首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
为定量分析再生水中邻苯二甲酸二丁酯(DBP)和邻苯二甲酸二(2-乙基己基)酯(DEHP)痕量环境激素,考察了分散固相萃取(DSPE)预处理方法的萃取条件,并用于实际再生水样的预处理分析。结果表明,当萃取剂(HC-C18)用量为0.20 g、洗脱剂为6 m L乙酸乙酯、萃取时间为20 min、摇床振荡速度为200 r·min~(-1)、萃取温度为50℃时,DBP与DEHP回收率分别为96.91%和101.82%。2种物质在0.50~50.00μg·L~(-1)范围内线性良好,相关系数(R2)分别为0.998 6和0.998 8,检出限分别是0.05和0.008μg·L~(-1),加标回收率平均为96.58%和97.23%,相对标准偏差分别为3.37%~8.29%和4.91%~5.74%。该方法无需过滤水样,能够减少目标物在过滤过程中的损失,预处理时间短,且不会造成萃取小柱堵塞,适用于水质变化大、悬浮物含量高的再生水分析。采用DSPE-GC-MS方法对再生水中DBP、DEHP检测分析,方法的准确度和精密度满足痕量物质分析要求。  相似文献   

2.
将慢滤池用于污水二级出水的深度处理,并利用小试装置研究了慢滤池去除邻苯二甲酸二(2-乙基己基)酯(DEHP)的效能。慢滤池采用粒径为0.4~0.6 mm,厚度为800 mm的石英砂做滤料并以0.1 m/h的恒定滤速运行。实验结果表明,慢滤池出水浊度、COD和色度远低于现行《城市污水再生利用城市杂用水水质标准》(GB/T18920-2002)的相应数值。污水二级处理出水中DEHP浓度为6.1~62.8μg/L时,经过慢滤池过滤后,DEHP浓度降为1.7~7.3μg/L。当接纳282.8μg/L的DEHP冲击负荷时,慢滤池出水DEHP仍能低于10μg/L。实验证明,慢滤池内的生物膜吸附过滤和生物降解共同保证了慢滤池去除DEHP的良好性能。  相似文献   

3.
卢利  刘文  崔锋  许楠  徐硕  倪晋仁 《环境工程学报》2012,6(7):2295-2302
探讨了采用实验室规模的生物处理组合工艺(上流式厌氧污泥床+曝气生物滤池+缺氧反应器+膜生物反应器,UASB+BAF+ANO+MBR)处理垃圾渗滤液过程中,邻苯二甲酸二丁酯(DBP)和邻苯二甲酸二(2-乙基己基)酯(DE-HP)两种内分泌干扰物在各工艺段的去除效率和机理。测定结果表明,对于DBP和DEHP浓度分别为164.4μg/L和215.0μg/L的原水,总出水浓度分别降至11.8μg/L和10.4μg/L,去除率分别达到92.9%和95.2%,处理效果良好。其中DBP在处理工艺中逐级降解,主要是微生物的降解作用。MBR是DEHP的主要去除工艺段,去除比例达到56.6%,膜截留效果明显。采用生物处理组合工艺可实现对垃圾渗滤液中DBP和DEHP的同时高效去除。  相似文献   

4.
主要研究了DL1210型纳滤膜去除水中邻苯二甲酸二丁酯(DBP)、邻苯二甲酸二(2-乙基己基)酯(DEHP)、乐果和莠去津的影响因素,考察了温度、pH值、初始浓度、跨膜压力(TMP)和运行时间对膜通量和截留率的影响。结果表明,纳滤工艺是去除水中微量DBP、DEHP、乐果和莠去津的有效方法,初始pH值和温度的升高会导致纳滤膜对DBP、DEHP、乐果和莠去津的截留率的降低,膜对DBP和DEHP的截留率随初始浓度的升高而降低,TMP和运行时间不会对膜通量和目标污染物的截留率造成显著影响。当初始pH为5、初始浓度为5μg/L、温度为5℃、TMP为0.4 MPa时,纳滤工艺对DBP、DEHP、乐果和莠去津的截留率达到最佳,分别为91.8%、89.8%、98.02%和77.6%,出水中DBP、DEHP、乐果和莠去津浓度分别为0.41、0.49、0.099和1.12μg/L。  相似文献   

