共查询到19条相似文献,搜索用时 62 毫秒
1.
研究了均苯四甲酸二酐(PMDA)和乙二胺四乙酸二酐(EDTAD)改性甘蔗渣对重金属离子Cu2+和Zn2+的吸附性能,包括吸附动力学和吸附等温线。结果表明,改性后的甘蔗渣对重金属离子Cu2+和Zn2+的吸附容量有显著提高,对Cu2+和Zn2+吸附等温线均符合Langmuir方程,吸附为单分子层吸附。根据Langmuir方程,PMDA和EDTAD改性甘蔗渣对Cu2+的吸附量分别为60.21和33.45 mg/g,对Zn2+的吸附量分别是70.53和36.53 mg/g。两种改性甘蔗渣对两种金属离子的吸附在30 min内均可完成,用准二级吸附动力学方程模拟动力学过程得到较好的线性相关性。以EDTA溶液为洗脱剂对吸附Cu2+和Zn2+的改性甘蔗渣进行洗脱再生,再生的吸附剂可反复使用。 相似文献
2.
以竹炭为原料,采用(NH4)2S2O8作为改性药剂,通过微波辅助加热的方法对竹炭进行改性;运用Boehm滴定、扫描电镜(SEM)、电子能谱(EDAX)和傅里叶红外光谱(FTIR)对改性竹炭进行表征;考察了pH、时间、温度和离子强度等对改性竹炭吸附Cu2+的影响。结果表明,微波辅助(NH4)2S2O8改性使得竹炭表面的酚羟基、内酯基、羧基等酸性含氧官能团的数量有所增加;改性竹炭对Cu2+吸附更符合Langmuir等温方程,吸附为自发的吸热过程;吸附动力学符合准二级动力学方程;溶液离子强度增大不利于其对Cu2+的吸附。 相似文献
3.
本研究用ZnCl2作为活化剂,使用功率640 W的微波照射4 min的方法制备改性玉米秸秆。考察投加量、pH、吸附时间对吸附性能的影响,并对等温吸附特征、吸附动力学和热力学进行了系统研究。结果表明:投加量为0.2 g,pH为6,改性玉米秸秆对Cu2+具有很好的吸附效果,吸附在8 h后达到平衡。该吸附过程符合Langmuir及Freundlich等温吸附模型和准二级动力学方程,其反应的吉布斯自由能△G<0,为自发反应过程。 相似文献
4.
改性菌丝体对Ni2+的吸附特性研究 总被引:3,自引:0,他引:3
《环境工程学报》2003,4(10):23-26
通过专利对菌丝体进行了改性.所制备的改性菌丝体对重金属离子具有良好的吸附效果.结果表明,其对Ni2+的吸附容量63.2mg/g(初始水溶液中Ni2+浓度为200 mg/L),是甲壳素吸附剂的3.3倍(19.1 mg/g),与壳聚糖吸附剂相比吸附容量提高了135%,与D751与南开152相比吸附容量非常接近.用0.5%-0.2%的解吸剂便可以完全解吸,能够重复使用达6次以上.本文还研究了改性菌丝体对Ni2+的吸附过程中重要的影响因素,结果发现,在微碱性(pH=8-9)条件下,改性菌丝体可以把初始浓度高达800mg/L的Ni2+溶液一次性降低到17 mg/L,为改性菌丝体在工业废水处理中的应用奠定了良好的基础. 相似文献
5.
以柿粉为原料通过甲醛交联固化制备出柿粉树脂(PPR);利用傅里叶红外光谱(FT-IR)、Zeta电位、热变性温度、比表面积等对其进行表征,并探讨其吸附Cu2+和Pb2+的效应。结果表明,(1)PPR对Cu2+和Pb2+的吸附效果显著高于柿粉与活性炭;(2)p H值对吸附平衡影响较大,最佳p H值范围为5.0~6.0;(3)PPR对Cu2+和Pb2+的吸附在180 min内可达到吸附平衡,提高吸附温度可提高吸附速率,其吸附动力学数据可用拟二级速率方程良好拟合;(4)提高金属离子初始浓度可增加平衡吸附量,Freundlich和Langmuir方程可分别拟合PPR对Cu2+(R2>0.98)和Pb2+(R2>0.99)的吸附等温线;(5)PPR(2.0 g/L)可吸附混合重金属溶液中83.73%的Cu2+和98.63%的Pb2+;(6)PPR可循环使用5次以上;(7)PPR对Cu2+与Pb2+的吸附效应可能是静电吸附与配位反应共同作用的结果。该研究结果表明,PPR是一种有应用前景的处理含重金属废水的备选材料。 相似文献
6.
