电力生产是SO_2和NO_x的主要排放源,占工业源总排放量的40%以上,钢铁行业是PM_(2.5)、PM_(10)和CO的主要排放源,均占55%以上,VOCs排放主要来自石化化工,贡献了约62.6%的工业源排放。工业重点源空间分布结果显示,南京市重点源排放主要集中于长江沿岸一带的2个园区:南京化学工业园区和南京经济技术开发区。该研究建立的排放清单具有一定的不确定性,建议后续研究加强大气污染物排放系数的研究,进一步完善大气污染物排放清单,为该市大气污染预报预警和污染控制措施的制定提供重要基础数据。  相似文献   

3.
为了在现有大气污染源排放清单建设工作中突出重点,进行有效的调研分析,需判断出区域大气的主要污染源和污染物,因此制定了区域大气污染物和污染源重要性排序的一般原则和计算方法。从现有国内研究中选取北京市、天津市、上海市、杭州市、广东省以及珠三角共6个有NO_x、SO_2、PM_(2.5)、PM_(10)、NH_3、VOCs、CO排放量研究结果的地区进行综合对比分析,根据等标污染负荷比法和狄克松检验法得出区域污染源和污染物重要性排序结果。根据通用方法,以扬州市为例,得出扬州市大气污染源重要性排序结果依次为:工业源、生活源、农业源、移动源和其他源,主要污染源为工业源和生活源;扬州市大气污染物重要性排序结果依次为:NO_x、SO_2、PM_(2.5)、PM_(10)、NH_3、VOCs和CO,主要污染物为NO_x、SO_2、PM_(2.5)和PM_(10)。  相似文献   

4.
《环境科学与技术》2021,44(2):90-96
为进一步推进鄂州市大气污染防治工作,加强大气环境质量及重污染应急工作保障,文章基于污染源普查成果建立了2017年鄂州市高时空分辨率大气污染源排放清单。研究通过对鄂州市固定燃烧源、工艺过程源、溶剂使用源等的调查,借助第二次全国污染源普查成果,获得污染源的基本信息。鄂州市2017年各类大气污染物排放情况:SO_2为8 048.58 t、NO_x为18 363.60 t、CO为306 258.10 t、VOCs为19 146.60 t、NH_3为2 603.01 t、PM_(10)为22 695.50 t、PM_(2.5)为10 811.73 t、BC为918.34 t、OC为1 018.93 t。工艺过程源对SO_2、NO_x、CO、VOCs、PM_(10)、PM_(2.5)的贡献率最大,分别为66.75%、63.41%、89.87%、68.28%、54.69%、66.51%;农业源对NH_3的贡献率最大,为53.71%;固定燃烧源对BC、OC的贡献率最大,分别为35.85%、37.85%。  相似文献   

5.
南昌市固定燃烧点源大气污染物排放清单及特征   总被引:2,自引:0,他引:2  
大气污染物排放清单是了解区域污染物排放特征、准确模拟空气质量的重要资料,而工业点源是大气污染的重点排放源.通过收集相关活动水平信息和合理的排放因子,采用"自下而上"的方法建立了南昌市2014年点源大气污染物排放清单.结果表明,SO_2、NO_x、CO、PM_(10)、PM_(2.5)和VOC排放总量分别为29576.2、17115.1、25946.6、4689.4、922.9和1190.4 t,其中,金属炼制行业对SO_2、CO和VOC的贡献最高,分别占37.75%、30.59%和38.45%;火电行业是NO_x的主要来源,其贡献率为47%;水泥等建材制造行业对PM_(10)和PM_(2.5)排放贡献最高,分别为26%和25%.根据排放源污染物排放量及地理坐标信息,建立了0.4 km×0.4 km的污染物排放量空间分布特征图,结果表明,南昌市大气污染物排放较为集中,青山湖区北部和新建区北部是SO_2、NO_x、CO和VOC的主要排放区,而PM_(10)和PM_(2.5)的排放量相对分散,并在安义县出现排放高值区.通过将计算结果与统计数据结果进行对比,了解所估算清单的准确程度.对SO_2和NO_x的计算值和统计值进行统计分析,结果显示,NMB(标准化平均偏差)和NME(标准化平均误差)值均小于50%,清单计算精度较高.同时,为了解清单数据质量,对清单的不确定性进行定量分析,结果显示,SO_2和VOC不确定性较低而PM_(10)和PM_(2.5)的不确定性相对较高,清单整体不确定性与其他研究结果相差不大.建议后期研究可以从提升基础数据质量和建立具有区域代表性的排放因子数据库着手,从而减小排放量的不确定性,获得精准可靠的大气污染物清单并应用于空气质量模型预报等更深入的研究.  相似文献   