5.
固相微萃取-气相色谱分析饮用水中三卤甲烷   总被引:1,自引:0,他引:1  
大多数自来水厂现仍使用液氯处理作为饮用水消毒的主要技术之一,但在处理过程中会产生有致癌性的三卤甲烷,如氯仿、二氯一溴甲烷、一氯二溴甲烷和溴仿。为了对饮用水中的三卤甲烷进行研究,采用固相微萃取—气相色谱方法检测分析。研究了搅拌速度、萃取时间、萃取温度、盐含量(NaCl质量分数)和pH对萃取效果的影响,得出最佳优化条件:搅拌速度240r/min,萃取时间15min,萃取温度20℃,NaCl质量分数为20%~30%,pH=6。同时,对分析参数如线性相关性、相对标准偏差、最低检出限及保留时间进行了评价。结果表明,采用固相微萃取—气相色谱方法,拟合曲线得出,在三卤甲烷质量浓度为0.05~2.00、2.00~40.00μg/L时相关系数分别为0.9908~0.9997、0.9907~0.9971;在三卤甲烷质量浓度为5.00、20.00μg/L时,相对标准偏差分别为3.5%~7.6%、1.9%~7.3%,最低检出限为0.005~0.010μg/L;经固相微萃取后,三卤甲烷在气相色谱中的保留时间最短,在6min内。  相似文献   

6.
为了解加油站运营对周边浅层地下水环境质量的影响,随机选择了12个正常运营20年以上的加油站,在加油站上游和下游共布设了27口地下水监测井,对地下水中石油烃、苯系物、萘、1,2-二氯乙烷和甲基叔丁基醚开展了水质监测。结果表明,石油烃在地下水中的检出率较高,为96.3%,检出浓度为4.2~544.7μg/L,检出组分主要为柴油烃中的C26和C20,检出率分别达到了88.9%和77.8%;汽油烃的有效组分C6~C9未检出,作为汽油添加剂的1,2-二氯乙烷和甲基叔丁基醚在地下水中存在,检出率分别为96.3%和22.2%,检出浓度分别为1.7~30.9μg/L和3.8~30.9μg/L。其中,11.1%的监测井中甲基叔丁基醚浓度超过了EPA推荐的饮用水安全的浓度限值(20μg/L),3.7%的监测井中1,2-二氯乙烷浓度超过了《地表水环境质量标准》(GB 3838-2002)中"集中式生活饮用水地表水源地特定项目标准限值"规定的30μg/L。总体而言,石油烃、苯系物、1,2-二氯乙烷和甲基叔丁基醚的含量远低于油品渗(泄)漏导致的污染水平。  相似文献   

7.
建立了水样中毒死蜱及其主要代谢产物3,5,6-三氯吡啶醇(TCP)的固相萃取—气相色谱质谱检测法,即采用固相萃取对水样中的毒死蜱及其代谢产物TCP进行富集,浓缩后经双(三甲基硅烷基)三氯乙酰胺(BSTFA)衍生TCP,采用气相色谱质谱进行测定。同时,采用外标法对毒死蜱和TCP进行定量。结果表明,该方法的线性范围为20~1 000μg/L,毒死蜱和TCP的检出限分别为0.375、0.100μg/L;环境水样中的毒死蜱和TCP平均加标回收率分别为89.12%~93.44%和87.37%~90.75%,相对标准偏差(RSD)为2.79%~6.64%和1.22%~5.48%。  相似文献   

8.
采用固相萃取(SPE)样品富集前处理技术和气相色谱/质联联用(GC/MS)分析方法,对北方某工业城市给水系统中的多环芳烃类化合物的含量水平进行了研究.结果表明,该城市多环芳烃污染水平较高,但总浓度均未超过城市供水水质标准(CJ/T206-2005)中限值(2μg/L).近郊水库由于受到燃料燃烧产生的多环芳烃的污染,成为该市饮用水中多环芳烃污染的主要来源.传统的混凝-砂滤工艺对多环芳烃有较好的去除效果,总去除率可达55.9%.  相似文献   

9.
曝气生物滤池工艺应用于处理回用洗浴废水   总被引:3,自引:0,他引:3  
采用曝气生物滤池(BAF)工艺,对某学生公寓洗浴废水进行处理,将出水就近回用于公寓冲厕。BAF工艺具有节省空间、处理效率高、出水水质好、流程简单等优点,出水水质达到《城市污水再生利用城市杂用水水质标准》(GB/T18920—2002)的相应要求。  相似文献   