采用静态吸附法以4A沸石为吸附剂研究其对复合污染水体中Pb2+、Cu2+和Cd2+的竞争吸附特性,并探讨了影响吸附的环境因素。实验表明,在室温条件下,溶液pH5~6,4A沸石15 mg对10 mL复合污染溶液(Pb2+、Cu2+和Cd2+浓度分别为100 mg/L)吸附20 min时,对溶液中3种重金属的吸附去除率均可达99.8%以上。反应过程中4A沸石对3种重金属的吸附速率大小为Pb2+>Cu2+>Cd2+。复合污染水体中4A沸石对Pb2+、Cu2+和Cd2+的吸附符合Langmuir和Fre-undlich等温吸附方程,相关系数分别为0.9981、0.9901、0.9916和0.9638、0.9194、0.9689。经计算,4A沸石对Pb2+、Cu2+和Cd2+的饱和吸附量分别为129.9 mg/g、107.5 mg/g和99.0 mg/g。4A沸石吸附重金属离子达到吸附平衡的时间较短,对溶液pH值的适应性较好。吸附后的4A沸石可以再生利用,对铅离子洗脱重复利用性较铜离子和镉离子强。 相似文献
7.
以Pb2+吸附量为评价指标获得了PEI-DTC的最佳制备条件,采用SEM和FT-IR对所制备材料的形貌和结构进行了表征,考察了吸附时间、pH、振荡速度和材料投量对PEI-DTC吸附Pb2+、Cu2+、Zn2+效果的影响,分析了吸附过程中的动力学特征、热力学特征,研究了材料的复用性能。结果表明,采用30% PEI溶液制备PEI-DTC的最佳条件为m(PEI)/m(戊二醛)= 2:1、m(PEI)/m(硼氢化钠)=3:1、m(PEI)/m(二硫化碳)=3:1;所制备材料表面呈颗粒状和蜂窝状结构,比表面积较大;PEI-DTC对Pb2+、Cu2+、Zn2+的吸附效果随吸附时间、溶液pH增加呈先快速增加后趋于稳定的变化趋势,Pb2+、Cu2+在100 r·min−1、Zn2+在150 r·min−1时表现出较好的吸附效果,Pb2+在材料投量为0.03 g时即近于完全吸附,而Cu2+、Zn2+在材料投量为0.08 g时仍处于上升趋势;适宜吸附条件下PEI-DTC对Pb2+、Zn2+、Cu2+的去除率分别可达97.62%、14.79%、78.92%,对应的吸附量分别为4.005、0.509、4.658 mmol·g−1;PEI-DTC对Pb2+、Zn2+、Cu2+的吸附过程符合Langmuir模型和准二级反应动力学模型,吸附为自发的吸热过程;经4次使用,材料对Pb2+的吸附量仍保留81.14%。 相似文献
8.
以城市污水处理厂剩余污泥为原料,以ZnCl2为活化剂制取污泥基活性炭。以此污泥基活性炭为吸附剂,对含Cu2+的废水进行了吸附实验研究。考察了溶液pH值、Cu2+的起始浓度对Cu2+离子吸附量的影响;利用等温吸附实验作出吸附等温线,并考察了污泥基活性炭吸附剂吸附Cu2+的动力学方程。实验结果表明,污泥基活性炭对Cu2+具有良好的吸附性能。吸附的最佳pH值为5;吸附符合Langmuir和Freundlich吸附等温方程,吸附为优惠吸附,吸附量随着吸附质溶液浓度的增加而增大;吸附平衡时间为4 h,吸附动力学符合二级动力学方程。 相似文献
9.
将工业废弃物锰矿尾渣与壳聚糖混合制得一种高效吸附剂,并应用扫描电镜、X射线衍射对其结构进行了表征。采用正交表设计试验,分别考察了pH值、吸附时间、温度、复合吸附剂的投加量等4个影响因素对Pb2+吸附的影响,最佳吸附条件为:pH值为7,吸附时间为40 min,温度为20℃,复合吸附剂的投加量为0.10 g。处理后的水符合国家污水综合排放标准(GB8978-1996)中的一级标准。复合吸附剂对Pb2+的吸附符合Langmuir和Freundlich吸附等温方程。 相似文献
10.