6.
四川省人为源大气污染物排放清单及特征   总被引:16,自引:14,他引:2  
在收集四川省各城市人为污染源活动水平数据基础上,基于自下而上和自上而下结合的清单构建方法,选取排放因子并结合GIS技术,建立了该地区2015年1 km×1 km人为源大气污染物排放清单.结果表明,2015年四川省人为源SO_2、NO_x、CO、PM_(10)、PM_(2.5)、BC、OC、VOCs和NH_3排放量分别为444.9×10~3、820.0×10~3、3 773.1×10~3、1 371.6×10~3、537.5×10~3、28.7×10~3、53.1×10~3、923.6×10~3和988.0×10~3t.电厂和工业锅炉等燃煤排放贡献了95%以上的SO_2,移动源、化石燃料燃烧源和工艺过程源分别贡献了54%、23%和20%的NO_x,以钢铁和建材制造为主的工艺过程源分别贡献了20%的PM_(10)和34%的PM_(2.5),以道路扬尘为主的扬尘源分别贡献了60%的PM_(10)和35%的PM_(2.5),生物质燃烧分别贡献了33%的BC和51%的OC,以机械加工、建筑装饰、电子设备制造、印刷和家具等行业为主的溶剂使用源贡献了46%的VOCs,NH_3主要来自畜禽养殖和氮肥施用等农业部门排放,分别占总排放量的70%和25%.污染物空间分布结果显示,四川省各项大气污染物主要集中分布于人口最为密集,农业和工业均较为发达的四川盆地和攀枝花部分区域,其中,以成都、德阳和绵阳为代表的成都平原城市群为四川盆地内的主要排放高值区域.所建立的排放清单存在一定不确定性,后续研究中应针对活动水平数据获取的不足开展数据收集工作,加强排放贡献较大典型污染源的排放因子本地化研究工作,逐步完善四川省大气污染物排放清单,为四川省复合型大气污染研究和防治提供科学支撑.  相似文献   

7.
廊坊市区主要大气污染源排放清单的建立   总被引:4,自引:1,他引:3  
通过调研、统计廊坊市区工业、城中村及机动车等资料,结合以往清单文献研究结果及清单编制指南中的排放因子,计算了廊坊市区主要大气污染物的排放量,得到廊坊市区2014年主要大气污染源排放清单.结果显示,2014年廊坊市区工业源(固定燃烧)NO_x、SO_2、NMVOC、CO、PM_(10)、PM_(2.5)排放总量分别为6.4×10~3、1.2×10~4、31、1.0×10~4、7.3×10~2、4.4×10~2t,其中热电行业排污贡献率最高,分别占NO_x、SO_2、CO、PM_(10)、PM_(2.5)工业源(固定燃烧)年排放总量的55%、48%、67%、63%、69%;安次区工业企业对气态污染物贡献较高,广阳区及开发区工业企业对颗粒物排污贡献较大.低矮面源(城中村)NO_x、SO_2、NMVOC、CO、PM10、PM_(2.5)年排放总量分别为1.8×10~2、3.6×10~3、3.0、4.9×10~3、1.5×10~2、72 t.道路移动源CO、HC、NO_x、PM_(2.5)年排放总量分别为2.4×10~4、1.9×10~3、2.2×10~3、44 t,其中小型客车对HC和CO贡献率较高,分别为53%和61%;NO_x年排放总量中26%由重型货车贡献;PM_(2.5)则主要由轻型货车和重型货车贡献,占比分别为39%和21%.  相似文献   

8.
以天津市津南区空气站周边3 km为研究对象,基于拉网式实地调查,获得了该地区2016年各类典型行业污染源详细的活动水平数据,以大气污染物排放清单编制指南为参考,建立了2016年天津市津南区空气站周边3 km大气污染源排放清单,并构建了PM_(2.5)、PM_(10)、SO_2、NO_x、CO和VOCs等6项污染物的100 m×100 m空间网格分布图。结果表明,2016年天津市津南区空气站周边3 km大气污染源的排放总量为:PM_(2.5)(212.72 t)、PM_(10)(529.79 t)、SO_2(101.97 t)、NO_X(1 181.93 t)、CO(3 272.10 t)、VOCs(423.62 t);PM_(2.5)、NO_X、CO、VOCs的最大排放源都是道路机动车,贡献率分别为22.10%、92.84%、71.15%、74.52%;SO_2的最大排放源是散煤(43.25%);PM_(10)的最大排放源是裸地(29.33%)。天津市津南区改善空气质量应从道路交通优化、控制散煤、锅炉改燃3方面入手。  相似文献   