10.
反相高效液相色谱法测定污水中壬基酚聚氧乙烯醚总量   总被引:2,自引:1,他引:1  
建立了固相萃取一反相液相色谱一荧光检测法分析污水中壬基酚聚氧乙烯醚总量的方法.固相萃取采用Wa-ters Oasis HLB固相萃取柱(30 μg×60 mg×3 mL),6 mL二氯甲烷/甲醇(90/10,V/V)混合溶剂洗脱,洗脱液用氮吹仪浓缩至1 mL,回收率为99.68%.采用ZORBAX Eclipse XDBC-18(4.6 mm×150 mm,5 μm)反相色谱柱,甲醇/水为流动相,流速1.0 mL/min,以每分钟增加2.5%的梯度陡度进行洗脱,流动相中甲醇比例由70%增加到100%,柱温23℃,进样量15μL.荧光检测器的激发波长230 nm,发射波长313 nm.采用外标法定量.该方法的空白加标和污水样品加标回收率均在90%以上,标准偏差小于10%,定量下限为0.97~1.90 μg/L.利用该方法分别对污水处理厂进水水样、二级处理出水水样、再生水水样进行了测定,测定结果的准确度和精密度满足痕量分析的要求.  相似文献   

11.
Yuan SY  Liu C  Liao CS  Chang BV 《Chemosphere》2002,49(10):1295-1299
Concentrations and microbial degradation rates were measured for eight phthalate esters (PAEs) found in 14 surface water and six sediment samples taken from rivers in Taiwan. The tested PAEs were diethyl phthalate (DEP), dipropyl phthalate (DPP), di-n-butyl phthalate (DBP), diphenyl phthalate (DPhP), benzylbutyl phthalate (BBP), dihexyl phthalate (DHP), dicyclohexyl phthalate (DCP), and di-(2-ethylhexyl) phthalate (DEHP). In all samples, concentrations of DEHP and DBP were found to be higher than the other six PAEs. DEHP concentrations in the water and sediment samples ranged from ND to 18.5 μg/l and 0.5 to 23.9 μg/g, respectively; for DBP the concentration ranges were 1.0–13.5 μg/l and 0.3–30.3 μg/g, respectively. Concentrations of DHP, BBP, DCP and DPhP were below detection limits. Under aerobic conditions, average degradation half-lives for DEP, DPP, DBP, DPhP, BBP, DHP, DCP and DEHP were measured as 2.5, 2.8, 2.9, 2.6, 3.1, 9.7, 11.1 and 14.8 days, respectively; under anaerobic conditions, respective average half-lives were measured as 33.6, 25.7, 14.4, 14.6, 19.3, 24.1, 26.4 and 34.7 days. In other words, under aerobic conditions we found that DEP, DPP, DBP, DPhP and BBP were easily degraded, but DEHP was difficult to degrade; under anaerobic conditions, DBP, DPhP and BBP were easily degraded, but DEP and DEHP were difficult to degrade. Aerobic degradation rates were up to 10 times faster than anaerobic degradation rates.  相似文献   

12.
A method for trace analysis of two plasticizers, di-2-ethylhexyl phthalate (DEHP) and di-2-ethylhexyl adipate (DEHA), contaminated in packaged curry paste were investigated by gas chromatography with flame ionization detector (GC-FID). Curry paste samples were extracted by ultrasonic and solid phase extraction using Florisil(R) cartridge. Analysis by the GC-FID system provided limits of detection for DEHA and DEHP at 12 and 25 microg L(- 1) and a linear dynamic range between 25 microg L(- 1) to 60 mg L(- 1) with a coefficient of determination (R(2)) greater than 0.99. High recoveries were obtained, ranged from 91 to 99% and 88 to 98% for DEHP and DEHA with RSD lower than 7 and 10% respectively. The method detection limit and limits of quantitation were ranged from 27 to 30 and 90 to 100 microg L(- 1). The analysis of curry paste samples showed concentrations of DEHP and DEHA in the range of 4.0 ng g(- 1) to 0.61 microg g(- 1).  相似文献   