通过氧化石墨烯(GO)对硫化钼(MoS2)-聚丙烯腈(PAN)进行改性处理,采用相转化法成功制备了对水溶液中Cu2+进行吸附的GO-MoS2-PAN改性吸附膜。通过扫描电镜(SEM)、傅里叶变换红外光谱(FTIR)及接触角测试对该吸附剂材料进行了表征。探究了不同GO固含量对GO-MoS2-PAN改性吸附膜的孔隙率、纯水通量以及接触角的影响。在pH为5、Cu2+质量浓度为100 mg·L-1的溶液中,GO固含量为0.03%的改性吸附膜对Cu2+的最大平衡吸附量达到224.28 mg·g-1,且其脱附率为84%。结果表明,改性吸附膜对溶液中Cu2+的吸附动力学符合准二级动力学模型,等温吸附过程符合Freundlich等温吸附模型,热力学分析结果表明该吸附过程为自发吸热过程。 相似文献
11.
用硫酸对麻黄废渣进行化学改性,制备改性麻黄废渣,并用于模拟废水中Cu2+的吸附。通过扫描电子显微镜、傅里叶红外光谱仪和官能团滴定等方法对改性麻黄废渣进行表征;采用静态吸附实验,考察了溶液pH、吸附剂用量、吸附时间等对吸附效果的影响。结果表明,麻黄废渣改性后,酸性基团数量明显增加,羟基和羧基也均有大幅度的增加,表面比改性前变得粗糙和疏松多孔,表面积增大,更有利于对Cu2+的吸附。室温(25℃)下改性麻黄废渣吸附Cu2+的较佳条件为:溶液pH 5.0、吸附时间60min、改性麻黄废渣用量4g/L。改性麻黄废渣对Cu2+的吸附可以用准二级动力学方程描述,Cu2+的饱和吸附量为2.20mmol/g,与改性前(1.49mmol/g)相比有明显提高。改性麻黄废渣吸附—解吸附循环使用5次中,Cu2+的平均解吸率达到83%左右,麻黄废渣平均再生率达到94%以上,经5次循环使用,Cu2+吸附率仍可达到99.46%,说明改性麻黄废渣具有良好的重复利用性能。 相似文献
12.
以生物膜中提取的细菌藻酸盐为原料制备藻酸钙为吸附剂,对水溶液中的Cu2+进行了吸附动力学研究.试验结果表明,吸附时间、溶液初始pH和吸附剂投加量对藻酸钙吸附Cu2+影响显著.当溶液初始pH为4.0、Cu2+初始质量浓度为100 mg/L、吸附剂投加量为0.7 g/L时,藻酸钙对Cu2+的平衡吸附量为56.15 mg/g.水溶液中Cu2+在藻酸钙上的吸附动力学过程可用准二级动力学方程来模拟.吸附等温线研究表明,藻酸钙吸附Cu2+的过程可用Langmuir和Freundlich模型来描述.100 mmol/L 乙二胺四乙酸(EDTA)可有效解吸95.6%的Cu2+,实现Cu2+的回收与吸附剂的重复利用. 相似文献
13.
用醋酸对黑碳进行改性,通过改性纳米黑碳(MBC)对Cu2+、Cd2+的吸附/解吸试验,探究MBC对Cu2+、Cd2+的吸附特性及吸附稳定性。结果表明,Cu2+和Cd2+在MBC上的吸附动力学过程可分为快吸附和慢吸附两个阶段,且MBC对Cu2+的吸附效率大于Cd2+。Cu2+和Cd2+在MBC上的吸附等温线均能用Langmuir和Freundlich方程拟合,Cu2+和Cd2+在MBC上的最大吸附量分别为13.513、11.364mg/g,且MBC对Cu2+和Cd2+均为优惠吸附。MBC上Cu2+和Cd2+的解吸量均随着吸附量的增加而增大,易解吸态Cu2+在MBC上的解吸率为6.12%~10.25%,Cd2+为9.58%~11.81%,MBC对Cu2+的吸附稳定性大于Cd2+。将醋酸改性与已有改性方法对比,表明醋酸改性条件温和、能耗低、经济环保,将有很大的研发前景。 相似文献
14.