9.
广西工业源大气污染物排放清单及空间分布特征研究   总被引:5,自引:0,他引:5  
大气污染物排放清单是了解区域污染物排放特征的重要资料,而工业源是大气污染的重点排放源.研究根据收集的工业企业活动水平数据,选择合理的计算方法和排放因子,建立了广西2016年工业源大气污染物排放清单.结果表明,2016年广西工业源SO_2、NO_x、CO、PM_(10)、PM_(2.5)、VOCs排放总量分别为20.7×10~4、21.6×10~4、147.5×10~4、48.4×10~4、25.7×10~4、34.7×10~4 t.其中,电厂和非金属矿物制品业对SO_2、NO_x、PM_(2.5)和VOCs的贡献最高.除此之外,黑色金属冶炼是SO_2、NO_x和PM_(2.5)的主要贡献源;有色金属冶炼是PM_(2.5)的主要贡献源;农副食品加工业是VOCs的主要贡献源.根据排放源污染物排放量及地理坐标信息,建立了污染物排放量空间分布特征图.结果显示,广西工业企业SO_2和NO_x排放主要集中在百色、柳州、防城港和贵港市;颗粒物排放主要集中在贵港、柳州和百色市;VOCs排放主要集中在柳州、贵港和崇左市.研究建立的排放源清单结果具有一定的不确定性,建议进一步完善基础研究.  相似文献   

10.
承德市大气污染源排放清单及典型行业对PM2.5的影响   总被引:3,自引:1,他引:2  
陈国磊  周颖  程水源  杨孝文  王晓琦 《环境科学》2016,37(11):4069-4079
以承德市为研究对象,基于拉网式实地调查,获得了该地区2013年各类典型行业污染源详细的活动水平数据,以大气污染物排放清单编制指南为参考,辅以排放因子研究的系统梳理,建立了2013年承德市各行业区县分辨率大气污染源排放清单,并结合人口、路网、土地利用等数据进行了1 km×1 km网格分配.在此基础上建立气象-空气质量模型系统(WRFCAMx),应用颗粒物来源识别技术(PSAT),选取2013年典型季节代表月1、4、7、10月,针对承德市电力、建材、冶金等典型行业对PM_(2.5)的影响进行了定量评估.结果表明,2013年承德市SO_2、NO_x、TSP、PM_(10)、PM_(2.5)、CO、VOCs、NH_3的总排放量分别为81 134、72 556、368 750、119 974、51 152、1 281 371、170 642、81 742 t.工业源是SO_2、NO_x、CO、VOCs的主要排放源,分别占总排放量的89.5%、51.9%、82.5%和45.6%,NO_x的主要排放源还包括道路移动源和非道路移动源,分别占总排放量的26.7%和10.8%;TSP、PM_(10)、PM_(2.5)的主要排放源是无组织扬尘,分别占总排放量的76.7%、65.6%、46.5%;畜禽养殖、化肥施用是NH_3的主要排放源,分别占总排放量的67.1%、15.8%.数值模拟结果表明,无组织扬尘、其他行业、冶金、锅炉行业对环境PM_(2.5)影响较大,浓度贡献分别为23.1%、20.6%、13.3%和11.2%,制定具体控制措施时应得到重点关注.  相似文献   

11.
基于本地污染源调查的杭州市大气污染物排放清单研究   总被引:4,自引:0,他引:4  
基于实地调查数据并辅以统计数据,采用物料衡算法和排放因子法,估算了杭州市2015年大气污染物排放清单,并选取经纬度坐标、路网、航道、土地类型和人口等数据作为权重因子,研究了该地区各类排放源污染物排放空间分布特征.结果表明,杭州市2015年SO_2、NO_x、CO、VOCs、PM_(10)、PM_(2.5)和NH_3年排放总量分别为22.20×10~3、108.17×10~3、192.10×10~3、134.94×10~3、78.12×10~3、27.65×10~3和59.75×10~3t.工业源是杭州市SO_2排放的主要来源,移动源对NO_x和CO的排放贡献最为显著,扬尘源是杭州市PM_(10)和PM_(2.5)排放的最主要来源,其次为工业源;VOCs排放的主要来源依次为工业源、天然源和移动源;NH_3排放主要来自农业源.从空间分布来看,排放主要集中在中心城区及其周边的萧山、下沙、大江东、余杭和富阳等工业企业相对密集的区域.本研究建立的排放清单在污染源覆盖范围和排放因子方面仍然存在一定的不确定性,建议在后续研究中重点开展低、小、散企业及本地化排放因子调查研究工作,进一步提升大气污染物排放清单的准确度.  相似文献   