13.
A method for trace analysis of two plasticizers, di-2-ethylhexyl phthalate (DEHP) and di-2-ethylhexyl adipate (DEHA), contaminated in packaged curry paste were investigated by gas chromatography with flame ionization detector (GC-FID). Curry paste samples were extracted by ultrasonic and solid phase extraction using Florisil® cartridge. Analysis by the GC-FID system provided limits of detection for DEHA and DEHP at 12 and 25 μ g L? 1 and a linear dynamic range between 25 μ g L? 1 to 60 mg L? 1 with a coefficient of determination (R2) greater than 0.99. High recoveries were obtained, ranged from 91 to 99% and 88 to 98% for DEHP and DEHA with RSD lower than 7 and 10% respectively. The method detection limit and limits of quantitation were ranged from 27 to 30 and 90 to 100 μ g L? 1. The analysis of curry paste samples showed concentrations of DEHP and DEHA in the range of 4.0 ng g? 1 to 0.61 μg g? 1.  相似文献   

14.
Sanitary landfill leachates are a complex mixture of high-strength organic and inorganic persistent contaminants, which constitute a serious environmental problem. In this study, trace contaminants present in leachates were investigated by gas chromatography-mass spectrometry and gas chromatography-flame ionization detector before and after a pre-oxidation step using a solar photo-Fenton process. More than 40 organic compounds were detected and identified as benzene (0.09?±?0.07 mg?L-1), trichlorophenol (TCP) (0.18?±?0.12 mg?L-1), phthalate esters (Di-n-butyl phthalate (DBP), Butyl benzyl phthalate (BBP), Di(2-ethylhexyl) phthalate (DEHP)) (DBP: 0.47?±?0.01 mg?L-1; BBP: 0.36?±?0.02 mg?L-1; DEHP: 0.18?±?0.01 mg?L-1), among others. Toluene, pentachlorophenol, dimethyl phthalate, diethyl phthalate, and Di-n-octyl phthalate were never detected in any of the samples. After the photo-Fenton treatment process, TCP decreased to levels below its detection limit, benzene concentration increased approximately three times, and DBP concentration decreased about 77 % comparatively to the raw leachate sample. The solar photo-Fenton process was considered to be very efficient for the treatment of sanitary landfill leachates, leading to the complete elimination of 24 of the detected micropollutants to levels below their respective detection limits and low to significant abatement of seven other organic compounds, thus resulting in an increase of the leachate biodegradability.  相似文献   

15.
Effect of DBP/DEHP in vegetable planted soil on the quality of capsicum fruit   总被引:13,自引:0,他引:13  
Yin R  Lin XG  Wang SG  Zhang HY 《Chemosphere》2003,50(6):801-805
Field experiment was conducted to investigate the di-n-butyl phthalate (DBP) and di-2-ethylhexyl phthalate (DEHP) contamination in Capsicum annum fruit grown in DBP and DEHP contaminated soil, and to evaluate the effect of DBP and DEHP on the quality of capsicum fruit. The top layer soil (0-10 cm) of plots was treated with a mixture of DBP and DEHP (1:1 w/w) and capsicum seedlings were transplanted. After 90 days, capsicum fruit, shoot and root samples were collected. DBP and DEHP concentration in various parts of the samples were determined by gas chromatography. Vitamin C and capsaicin contents in fruit were determined using 2,4-dinitrophenylhydrazine colorimetric analysis and sodium nitrite-sodium molybdate colorimetric analysis, respectively. The results showed that DBP concentration in fruit, shoot and root increased with the increase of soil-applied DBP/DEHP concentration, but DEHP was not detected in all samples. When the soil-applied DBP/DEHP concentration was 5, 10, 20, 40, 80 and 160 mg kg(-1) soil, compared with control, vitamin C and capsaicin content in capsicum fruit decreased by 1.6%, 5.9%, 10.6%/o, 18.2%, 19.2%, 22.6% and 1.6%, 2.5%, 12.9%, 20.1%, 22.2%, respectively. Pearson correlation analysis demonstrated that the decrease of vitamin C and capsaicin content was negatively correlated to the increase of DBP concentration in capsicum fruit, which suggested that DBP uptake by the plant might be mainly responsible for quality degradation of capsicum fruit.  相似文献   

16.
Chen  Hui  Mao  Wei  Shen  Yiqiu  Feng  Weiwei  Mao  Guanghua  Zhao  Ting  Yang  Lanqin  Yang  Liuqing  Meng  Chunfeng  Li  Yong  Wu  Xiangyang 《Environmental science and pollution research international》2019,26(24):24609-24619