花生壳吸附Cu^2+的动力学和热力学研究 总被引:13,自引:1,他引:13
采用平衡吸附法,研究了pH、时间及温度对花生壳吸附水溶液中Cu2 的影响.结果表明,pH显著影响花生壳对Cu2 的吸附,pH为3.00~5.00时,吸附效果最好;初始吸附过程非常快,30 min时即达到最大吸附量的97%左右,其动力学行为更好地符合Lagergren准二级反应动力学模型,随着温度增加,初始吸附速率和平衡吸附量增加.吸附过程的表观活化能(Ea)为17.02 kJ/mol,表明花生壳吸附水溶液中Cu2 是吸热的化学过程.吸附活化熵为负值,表明Cu2 从水溶液本体中溶解的自由状态到被吸附的状态是有序增加的过程.吸附活化焓呈正值,意味着升温有利于吸附.花生壳对Cu2 的吸附较好地符合Langmuir吸附等温线.吸附过程中吉布斯自由能变化呈负值,说明吸附过程为自发的过程. 相似文献
15.
铁镍改性膨润土对废水中有机污染物的吸附性能研究 总被引:2,自引:0,他引:2
以钠基膨润土为原料,制备了铁镍无机改性土和铁镍有机复合改性土,并应用于造纸废水的处理,探讨了改性土用量、废水pH值、搅拌时间等因素对COD去除率的影响,通过正交实验对实验条件进行了优化.结果表明:铁镍有机复合改性土和铁镍元机改性土对废水的处理效果明显好于原土;膨润土的用量、废水的pH对COD的去除率影响较大;对于铁镍无机改性土,吸附剂用量为12g/L,溶液pH=2,吸附时间为10 min时,对废水中COD的去除率为54.06%;对于铁镍有机复合改性土,吸附剂用量为14g/L,溶液pH=3,吸附时间为20 min时,对废水中COD的去除率为70.10%. 相似文献
16.
17.
改性粉煤灰处理低浓度含磷废水的研究 总被引:1,自引:0,他引:1
以酸改性粉煤灰为吸附剂,处理低质量浓度(1 mg/L左右)磷酸盐溶液,探讨了改性剂的种类、改性剂用量、吸附剂用量、反应时间、pH以及温度对除磷效果的影响.结果表明:(1)经过酸改性后粉煤灰的磷去除率显著提高,而且硫酸改性粉煤灰的除磷效果更好,磷去除率最高可达97.68%.(2)最佳条件:选择硫酸用量为5 mL/g进行改性,硫酸改性粉煤灰投加量为2.0g,反应时间为60 min,pH为7.2~10.8,温度为25℃(即室温).(3)改性粉煤灰对磷的吸附更符合Freundlich吸附等温模型,既有物理吸附,也有化学吸附,并以Ca、Mg氧化物与磷形成磷的沉淀物为主. 相似文献
18.
铁盐改性砂制备及其吸附Zn~(2+)的性能研究 总被引:1,自引:0,他引:1
通过改变石英砂表面的物理化学性质,提高石英砂的吸附效率,考察其对废水中的Zn~(2+)去除效果.以石英砂为载体,分别用反复高温加热法和反复碱性沉积法制备了三氯化铁改性砂、硝酸铁改性砂,测定2种方法制备的铁盐改性砂的表面含铁量、铁盐的酸稳定性及比表面积,并比较2种铁盐改性砂对Zn~(2+)的吸附效果.结果表明,三氯化铁改性砂、硝酸铁改性砂的比表面积分别为2.468、4.247 m~2/g,比石英砂比表面积分别提高6.910、12.612倍;在pH为中性条件下,石英砂对Zn~(2+)去除率为43%左右,三氯化铁改性砂对Zn~(2+)去除率达到70%左右,硝酸铁改性砂对Zn~(2+)去除率达到85%左右,表明铁盐改性砂对Zn~(2+)去除能力比石英砂有很大提高;铁盐改性砂对Zn~(2+)的吸附有一定容量,表面的活性中心越多,吸附能力越大;铁盐改性砂对Zn~(2+)的去除率随着pH的升高而增加,当pH>8.5时,Zn~(2+)去除率可达90%左右. 相似文献