12.
长沙市人为源大气污染物排放清单及特征研究   总被引:5,自引:1,他引:4  
根据收集的长沙市人为源活动水平数据,建立了该地区2014年1 km×1 km人为源大气污染物排放清单.结果显示,2014年长沙市SO_2、NO_x、CO、PM_(10)、PM_(2.5)、BC、OC、VOCs和NH_3排放总量分别为53.5×10~3、78.3×10~3、284.6×10~3、102.3×10~3、42.1×10~3、4.0×10~3、7.2×10~3、64.2×10~3、27.1×10~3t.化石燃料固定燃烧源为最大的SO_2排放贡献源,道路移动源是主要的NO_x贡献源,CO排放主要来自化石燃料固定燃烧源和道路移动源,长沙市VOCs的最大贡献源是溶剂使用源,PM_(10)、PM_(2.5)最主要的排放源是扬尘源,BC最大的排放贡献源为化石燃料固定燃烧源,生物质燃烧源是最大的OC贡献源,NH_3排放主要来源于畜禽养殖和农业施肥.空间分布结果显示,长沙市NH_3的排放在宁乡县、望城区、长沙县、浏阳市分布较多,主要呈现片状分布.其他污染物排放高值区则主要分布在中心城区、工业区及道路分布区域.  相似文献   

13.
基于所搜集的兰州盆地各类人为污染源排放大气污染物的活动水平数据及其排放因子,采用"自下而上"的方法建立了2009年兰州盆地(石油化工城市)1 km×1 km的7种(类)大气污染物网格化排放清单,并对其来源和空间分布特征进行了分析研究.结果显示:2009年兰州盆地NOx、SO_2、VOCs、CO、PM_(10)、PM_(2.5)和NH3的排放总量分别为1.2×10~5、8.8×10~4、4.3×10~4、4.1×10~5、9.6×10~4、4.2×10~4和1.4×10~4t;工业燃烧排放是兰州盆地NO_x和SO_2的主要贡献源,分别占其总排放量的85.70%和52.55%;工业非燃烧过程排放是VOCs的最大贡献源,占总排放量的81.25%;工业点源和工业非燃烧过程排放是CO的两大贡献源,分别占其总排放量的33.97%和28.32%;PM_(10)和PM_(2.5)主要来源于工业非燃烧过程,贡献分别为51.09%和55.12%;氮肥使用和禽畜养殖是NH_3排放最大的贡献源,分别占其总排放量的39.20%和30.70%.空间分布特征表现为:以工业源为主要排放源的NO_x、SO_2、VOCs、CO、PM_(10)、PM_(2.5)主要分布在工业和人口最为集中的兰州盆地市区一带,NH_3的排放则主要集中在榆中县和皋兰县交界的农村地区.同时,还对2014年工业燃烧源和道路移动源的7种(类)大气污染物排放量进行了估算,并与2009年进行了排放比较研究.结果表明,2014年工业污染源的7种(类)污染物排放量与2009年相比平均增幅不高,最高不超过30%,但移动源污染物排放量却大幅增加,增幅将近1倍.此外,基于排放因子及活动水平的不确定性,本研究对排放清单的结果进行了不确定性分析,并通过蒙特卡罗模拟对各污染物的排放量进行了评估.本排放清单的建立,不仅填补了兰州盆地大气污染物网格化排放清单的空白,还可为兰州盆地大气污染物排放清单更新、区域环境过程、大气复合污染成因及大气污染预警技术等相关研究提供基本方法手段及基础数据.  相似文献   