Phthalates (PAEs) in drinking water sources such as the Yangtze River in developing countries had aroused widespread concern. Here, the water, suspended particulate matter (SPM), and sediment samples were collected from 15 sites in wet and dry seasons in Zhenjiang, for the determination of six PAEs (DMP, DEP, DIBP, DBP, DEHP, and DOP) using the solid-phase extraction (SPE) or ultrasonic extraction coupled with gas chromatography-mass spectrometry (GC-MS). The total concentrations of six PAEs (Σ6PAEs) spanned a range of 2.65–39.31 μg L?1 in water, 1.97–34.10 μg g?1 in SPM, and 0.93–34.70 μg g?1 in sediment. The partition coefficients (Kd1) of PAEs in water and SPM phase ranged from 0.004 to 3.36 L g?1 in the wet season and from 0.12 to 2.84 L g?1 in the dry season. Kd2 of PAEs in water and sediment phase was 0.001–9.75 L g?1 in the wet season and 0.006–8.05 L g?1 in the dry season. The dominant PAEs were DIBP, DBP, and DEHP in water and SPM, DIBP, DEHP, and DOP in sediment. The concentration of DBP in water exceeded the China Surface Water Standard. The discharge of domestic sewage and industrial wastewater might be the main potential sources of PAEs. The risk quotient (RQ) method used for the risk assessment revealed that DBP (0.01 < RQ < 1) posed a medium risk, while DIBP and DEHP (RQ > 1) posed a high environmental risk in water, DIBP (RQ > 1) also showed a high risk in sediment.

  相似文献   

17.
Abstract

The presence of diethyl-phthalate (DEP), dibutyl-phthalate (DBP), butylbenzyl-phthalate (BBP), diethylhexyl-phthalate (DEHP) and diisononyl-phthalate (DINP) was determined in 295 tequila samples. They were grouped by age of maturation (white, aged, extra aged or ultra aged) and year of production (between 2013 and 2018). Gas Chromatography coupled with Mass Spectrometry was used for identification and quantification. The results showed that 65 samples (22% of the total) were phthalate free. DEP (0.13-0.27?mg/kg), BBP (0.05–2.91?mg/kg) and DINP (1.64–3.43?mg/kg) were detected in 11 (3.73%), 37 (12.54%) and 5 (1.69%) samples, respectively. But, these concentrations did not exceed the maximum permitted limits (MPL) of phthalates for alcoholic beverages. DBP (0.01–2.20?mg/kg) and DEHP (0.03–4.64?mg/kg) were detected in 96 (32.54%) and 224 (75.93%) samples, from them only 10 (3.39%) and 15 (5.08%) samples, respectively, exceeded the MPL for alcoholic beverages and they were few tequilas produced in the year 2014 or before. DEHP was the most frequent phthalate found in tequila and observed DEHP concentrations were 2-times higher in ultra aged tequilas compared to those in white tequilas. We concluded that all tequilas produced in 2015 and after, satisfied the international standards for these compounds.  相似文献   

18.
邻苯二甲酸酯类化合物土壤吸附系数的测定及相关性研究   总被引:8,自引:0,他引:8  
研究测定了邻苯二甲酸二甲酯(DMP)、二乙酯(DEP)、二丙酯(DPP)、二丁酯(DBP)、丁基苄基酯(BBP)和二异辛酯(DEHP)等6种化合物土壤吸附系数Koc,并研究了Koc与正辛醇一水分配系数Kow、水溶解度S之间的相关性,建立了相关方程式。  相似文献   

19.
This study investigated the biodegradation of the phthalate esters (PAEs) di-n-butyl phthalate (DBP) and di-(2-ethyl hexyl) phthalate (DEHP) in sludge and sludge-amended soil. DBP (100 mg kg(-1)) and DEHP (100 mg kg(-1)) were added to sewage sludge, which was subsequently added to soil. The results showed that sewage sludge can degrade PAEs and the addition of sewage sludge to soil enhanced PAE degradation. Sludge samples were separated into fractions with various particle size ranges, which spanned 0.1-0.45 μm to 500-2000 μm. The sludge fractions with smaller particle sizes demonstrated higher PAE degradation rates. However, when the different sludge fractions were added to soil, particle size had no significant effect on the rate of PAE degradation. The results from this study showed that microbial strains F4 (Rhodococcus sp.) and F8 (Microbacterium sp.) were constantly dominant in the mixtures of soil and sludge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号