14.
为了分析贵州省六盘水市大气污染物浓度变化及排放清单,该文系统收集和整理2015-2018年大气污染物浓度观测资料和2015年排放清单。分析表明:2015-2018年,六盘水市环境空气优良率逐年增加,且在2018年达到98.2%。PM_(2.5)日均浓度有97 d超过国家环境空气质量二级标准(75μg/m~3)(GB 3095-2012),其中最大浓度为167μg/m~3;PM10有16 d超过二级标准(150μg/m~3);O_(3-8 h max)、NO_2、SO_2和CO日均浓度和年均浓度未超标。PM_(2.5)和PM_(10)年均浓度逐年降低,但PM_(2.5)在2015-2017年超标,浓度分别为42.6、40.7和40μg/m~3;PM10年均浓度在2016年和2017年超标,浓度分别为73.0和70.3μg/m~3。2015年六盘水市PM_(2.5)、PM_(10)、SO_2、NO_x、CO和VOCs排放总量分别为5.78万t、10.89万t、16.64万t、14.23万t、37.42万t和3.32万t。化石燃料固定燃烧源是PM_(10)、PM_(2.5)、SO_2、NO_x和CO的最大排放源。  相似文献   

15.
辽宁省人为源大气污染物排放清单及特征研究   总被引:2,自引:0,他引:2  
为全面评估辽宁省关键大气污染物排放状况,系统收集和整理全省基础活动水平信息,采用排放因子法建立了该省2012年人为源大气污染物排放清单.结果显示,2012年辽宁省SO_2、NO_x、CO、PM10、PM_(2.5)、BC、OC及NH_3排放总量分别为1434.8×10~3、1632.3×10~3、6682.9×10~3、1529.9×10~3、1087.8×10~3、74.5×10~3、176.1×10~3t及880.4×10~3t.BC和OC最大贡献源为生物质燃烧源,排放集中分布在辽宁中、西部;NH_3主要来自畜禽养殖与化肥施用,排放高值区位于辽宁中部农业畜牧业发达地区;其他污染物主要来自固定燃烧源和工艺过程源,集中分布在辽宁中部城市群以及大连金州区、甘井子区和普兰店区.大连、沈阳是SO_2、NO_x、NH_3和颗粒物主要排放城市,鞍山和本溪由于钢铁行业发达,成为CO排放量最大的城市.基于卫星观测获得的NO_2垂直柱浓度对NO_x排放空间分布进行评估,两者相关性系数为0.57(p0.01).辽宁省级排放清单与国家尺度排放清单在一定程度存在差异,主要原因在于采用的活动水平和污染物控制效率的不同,基于详细本地化污染源信息建立的省级排放清单可以较好地反映实际情况.建议完善点源排放特征信息并加强本地化测试,进一步降低省级排放清单不确定性.  相似文献   

16.
南昌市移动源排放清单研究   总被引:8,自引:4,他引:4  
根据收集的南昌市移动源活动水平数据,采用合适的估算方法、排放因子和GIS技术,建立了南昌市2007—2014年移动源排放清单,并对2014年移动源清单进行了空间化处理与分析,空间分辨率为1 km×1 km.结果表明,2007—2014年南昌市移动源共向大气排放CO、HC、NO_x、PM_(2.5)、PM_(10)、SO_2分别为18.26×10~4、5.07×10~4、18.46×10~4、0.99×10~4、1.08×10~4、3.31×10~4t.其中,2014年移动源向大气中排放的这6种污染物总量分别为2.14×10~4、0.76×10~4、1.97×10~4、0.08×10~4、0.09×10~4、0.55×10~4t.道路移动源中,汽油小型客车是CO、HC和SO_2最大的贡献源,排放量分别占机动车排放总量的55.1%、78.5%和56.1%;柴油重型货车是NO_x、PM_(2.5)和PM_(10)排放贡献率最大的车型,分别占43.2%、40%和40%.非道路移动源中,小型拖拉机对CO、HC、NO_x、PM_(2.5)和PM_(10)的贡献率均较大,分别占非道路移动源排放总量的29.9%、26.9%、23.4%、29.5%和29.8%;SO_2排放主要来源于船舶,占非道路移动源SO_2排放总量的45.1%.高污染排放集中的区域,主要是青山湖区、西湖区和东湖区.  相似文献   

17.
长三角城市群机动车污染物排放清单建立及特征研究   总被引:4,自引:0,他引:4  
为研究长三角城市群机动车污染物排放特征,本研究应用COPERTⅣ模型估算1999—2017年长三角城市群机动车污染物CO、NMVOC、NO_x、PM_(2.5)、PM_(10)、CO_2、CH_4、N_2O、NH_3和SO_2排放因子,建立排放清单,并对其排放特征展开分析,结果表明:1999—2017年不同污染物时间变化趋势存在差异,污染物CO、NMVOC、NO_x、PM_(2.5)、PM_(10)和CH_4排放量呈现先增长后下降的趋势,但开始下降的年份不同,CO_2和NH_3排放量增长趋势显著,2017年相对于1999年分别增加621%和3925%,N_2O和SO_2排放量总体呈上升趋势并在特定年份下降明显;污染物排放空间分布与路网分布基本一致,沿海地区的排放强度要明显大于内陆地区,特别是长江下游、杭州湾和太湖附近的城市最为明显;轻型客车为污染物CO、NMVOC、CO_2、CH_4、N_2O和NH_3的主要贡献车型,重型货车和重型客车为污染物NO_x、PM_(2.5)、PM_(10)和SO_2主要贡献车型;长三角城市群各城市机动车污染物排放量的差别主要与各城市机动车保有量有关,上海市各污染物贡献率下降幅度明显,机动车污染物主要贡献城市除了省会城市和直辖市之外,其余城市的污染物排放也不容忽视.  相似文献   

18.
为探究抚顺市大气污染特征,该项研究应用气象模式WRF耦合空气质量模式CMAQ对抚顺市2016年大气细颗粒物的时空分布特征及主要来源进行分析。建立了抚顺市3×3 km网格化污染源清单,清单显示抚顺市的大气污染物排放以工业为主,SO_2、NO_x、TSP排放量分别达到2.14×10~4t、1.97×10~4t、3.29×10~4t,排放高值网格集中在市区内。数值模拟结果显示,抚顺市PM_(2.5)污染总体呈现"西高东低"的趋势,高值区出现在以新抚区、望花区、东洲区、顺城区为中心的城区地带。1月抚顺市的PM_(2.5)污染最重,高值区浓度在60μg/m~3以上。1月ρ(PM_(2.5))贡献最大的源为居民源(21.6%)与供暖源(20.7%);4月贡献最大的源为居民源(25.0%),钢铁源(16.5%)与移动源(11.7%)占比其次;7月钢铁源与移动源对抚顺市ρ(PM_(2.5))贡献分别为17.8%与15.1%;10~月居民源的贡献达到33.4%,远超过其它源类的贡献。  相似文献   

19.
为研究河北省典型工业源大气污染物排放特征,通过收集整理河北省及各地市工业源活动水平数据,文章采用"自下而上"的方法建立了2016年河北省工业源大气污染物排放清单。结果显示,2016年河北省工业源SO_2、NO_x、CO、VOCs、PM_(10)、PM_(2.5)排放总量分别为60.1、64.1、1 076.1、69.6、51.4、32.7万t。钢铁是各项工业大气污染物的首要来源,贡献率为30.2%~90.2%,电力是NO_x、SO_2的第二大来源,焦化是颗粒物的第二大来源。唐山、邯郸、石家庄是省内排放量最高的3个城市。对于钢铁行业,各市烧结机SO_2排放浓度均能达到地标的要求,但全省平均浓度是超低限值的1.76倍;对于电力行业,燃煤机组达到SO_2、NO_x超低排放限值的比例分别为83.19%、100%,全省SO_2、NO_x平均排放浓度是深度治理要求的1.02倍、1.53倍。减排潜力测算结果显示,在实施了新的减排政策后,工业源各项污染物排放量预计比2016年下降9.0%~30.5%。  相似文献   

20.
中国钢铁行业大气环境影响   总被引:4,自引:3,他引:1  
本研究基于2015年在线监测等数据,分析中国钢铁行业主要工序(烧结和球团)排口烟气浓度情况,自下而上建立了2015年中国高时空分辨率钢铁行业大气污染物排放清单(HSEC, 2015),使用CAMx模型,定量模拟钢铁行业排放对区域大气污染物浓度贡献.结果表明, 2015年中国钢铁行业共排放SO_2、NO_x、PM_(10)、PM_(2.5)、PCDD/Fs、VOCs、CO、BC、OC、EC和F分别为37.48万t、 72.05万t、 33.48万t、 15.03万t、 1.91 kg、 84.29万t、 3 478.85万t、 0.64万t、 0.83万t、 0.08万t和0.77万t.从区域角度:上海和天津钢铁行业单位面积污染排放强度最大,对区域大气污染贡献比例较高.从工序角度:2015年烧结和球团烟气排口月平均浓度降低.从污染物角度:2015年钢铁行业排放NO_x对区域污染物浓度贡献最大,NO_x具有较大的减排潜力.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号